Using Einkorn and Tritordeum Brewers’ Spent Grain to Increase the Nutritional Potential of Durum Wheat Pasta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Pasta-Making Process
2.3. Quality of the Cooked Pasta
2.4. Sensory Testing
2.5. Basic Composition and Total Antioxidant Capacity of BSG and Pasta Samples
2.6. Statistical Analysis
3. Results and Discussion
3.1. Compositional Analysis of Raw Materials
3.2. Chemical, Technological and Basic Characterizations of Dry Pasta
3.3. Characterization and Sensory Evaluation of Cooked Pasta
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Socaci, S.A.; Fărcaş, A.C.; Vodnar, D.C.; Tofană, M. Food Wastes as Valuable Sources of Bioactive Molecules. In Superfood and Functional Food-The Development of Superfoods and Their Roles as Medicine; Shiomi, N., Waisundara, V., Eds.; IntechOpen: London, UK, 2017. [Google Scholar]
- Muscio, A.; Sisto, R. Are Agri-Food Systems Really Switching to a Circular Economy Model? Implications for European Research and Innovation Policy. Sustainability 2020, 12, 5554. [Google Scholar] [CrossRef]
- Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Di Cagno, R. High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020, 25, 2987. [Google Scholar] [CrossRef] [PubMed]
- Presentation Report Study Publishing Organisation or Company: Circular Economy Network. March 2020. Available online: https://circulareconomynetwork.it/rapporto-economia-circolare-2020/ (accessed on 3 December 2020).
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Assobirra. Annual Report for the year 2017. 2018. Available online: http://www.assobirra.it/ (accessed on 1 December 2020).
- Ikram, S.; Huang, L.; Zhang, H.; Wang, J.; Yin, M. Composition and nutrient value proposition of brewers spent grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.; Jiménez, J.J.; Bartolomé, B.; Gómez-Cordovés, C.; del Nozal, M.J. Variability of brewer’s spent grain within a brewery. Food Chem. 2003, 80, 17–21. [Google Scholar] [CrossRef]
- Singh, A.P.; Mandal, R.; Shojaei, M.; Singh, A.; Kowalczewski, P.L.; Ligaj, M.; Pawlicz, J.; Jarzebski, M. Novel drying methods for sustainable upcycling of brewers’ spent grains as a plant protein source. Sustainability 2020, 12, 3660. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Brewer’s Spent Grains: Possibilities of Valorization, a review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial application. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- Nocente, F.; Taddei, F.; Galassi, E.; Gazza, L. Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. LWT Food Sci. Technol. 2019, 114, 108421. [Google Scholar] [CrossRef]
- Cappa, C.; Alamprese, C. Brewer’s spent grain valorization in fiber-enriched fresh egg pasta production: Modelling and optimization study. LWT Food Sci. Technol. 2017, 82, 464–470. [Google Scholar] [CrossRef]
- Farcas, A.; Tofana, M.; Socaci, S.; Mudura, E.; Scrob, S.; Salanta, L.; Muresan, V.J. Brewers’ spent grain—A new potential ingredient for functional foods. J. Agroaliment. Process. Technol. 2014, 20, 137–141. [Google Scholar]
- Ozturk, S.; Ozboy, O.; Cavidoglu, I.; Koksel, H. Effects of brewers’ spent grain on the quality and dietary fibre content of cookies. J. Inst. Brew. 2002, 108, 23–27. [Google Scholar] [CrossRef]
