An Integrated Approach for the Valorization of Sea Bass (Dicentrarchus labrax) Side Streams: Evaluation of Contaminants and Development of Antioxidant Protein Extracts by Pressurized Liquid Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Raw Material and Sample Preparation
2.3. Analysis of Heavy Metals in Sea Bass Side Streams
2.4. Analysis of Mycotoxins in Sea Bass Rest Raw Material
2.5. Protein Determination
2.6. Evaluation of Total Antioxidant Capacity
2.6.1. Trolox Equivalent Antioxidant Capacity Assay (TEAC)
2.6.2. Oxygen Radical Absorbance Capacity Assay (ORAC)
2.7. Molecular Weight Distribution of Protein Fragments
2.8. Pressurized Liquid Extraction (PLE) Optimization
2.8.1. PLE Extraction Process
2.8.2. Experimental Design and Optimization of Extraction Conditions
2.9. Statistical Analysis
3. Results and Discussion
3.1. Determination of Heavy Metals and Mycotoxins in Sea Bass Side Streams
3.2. PLE Optimization
3.2.1. Protein Content
Effect of Individual pH, Temperature, and Time on Protein Extraction
3.2.2. Total Antioxidant Capacity
Effect of Individual pH, Temperature, and Time on Antioxidant Capacity
3.2.3. Effect of the pH–Temperature–Time Combination on Common Response
3.3. Evaluation of RSM Mode
3.4. Optimal PLE Extracts and Comparison to Control Extracts
3.4.1. Total Protein Content
3.4.2. Protein Molecular Weight Distribution
3.4.3. Total Antioxidant Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Mar. Biotechnol. 2018, 20, 118–130. [Google Scholar] [CrossRef]
- Alhemmali, E.M.; Abudabos, A.O.; Alfgih, H.M.; Alshitshat, H.A.; Almestiry, J.M.; Haded, H.A. Bioaccumulation of some metals in different organs of frozen spotted seabass, Misurata-Libya. Dir. Res. J. Agric. Food Sci. 2018, 6, 103–106. [Google Scholar] [CrossRef]
- De la Fuente, B.; Tornos, A.; Príncep, A.; Lorenzo, J.M.; Pateiro, M.; Berrada, H.; Barba, F.J.; Ruiz, M.J.; Martí-Quijal, F.J. Scaling-up processes: Patents and commercial applications. In Advances in Food and Nutrition Research; Academic Press Inc.: Cambridge, MA, USA, 2020. [Google Scholar]
- Harrysson, H.; Hayes, M.; Eimer, F.; Carlsson, N.G.; Toth, G.B.; Undeland, I. Production of protein extracts from Swedish red, green, and brown seaweeds, Porphyra umbilicalis Kützing, Ulva lactuca Linnaeus, and Saccharina latissima (Linnaeus) J. V. Lamouroux using three different methods. J. Appl. Phycol. 2018, 30, 3565–3580. [Google Scholar] [CrossRef] [Green Version]
- Olsen, R.L.; Toppe, J.; Karunasagar, I. Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends Food Sci. Technol. 2014, 36, 144–151. [Google Scholar] [CrossRef]
- Anonymous. Case Study in the EU Seabass Maritime Affairs and Fisheries Price Structure in the Supply Chain for Seabass Focus on Greece, Croatia and Spain; European Market Observatory for Fisheries and Aquaculture Products-Seabass in the EU; European Commission: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- Valcarcel, J.; Sanz, N.; Vázquez, J.A. Optimization of the enzymatic protein hydrolysis of by-products from seabream (Sparus aurata) and seabass (Dicentrarchus labrax), chemical and functional characterization. Foods 2020, 9, 1503. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Zhou, J.; Barba, F.J.; Lorenzo, J.M. Nutritional characterization of sea bass processing by-products. Biomolecules 2020, 10, 232. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Preventing Food Waste, Promoting Circular Economy. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_19_2391 (accessed on 1 February 2021).
- Tolosa, J.; Font, G.; Mañes, J.; Ferrer, E. Natural occurrence of emerging Fusarium mycotoxins in feed and fish from aquaculture. J. Agric. Food Chem. 2014, 62, 12462–12470. [Google Scholar] [CrossRef]
- Tolosa, J.; Barba, F.J.; Pallarés, N.; Ferrer, E. Mycotoxin identification and in silico toxicity assessment prediction in Atlantic Salmon. Mar. Drugs 2020, 18, 629. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Feed Production. Available online: http://www.fao.org/fishery/affris/species-profiles/european-seabass/feed-production/en/ (accessed on 22 December 2020).
