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Abstract: In the vegetable processing industry, the application of chlorine dioxide (ClO2) as a
disinfectant solved in washing water to eliminate undesirable microorganisms harmful to consumers’
health and the shelf life of produce has been discussed for years. The disinfection efficacy depends on
various factors, e.g., the location of microorganisms and the organic load of the washing water. The
present study analyzed the sanitation efficacy of various concentrations of water-solved ClO2 (cClO2:
20 and 30 mg L−1) on Escherichia coli (1.1 × 104 cfu mL−1), Salmonella enterica (2.0 × 104 cfu mL−1)
and Listeria monocytogenes (1.7 × 105 cfu mL−1) loads, located on the leaf surface of iceberg lettuce
assigned for fresh-cut salads. In addition, it examined the potential of ClO2 to prevent the cross-
contamination of these microbes in lettuce washing water containing a chemical oxygen demand
(COD) content of 350 mg L−1 after practice-relevant washing times of 1 and 2 min. On iceberg leaves,
washing with 30 mg L−1 ClO2 pronouncedly (1 log) reduced loads of E. coli and S. enterica, while it
only insignificantly (<0.5 × log) diminished the loads of L. monocytogenes, irrespective of the ClO2

concentration used. Although the sanitation efficacy of ClO2 washing was only limited, the addition
of ClO2 to the washing water avoided cross-contamination even at high organic loads. Thus, the
application of ClO2 to the lettuce washing water can improve product quality and consumer safety.

Keywords: chemical prevention; cross-contamination; Escherichia coli; Salmonella enterica;
Listeria monocytogenes

1. Introduction

During recent years, the consumption of minimally processed fresh-cut salads has
rapidly increased, with growth rates of 10 to 20% per year [1,2]. With the enhanced
popularity of “ready-to-eat” produce, the number of reports on outbreaks of food-borne
diseases has multiplied. Many of them are caused by human pathogens on fresh vegetables
and salads [3]. The causes can be traced back to cultivation conditions and processing.
During cultivation, vegetables can be contaminated by the excrement of wild animals or
by wastewater irrigation. During processing, produce can be contaminated by deficient
personnel and industrial hygiene and the cross-contamination of produce [4,5].

Production processes of ready-to-eat fresh-cut salads are very simply designed. The
vegetables are sorted, cut, washed, dried and packed in plastic bags. However, it is known
that washing with tap water results in a 10- to 100-fold reduction of microorganisms on
the produce surface [6]. On romaine or iceberg lettuce, washing with plain water without
sanitizing treatments reduces the microorganisms by ≤1 × log cfu g−1 [7,8].

To guarantee a high quality of produce until the end of the minimum shelf life, the
Committee of Food Microbiology and Sanitation of the German Association for Sanitation
and Microbiology released guidance and warning limits for the relevant microbial contami-
nations of packed fresh-cut salads [9]. Producers of ready-to-eat salads must warrant these
limits until the end of the minimum guaranteed shelf life, but they cannot any longer con-
trol the produce or its storage conditions once it has left the production site. Interruptions
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in the cooling chains of these highly perishable products easily result in the substantial
growth of spoilage and human pathogens. Visual detection of human pathogens by the
consumer is not possible during purchasing, and their decision is normally guided by
sensory criteria such as the freshness and crisp appearance of the salad [10,11].

Therefore, in recent years, several chemical and physical treatments have been in-
vestigated and applied with the aim to reduce the initial microbiological load of human
pathogens on produce. For instance, the application of chlorine is a usual practice world-
wide, but the reducing effect on microorganisms is not as effective as hoped [12] and causes
the formation of hazardous byproducts, such as carcinogenic trihalomethane (THM) in
food [13]. As a consequence, the application of chlorine is forbidden by German law [14].
Ozone has been used as an antimicrobial agent since the 19th century in drinking water pu-
rification and for a long time for vegetable and fruit disinfection [15]. It can be applied in an
aqueous or gaseous form and is effective over a much wider spectrum of microorganisms
than chlorine and other disinfectants [16]. However, exposure to high ozone concentrations
can cause some detrimental health effects. Therefore, many countries specified thresholds
for continuous exposure in the workplace environment, and effective and reliable ozone
monitoring and alarm systems must be installed for workers’ safety [17,18]. Ozone ap-
plication may also cause undesirable effects on treated produce such as oxidative stress
or physiological injuries such as mass loss, browning or discoloration [19,20]. The use of
various different organic acids was, furthermore, tested. Acetic acid is a strong oxidant, but
its application should be harmless, based on the fact that acetic acid is a universal metabolic
intermediary and occurs in plants and animals. Several studies, however, observed un-
desirable effects on produce quality; so, acetic acid fumigation is not a suitable technique
for fresh produce treatment [21–23]. Other studies indicated that peroxyacetic acid can
negatively affect the quality of produce [24]. Moreover, the application of high doses of
UV-C radiation may also negatively affect produce quality, e.g., resulting in discoloration,
browning or a decrease in vitamin C content [25].

The development of alternative sanitation techniques is, therefore, of great interest. In
this context, chlorine dioxide (ClO2) is of increasing interest for fresh produce. It is a strong
bactericide and virucide with a high oxidative capacity [26,27] and produces much fewer
harmful byproducts such as trihalomethanes or chloramines than, e.g., chlorine [6,28]. The
antibacterial effect of ClO2 is almost independent of the pH value (between 3 and 8) in
contrast to chlorine [29].

Only a few studies indicated some negative impacts of aqueous ClO2 treatment on
the visual and/or sensory quality and shelf life of produce such as lettuce [8], while many
others proved the better maintenance of the sensory quality of lettuce and some berry fruits
by this treatment, e.g., compared to tap water washing [30–33].