- Amoriello, T.; Mellara, F.; Galli, V.; Amoriello, M.; Ciccoritti, R. Technological properties and consumer acceptability of bakery products enriched with brewers’spent grains. Foods 2020, 9, 1492. [Google Scholar] [CrossRef] [PubMed]
- Fastnaught, C.E. Barley fibre. In Handbook of Dietary Fibre; Cho, S., Dreher, M., Eds.; Marcel Dekker: New York, NY, USA, 2001. [Google Scholar]
- McCarthy, A.L.; O’Callaghan, Y.C.; Piggott, C.O.; FitzGerald, R.J.; O’Brien, N.M. Brewers’ spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: A review. Proc. Nutr. Soc. 2013, 72, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Steiner, J.; Procopio, S.; Becker, T. Brewer’s spent grain: Source of value-added polysaccharides for the food industry in reference to the health claims. Eur. Food Res. Technol. 2015, 241, 303–315. [Google Scholar] [CrossRef]
- Reis, S.F.; Abu-Ghannam, N. Antioxidant capacity, arabinoxylans content and in vitro glycaemic index of cereal-based snacks incorporated with brewer’s spent grain. LWT Food Sci. Technol. 2014, 55, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Mayer, H.; Marconi, O.; Perretti, G.; Sensidoni, M.; Fantozzi, P. Investigation of the suitability of hulled wheats for malting and brewing. J. Am. Soc. Brew. Chem. 2011, 69, 116–120. [Google Scholar] [CrossRef]
- Zdaniewicz, M.; Pater, A.; Hrabia, O.; Duliński, R.; Cioch-Skoneczny, M. Tritordeum malt: An innovative raw material for beer production. J. Cereal Sci. 2020, 96, 103095. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A.; Pompei, C.; Piscozzi, R. Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.). J. Cereal Sci. 2006, 44, 182–193. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A. Nutritional properties of einkorn wheat (Triticum monococcum L.). J. Sci. Food Agric. 2014, 94, 601–612. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Taddei, F.; Gazza, L.; Nocente, F. Influence of kernel thermal pre-treatments on 5-n-alkylresorcinols, polyphenols and antioxidant activity of durum and einkorn wheat. Eur. Food Res. Technol. 2020. [Google Scholar] [CrossRef]
- Di Stasio, L.; Picascia, S.; Auricchio, R.; Vitale, S.; Gazza, L.; Picariello, G.; Gianfrani, C.; Mamone, G. Comparative Analysis of in vitro Digestibility and Immunogenicity of Gliadin Proteins From Durum and Einkorn Wheat. Front. Nutr. 2020, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Martın, A.; Alvarez, J.B.; Martın, L.M.; Barro, F.; Ballesteros, J. The development of tritordeum: A novel cereal for food processing. J. Cereal Sci. 1999, 30, 85–95. [Google Scholar] [CrossRef]
- Giordano, D.; Reyneri, A.; Locatelli, M.; Coïsson, J.D.; Blandino, M. Distribution of bioactive compounds in pearled fractions of tritordeum. Food Chem. 2019, 301, 125228. [Google Scholar] [CrossRef]
- Vaquero, L.; Comino, I.; Vivas, S.; Rodríguez-Martín, L.; Giménez, M.J.; Pastor, J.; Sousa, C.; Barro, F. Tritordeum: A novel cereal for food processing with good acceptability and significant reduction in gluten immunogenic peptides in comparison with wheat. J. Sci. Food Agric. 2018, 98, 2201–2209. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. Pasta and noodle cooking quality-firmness. In Approved Methods of Analysis, 66-50.01; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- D’Egidio, M.G.; Mariani, B.M.; Nardi, S.; Novaro, P.; Cubadda, R. Chemical and technological variables and their relationships: A predictive equation for pasta cooking quality. Cereal Chem. 1990, 67, 275–281. [Google Scholar]