- Adamse, P.; Van der Fels-Klerx, H.J. (Ine); de Jong, J. Cadmium, lead, mercury and arsenic in animal feed and feed materials—Trend analysis of monitoring results. Food Addit. Contam. Part A 2017, 34, 1298–1311. [Google Scholar] [CrossRef] [PubMed]
- Kalantzi, I.; Pergantis, S.A.; Black, K.D.; Shimmield, T.M.; Papageorgiou, N.; Tsapakis, M.; Karakassis, I. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem. 2016, 194, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Kandyliari, A.; Karavoltsos, S.; Sakellari, A.; Anastasiadis, P.; Asderis, M.; Papandroulakis, N.; Kapsofefalou, M. Trace metals in six fish by-products of two farmed fishes, the gilthead sea bream (Sparus aurata) and the meager (Argyrosomus regius ): Interactions with the environment and feed. Hum. Ecol. Risk Assess. Int. J. 2020, 1–21. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef] [Green Version]
- Khawli, F.A.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [Green Version]
- Gómez, B.; Munekata, P.E.S.; Gavahian, M.; Barba, F.J.; Martí-Quijal, F.J.; Bolumar, T.; Campagnol, P.C.B.; Tomasevic, I.; Lorenzo, J.M. Application of pulsed electric fields in meat and fish processing industries: An overview. Food Res. Int. 2019, 123, 95–105. [Google Scholar] [CrossRef]
- Bruno, S.F.; Ekorong, F.J.A.A.; Karkal, S.S.; Cathrine, M.S.B.; Kudre, T.G. Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends Food Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Sun, H.; Ge, X.; Lv, Y.; Wang, A. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. J. Chromatogr. A 2012, 1237, 1–23. [Google Scholar] [CrossRef]
- Repajić, M.; Cegledi, E.; Kruk, V.; Pedisić, S.; Çınar, F.; Bursać Kovačević, D.; Žutić, I.; Dragović-Uzelac, V. Accelerated Solvent extraction as a green tool for the recovery of polyphenols and pigments from wild nettle leaves. Processes 2020, 8, 803. [Google Scholar] [CrossRef]
- Muñóz-Almagro, N.; Gilbert-López, B.; Pozuelo-Rollón, M.C.; García-Fernandez, Y.; Almeida, C.; Villamiel, M.; Mendiola, J.A.; Ibáñez, E. Exploring the microalga Euglena cantabrica by pressurized liquid extraction to obtain bioactive compounds. Mar. Drugs 2020, 18, 308. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; Quintana, S.; Reglero, G.; Fornari, T.; García-Risco, M. Pressurized liquid extraction (PLE) as an innovative green technology for the effective enrichment of Galician algae extracts with high quality fatty acids and antimicrobial and antioxidant properties. Mar. Drugs 2018, 16, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saravana, P.S.; Cho, Y.J.; Park, Y.B.; Woo, H.C.; Chun, B.S. Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydr. Polym. 2016, 153, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Firatligil-Durmus, E.; Evranuz, O. Response surface methodology for protein extraction optimization of red pepper seed (Capsicum frutescens). LWT Food Sci. Technol. 2010, 43, 226–231. [Google Scholar] [CrossRef]
- Pallarés, N.; Font, G.; Mañes, J.; Ferrer, E. Multimycotoxin LC-MS/MS analysis in tea beverages after dispersive liquid-liquid microextraction (DLLME). J. Agric. Food Chem. 2017, 65, 10282–10289. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Barba, F.J.; Esteve, M.J.; Tedeschi, P.; Brandolini, V.; Frígola, A. A comparative study of the analysis of antioxidant activities of liquid foods employing spectrophotometric, fluorometric, and chemiluminescent methods. Food Anal. Methods 2013, 6, 317–327. [Google Scholar] [CrossRef]
- Barba, F.J.; Criado, M.N.; Belda-Galbis, C.M.; Esteve, M.J.; Rodrigo, D. Stevia rebaudiana Bertoni as a natural antioxidant/antimicrobial for high pressure processed fruit extract: Processing parameter optimization. Food Chem. 2014, 148, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Savic, I.M.; Nikolic, V.D.; Savic-Gajic, I.M.; Nikolic, L.B.; Moder, K.; Hopkins, M. Optimization of quercetin extraction from green tea (Camellia sinensis) using central composite design, and the pharmacological activity of the extract. Chem. Biochem. Eng. Q. 2016, 30, 103–115. [Google Scholar] [CrossRef]
- Renieri, E.A.; Safenkova, I.V.; Alegakis, A.; Slutskaya, E.S.; Kokaraki, V.; Kentouri, M.; Dzantiev, B.B.; Tsatsakis, A.M. Cadmium, lead and mercury in muscle tissue of gilthead seabream and seabass: Risk evaluation for consumers. Food Chem. Toxicol. 2019, 124, 439–449. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006: Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA Relevance). 2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32006R1881 (accessed on 15 January 2021).