- D’Egidio, M.G.; De Stefanis, E.; Fortini, S.; Galterio, G.; Nardi, S.; Sgrulletta, D.; Bozzini, A. Standardization of cooking quality analysis in macaroni and pasta products. Cereal Foods World 1982, 27, 367–368. [Google Scholar]
- D’Egidio, M.G.; Nardi, S. Textural measurement of cooked spaghetti. In Pasta and Noodle Technology; Kruger, J.E., Matsuo, R.R., Dick, J.W., Eds.; AACC: St. Paul, MN, USA, 1996. [Google Scholar]
- International Association for Cereal Science and Technology. ICC Standard Methods (Methods No. 105/2); ICC: Vienna, Austria, 2003. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis 991, 16th ed.; Cunniff, P., Ed.; AOAC: Gaithersburg, MD, USA, 1995; p. 42. [Google Scholar]
- American Association of Cereal Chemists. Approved Methods of Analysis, 08-01.01 Ash; AACC International: St. Paul, MN, USA, 2013. [Google Scholar]
- European Brewery Convention. Analytica. Method 4.16.1, 5th ed.; Fachverlag Hans Carl: Nürnberg, Germany, 1998. [Google Scholar]
- Martini, D.; Taddei, F.; Nicoletti, I.; Ciccoritti, R.; Corradini, D.; D’Egidio, M.G. Effects of genotype and environment on phenolic acids content and total antioxidant capacity in durum wheat. Cereal Chem. 2014, 91, 310–317. [Google Scholar] [CrossRef]
- Nascimento, T.A.; Calado, V.; Carvalho, C.W.P. Effect of Brewer’s spent grain and temperature on physical properties of expanded extrudates from rice. LWT Food Sci. Technol. 2017, 79, 145–151. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A. Evaluation of heat damage, sugars, amylases and colour in beads from einkorn, durum and bread wheat flours. J. Cereal Sci. 2011, 54, 90–97. [Google Scholar] [CrossRef]
- Erlandsson, A. Tritordeum. Evaluation of a New Food Cereal. Master’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2010. [Google Scholar]
- Official Journal of the European Union. REGULATION (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods; Official Journal of the European Union: Brussels, Belgium, 2006. [Google Scholar]
- European Food Safety Authority. Scientific opinion on the substantiation of a health claim related to oat beta glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/200612010. Efsa J. 2010, 8, 1885. [Google Scholar]
- Manthey, F.; Schorno, A. Physical and cooking quality of spaghetti made from whole wheat durum. Cereal Chem. 2002, 79, 504–510. [Google Scholar] [CrossRef]
- Bustos, M.C.; Pérez, G.T.; León, A.E. Effect of four types of dietary fiber on the technological quality of pasta. Food Sci. Technol. Int. 2011, 17, 213–221. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C.S. The effects of dietary fibre addition on the quality of common cereal products. J. Cereal Sci. 2013, 58, 216–227. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, M.A.; Brennan, C.S. How combinations of dietary fibres can affect physicochemical characteristics of pasta. LWT Food Sci. Technol. 2015, 61, 41–46. [Google Scholar] [CrossRef]
- Marconi, E.; Graziano, M.; Cubadda, R. Composition and utilization of barley pearling by-products for making functional pastas rich in dietary fiber and β-glucans. Cereal Chem. 2000, 77, 133–139. [Google Scholar] [CrossRef]
- Cleary, L.; Brennan, C. The influence of a (1→3)(1→4)-β-d-glucan rich fraction from barley on the physico-chemical properties and in vitro reducing sugars release of durum wheat pasta. Int. J. Food Sci. Technol. 2006, 41, 910–918. [Google Scholar] [CrossRef]
- Aravind, N.; Sissons, M.; Egan, N.; Fellows, C.M.; Blazek, J.; Gilbert, E.P. Effect of β-glucan on technological, sensory, and structural properties of durum wheat pasta. Cereal Chem. 2012, 89, 84–93. [Google Scholar] [CrossRef]
SAMPLES | Protein | TDF | β-Glucan | Ash | TAC |
---|---|---|---|---|---|
% | % | % | % | mmol TEAC/kg | |
Einkorn BSGE | 32.5 ± 0.1 | 30.5 ± 0.3 | 1.00 ± 0.01 | 3.07 ± 0.02 | 60.8 ± 0.2 |
Tritordeum BSGT | 21.6 ± 0.3 | 25.9 ± 0.3 | 1.660 ± 0.003 | 2.85 ± 0.02 | 45.8 ± 0.5 |
SAMPLES | Protein | Ash | TDF | TAC | β-Glucan |
---|---|---|---|---|---|
% | % | % | mmol TEAC/kg | % | |
S | 13.2 ± 0.4 c | 0.866 ± 0.008 e | 3.4 ± 0.1 d | 31 ± 2 c | 0.46 ± 0.07 d |
BSGE5 | 14.3 ± 0.2 b | 0.963 ± 0.005 c | 4.0 ± 0.3 c | 34.0 ± 0.7 b | 0.50 ± 0.03 cd |
BSGE10 | 15.2 ± 0.3 a | 1.098 ± 0.002 a | 5.7 ± 0.4 a | 37 ± 1 a | 0.702 ± 0.001 b |
BSGT5 | 13.8 ± 0.2 bc | 0.909 ± 0.008 d | 4. 0 ± 0.4 c | 33 ± 2 bc | 0.56 ± 0.04 c |
BSGT 10 | 14.3 ± 0.4 b | 1.000 ± 0.005 b | 4.8 ± 0.4 b | 34.6 ± 0.6 b | 0.81 ± 0.05 a |
SAMPLES | TOM | CL | OCT | WA |
---|---|---|---|---|
% | % | min′ sec″ | g | |
S | 1.28 ± 0.08 a | 4.61 ± 0.04 e | 7′30″ ± 5″ c | 181.80 ± 0.02 e |
BSGE5 | 1.07 ± 0.04 bc | 4.78 ± 0.09 d | 8′10′′ ± 5″ a | 185.80 ± 0.01 c |
BSGE10 | 1.00 ± 0.04 c | 4.85 ± 0.01 c | 8′10′′ ± 5″ a | 197.00 ± 0.03 a |
BSGT5 | 1.01 ± 0.09 bc | 5.14 ± 0.04 a | 7′50′′ ± 5″ b | 184.20 ± 0.02 d |
BSGT10 | 1.10 ± 0.01 b | 4.95 ± 0.02 b | 8′00′′ ± 5″ ab | 193.50 ± 0.01 b |
SAMPLES | Cooking Quality Parameters | ||
---|---|---|---|
Stickiness | Firmness | Global Sensorial Judgement | |
S | 90 | 75 | 83 |
BSGE5 | 80 | 75 | 78 |
BSGE10 | 85 | 80 | 83 |
BSGT5 | 85 | 70 | 78 |
BSGT10 | 70 | 70 | 70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocente, F.; Natale, C.; Galassi, E.; Taddei, F.; Gazza, L. Using Einkorn and Tritordeum Brewers’ Spent Grain to Increase the Nutritional Potential of Durum Wheat Pasta. Foods 2021, 10, 502. https://doi.org/10.3390/foods10030502
Nocente F, Natale C, Galassi E, Taddei F, Gazza L. Using Einkorn and Tritordeum Brewers’ Spent Grain to Increase the Nutritional Potential of Durum Wheat Pasta. Foods. 2021; 10(3):502. https://doi.org/10.3390/foods10030502
Chicago/Turabian StyleNocente, Francesca, Chiara Natale, Elena Galassi, Federica Taddei, and Laura Gazza. 2021. "Using Einkorn and Tritordeum Brewers’ Spent Grain to Increase the Nutritional Potential of Durum Wheat Pasta" Foods 10, no. 3: 502. https://doi.org/10.3390/foods10030502
APA StyleNocente, F., Natale, C., Galassi, E., Taddei, F., & Gazza, L. (2021). Using Einkorn and Tritordeum Brewers’ Spent Grain to Increase the Nutritional Potential of Durum Wheat Pasta. Foods, 10(3), 502. https://doi.org/10.3390/foods10030502