- Pietsch, C. Food Safety: The risk of mycotoxin contamination in fish. In Mycotoxins and Food Safety; IntechOpen: London, UK, 2020. [Google Scholar]
- Nácher-Mestre, J.; Serrano, R.; Beltrán, E.; Pérez-Sánchez, J.; Silva, J.; Karalazos, V.; Hernández, F.; Berntssen, M.H.G. Occurrence and potential transfer of mycotoxins in gilthead sea bream and Atlantic salmon by use of novel alternative feed ingredients. Chemosphere 2015, 128, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Vasconcelos, V. Occurrence of mycotoxins in fish feed and its effects: A review. Toxins (Basel) 2020, 12, 160. [Google Scholar] [CrossRef] [Green Version]
- Bernhoft, A.; Høgåsen, H.R.; Rosenlund, G.; Ivanova, L.; Berntssen, M.H.G.; Alexander, J.; Eriksen, G.S.; Fæste, C.K. Tissue distribution and elimination of deoxynivalenol and ochratoxin A in dietary-exposed Atlantic salmon ( Salmo salar). Food Addit. Contam. Part A 2017, 34, 1211–1224. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; Hogstrand, C.; et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15. [Google Scholar] [CrossRef]
- Tahergorabi, R.; Jaczynski, J. Isoelectric solubilization/precipitation as a means to recover protein and lipids from seafood by-products. In Seafood Processing By-Products; Springer: New York, NY, USA, 2014; pp. 101–123. [Google Scholar]
- Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J.A.; Ibañez, E. Pressurized liquid extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2019; pp. 375–398. ISBN 9780128169117. [Google Scholar]
- Andreu, V.; Picó, Y. Pressurized liquid extraction of organic contaminants in environmental and food samples. Trends Anal. Chem. 2019, 118, 709–721. [Google Scholar] [CrossRef]
- He, Q.; Du, B.; Xu, B. Extraction optimization of phenolics and antioxidants from black goji berry by accelerated solvent extractor using response surface methodology. Appl. Sci. 2018, 8, 1905. [Google Scholar] [CrossRef] [Green Version]
- Poveda, J.M.; Loarce, L.; Alarcón, M.; Díaz-Maroto, M.C.; Alañón, M.E. Revalorization of winery by-products as source of natural preservatives obtained by means of green extraction techniques. Ind. Crops Prod. 2018, 112, 617–625. [Google Scholar] [CrossRef]
- Toubane, A.; Rezzoug, S.A.; Besombes, C.; Daoud, K. Optimization of accelerated solvent extraction of Carthamus Caeruleus L. Evaluation of antioxidant and anti-inflammatory activity of extracts. Ind. Crops Prod. 2017, 97, 620–631. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Zhang, M.; Sun, B. Novel approach for extraction of grape skin antioxidants by accelerated solvent extraction: Box–behnken design optimization. J. Food Sci. Technol. 2019, 56, 4879–4890. [Google Scholar] [CrossRef] [PubMed]
- Herrera, R.; Hemming, J.; Smeds, A.; Gordobil, O.; Willför, S.; Labidi, J. Recovery of bioactive compounds from hazelnuts and walnuts shells: Quantitative–qualitative analysis and chromatographic purification. Biomolecules 2020, 10, 1363. [Google Scholar] [CrossRef]
- Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2021, 334, 127521. [Google Scholar] [CrossRef]
- Los, F.G.B.; Zielinski, A.A.F.; Wojeicchowski, J.P.; Nogueira, A.; Demiate, I.M. Extraction optimization of phenolic extracts from Carioca bean (Phaseolus vulgaris L.) using response surface methodology. Food Anal. Methods 2019, 12, 148–159. [Google Scholar] [CrossRef]
- Zhu, Z.; Guan, Q.; Guo, Y.; He, J.; Liu, G.; Li, S.; Barba, F.J.; Jaffrin, M.Y. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology. Int. Agrophys. 2016, 30, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Tadpitchayangkoon, P.; Park, J.W.; Yongsawatdigul, J. Conformational changes and dynamic rheological properties of fish sarcoplasmic proteins treated at various pHs. Food Chem. 2010, 121, 1046–1052. [Google Scholar] [CrossRef]
- Prihanto, A.A.; Nurdiani, R.; Bagus, A.D. Production and characteristics of fish protein hydrolysate from parrotfish (Chlorurus sordidus) head. PeerJ 2019, 7, e8297. [Google Scholar] [CrossRef] [Green Version]
- Aspmo, S.I.; Horn, S.J.; Eijsink, V.G.H. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochem. 2005, 40, 1957–1966. [Google Scholar] [CrossRef]
- Moosavi-Nasab, M.; Yazdani-Dehnavi, M.; Mirzapour-Kouhdasht, A. The effects of enzymatically aided acid-swelling process on gelatin extracted from fish by-products. Food Sci. Nutr. 2020, 8, 5017–5025. [Google Scholar] [CrossRef] [PubMed]
- Mohtar, N.F.; Perera, C.; Quek, S.Y. Optimisation of gelatine extraction from hoki (Macruronus novaezelandiae) skins and measurement of gel strength and SDS-PAGE. Food Chem. 2010, 122, 307–313. [Google Scholar] [CrossRef]
- Gómez, L.J.; Gómez, N.A.; Zapata, J.E.; López-García, G.; Cilla, A.; Alegría, A. In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates. Food Res. Int. 2019, 120, 52–61. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Dinesh Kumar, B.; Hemalatha, R.; Jyothirmayi, T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 2012, 135, 3020–3038. [Google Scholar] [CrossRef] [PubMed]
- Sila, A.; Bougatef, A. Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. J. Funct. Foods 2016. [Google Scholar] [CrossRef]
Run | pH (X1) | Tª (°C) (X2) | Time (min) (X3) |
---|---|---|---|
1 | 4 | 60 | 5 |
2 a | 7 | 40 | 10 |
3 | 4 | 20 | 15 |
4 | 10 | 40 | 10 |
5 | 7 | 60 | 10 |
6 | 10 | 60 | 5 |
7 | 10 | 60 | 15 |
8 a | 7 | 40 | 10 |
9 | 4 | 20 | 5 |
10 | 7 | 20 | 10 |
11 | 10 | 20 | 5 |
12 | 7 | 40 | 5 |
13 | 7 | 40 | 15 |
14 | 4 | 60 | 15 |
15 | 4 | 40 | 10 |
16 | 10 | 20 | 15 |
Sea Bass Side Streams | Heavy Metals (µg/g of Wet Weight) | |||
---|---|---|---|---|
As | Hg | Cd | Pb | |
Muscle | 0.687 ± 0.004 | 0.106 ± 0.001 | 0.001 ± 0.00001 | 0.027 ± 0.0002 |
Head | 0.346 ± 0.003 | 0.034 ± 0.0004 | 0.003 ± 0.0001 | 0.063 ± 0.010 |
Viscera | 1.86 7 ± 0.0005 | 0.014 ± 0.0003 | 0.028 ± 0.0003 | 0.046 ± 0.0004 |
Skin | 0.387 ± 0.004 | 0.026 ± 0.0006 | 0.004 ± 0.0002 | 0.040 ± 0.0004 |
Tailfin | 0.388 ± 0.006 | 0.042 ± 0.0006 | 0.001 ± 0.0002 | 0.033 ± 0.0004 |
[Legislation *] | <13.5 | <0.50 | <0.05 | <0.30 |
RSM | Muscle | Head | Viscera | Skin | Tailfin | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Run | pH | Tª | Time | Protein | TEAC | ORAC | Protein | TEAC | ORAC | Protein | TEAC | ORAC | Protein | TEAC | ORAC | Protein | TEAC | ORAC |
(°C) | (min) | mg | µM Trolox Eq | mg | µM Trolox Eq | mg | µM Trolox Eq | mg | µM Trolox Eq | mg | µM Trolox Eq | |||||||
1 | 4 | 60 | 5 | 242 | 1140 | 918 | 213 | 531 | 952 | 101 | 432 | 1195 | 214 | 129 | 1124 | 181 | 392 | 816 |
2 | 7 | 40 | 10 | 549 | 1356 | 3058 | 161 | 622 | 1342 | 117 | 507 | 1440 | 153 | 403 | 686 | 130 | 422 | 918 |
3 | 4 | 20 | 15 | 226 | 1273 | 1465 | 162 | 594 | 1129 | 68 | 156 | 401 | 79 | 372 | 362 | 105 | 400 | 829 |
4 | 10 | 40 | 10 | 207 | 1003 | 941 | 172 | 335 | 1005 | 103 | 450 | 1260 | 149 | 346 | 691 | 116 | 357 | 749 |
5 | 7 | 60 | 10 | 386 | 1166 | 1665 | 245 | 365 | 1210 | 125 | 464 | 1333 | 353 | nd | 1517 | 231 | 512 | 1177 |
6 | 10 | 60 | 5 | 301 | 621 | 705 | 253 | 605 | 839 | 108 | 392 | 981 | 252 | nd | 1228 | 168 | 445 | 914 |
7 | 10 | 60 | 15 | 178 | 688 | 512 | 342 | 537 | 1540 | 116 | 430 | 1050 | 249 | nd | 1407 | 298 | 608 | 1501 |
8 | 7 | 40 | 10 | 540 | 1222 | 2837 | 189 | 650 | 1379 | 115 | 474 | 1241 | 166 | 381 | 749 | 134 | 345 | 723 |
9 | 4 | 20 | 5 | 454 | 1166 | 2428 | 149 | 503 | 1781 | 69 | 220 | 436 | 74 | 298 | 264 | 121 | 357 | 597 |
10 | 7 | 20 | 10 | 456 | 2079 | 4572 | 151 | 514 | 911 | 101 | 240 | 978 | 90 | 323 | 525 | 98 | 323 | 605 |
11 | 10 | 20 | 5 | 301 | 955 | 2241 | 132 | 531 | 571 | 78 | 267 | 520 | 92 | 413 | 717 | 102 | 315 | 662 |
12 | 7 | 40 | 5 | 504 | 1407 | 2779 | 156 | 539 | 983 | 111 | 479 | 1212 | 153 | 376 | 881 | 130 | 399 | 660 |
13 | 7 | 40 | 15 | 510 | 2111 | 3060 | 201 | 861 | 1949 | 115 | 472 | 1290 | 184 | 159 | 817 | 145 | 592 | 1179 |
14 | 4 | 60 | 15 | 312 | 859 | 1016 | 289 | 986 | 1794 | 124 | 434 | 1320 | 267 | nd | 1204 | 264 | 601 | 1253 |
15 | 4 | 40 | 10 | 285 | 981 | 1933 | 192 | 986 | 1576 | 107 | 376 | 1209 | 155 | 185 | 685 | 146 | 454 | 806 |
16 | 10 | 20 | 15 | 135 | 1593 | 1647 | 130 | 469 | 1700 | 87 | 357 | 968 | 92 | 336 | 487 | 103 | 363 | 663 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Fuente, B.; Pallarés, N.; Barba, F.J.; Berrada, H. An Integrated Approach for the Valorization of Sea Bass (Dicentrarchus labrax) Side Streams: Evaluation of Contaminants and Development of Antioxidant Protein Extracts by Pressurized Liquid Extraction. Foods 2021, 10, 546. https://doi.org/10.3390/foods10030546
de la Fuente B, Pallarés N, Barba FJ, Berrada H. An Integrated Approach for the Valorization of Sea Bass (Dicentrarchus labrax) Side Streams: Evaluation of Contaminants and Development of Antioxidant Protein Extracts by Pressurized Liquid Extraction. Foods. 2021; 10(3):546. https://doi.org/10.3390/foods10030546
Chicago/Turabian Stylede la Fuente, Beatriz, Noelia Pallarés, Francisco J. Barba, and Houda Berrada. 2021. "An Integrated Approach for the Valorization of Sea Bass (Dicentrarchus labrax) Side Streams: Evaluation of Contaminants and Development of Antioxidant Protein Extracts by Pressurized Liquid Extraction" Foods 10, no. 3: 546. https://doi.org/10.3390/foods10030546
APA Stylede la Fuente, B., Pallarés, N., Barba, F. J., & Berrada, H. (2021). An Integrated Approach for the Valorization of Sea Bass (Dicentrarchus labrax) Side Streams: Evaluation of Contaminants and Development of Antioxidant Protein Extracts by Pressurized Liquid Extraction. Foods, 10(3), 546. https://doi.org/10.3390/foods10030546