Chlorine dioxide can be applied dissolved in water or as gas. Gaseous application is
more effective against microbial loads because of the higher penetrability of the gas [34],
which, however, is rather explosive. Therefore, the aqueous application is certainly prefer-
able. Hence, the present study compares the efficacy of washing with chlorine dioxide
solution relative to that of conventional tap water on human pathogens as an alternative
sanitizer on iceberg lettuce. For this, artificially inoculated lettuce leaves were washed with
both methods, and their respective effects on relevant human pathogens were evaluated.
In addition, the ability of water-solved ClO2 to prevent cross-contamination under practi-
cal conditions was analyzed in lettuce washing water prepared with a chemical oxygen
demand (COD) of 350 mg L−1.

2. Materials and Methods

For the study, cryo bead-stored (Carl Roth GmbH, Karlsruhe, Germany) samples
(at −80 ◦C) of Escherichia coli (DSMZ 19206), Listeria monocytogenes (DSMZ 20600) and
Salmonella enterica (DSMZ 17058) were incubated in nutrient broth (5 mL; NB; Carl Roth
GmbH, Karlsruhe, Deutschland; E. coli and S. enterica) and brain heart infusion broth (BHIB;
Carl Roth GmbH, Karlsruhe, Germany; L. monocytogenes) at 37 ◦C for 24 h, and the optical
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density of bacterial suspensions was determined using a BioPhotometer plus (Eppendorf,
Hamburg, Germany) at 600 nm. According to the optical density, the main culture was
inoculated in NB or BHIB, respectively, and shaken at 170 rpm and 38 ◦C for 18 h, resulting
in bacterial suspensions of approx. 109 cfu mL−1, cell counted (Multisizer™ 3 Coulter
Counter®, Beckman Coulter, Krefeld, Germany) and further diluted to yield initial bacterial
counts of approx. 107 cfu mL−1.

For the experiment, fresh PVC bags packed with iceberg lettuce heads were obtained
from a local retailer and brought to the laboratory. There, the outer leaves were removed
and discarded, and 10 g of the inner leaves were used for experiments. For this, the leaves
were inoculated with 1 mL of bacteria suspension by spraying and then stored for 2 h
in a clean bench for the establishment of microorganisms on the leaf surfaces with an
average concentration of E. coli of 1.1 × 104 cfu mL−1, S. enterica of 2.0 × 104 cfu mL−1 and
L. monocytogenes of 1.7 × 105 cfu mL−1.

The Dr. Küke two-component product (Dr. Küke GmbH, Hannover, Germany) was
used to produce chlorine dioxide. Following the manufacturer’s instructions, 250 mL of
Component 1 (“DK-DOX aktiv”) was mixed with 3.85 g of Component 2 (DK-DOX) for
activation. After a reaction time of 24 h (30 ◦C), the fully activated product was ready for
use. ClO2 concentrations were determined photometrically (spectral photometer: DR 2800;
cuvette test: LCK 310, both Hach Lange, Berlin, Germany), and the stock solution was
diluted with tap water to adjust the required concentration.

For cross-contamination experiments, synthetic salad washing water was prepared
by halving an iceberg salad head, discarding the core, cutting the remaining head into
small pieces, puréeing it with a handheld blender and finally squeezing it through a tea
strainer. Filtration through a PE filter (pore size: 330 µm) removed the remaining solid
matter from the juice. The COD of the filtrate was measured photometrically (spectral
photometer: CADAS 200, Dr. Lange, Berlin, Germany; thermostat LT 200, cuvette test LCK
014, both Hach Lange, Berlin, Germany) following the manufacturer’s instructions, and
the requested COD was adjusted by adding tap water.

Inactivation tests were always performed in beakers. ClO2 solutions (200 mL;
cClO2 = 0, 20 and 30 mg L−1) were filled in the cups, and two inoculated lettuce leaves were
added. The cup’s contents were carefully blended, and after 1 or 2 min, respectively, equiv-
alent amounts of sodium thiosulfate pentahydrate (AppliChem, Darmstadt, Germany)
were added to stop inactivation. Subsequently, all samples were washed with tap water
and carefully blotted dry with paper towels. The effect of the treatments was evaluated by
counting bacteria with the spread plate method, for which serial dilutions were created.
Therefore, lettuce samples (20 g) were mixed with 220 mL of Ringer’s solution (Merck,
Darmstadt, Germany) in a stomacher bag and homogenized for 2 min in a stomacher.
Afterwards, samples (100 µL) were plated on nutrient agar (Carl Roth GmbH, Karlsruhe,
Germany) and incubated at 37 ◦C for 24 h.

To analyze the effect of preventing cross-contamination by chlorine dioxide treatment,
the following procedure was carried out. For analyses, water samples (1 L) were prepared
from lettuce sap and bacteria and final average concentrations of 350 mg L−1 (COD),
2.0 104 cfu mL−1 (E. coli), 3.3 105 cfu mL−1 (S. enterica) and 8.7 104 cfu mL−1 (L. mono-
cytogenes). Then, six lettuce leaves (10 g) and, immediately afterwards, ClO2 solutions
(final concentration: 20 or 30 mg L−1), were added. After 1 or 2 min, the lettuce leaves
were removed, washed with tap water and carefully blotted dry with paper towels. Sub-
sequently, the microbiological counts of the lettuce samples were analyzed by counting
bacteria with the spread plate method as described above. For each experiment, untreated
lettuce leaves were analyzed as controls, as well as by counting bacteria with the spread
plate method as described above. All experiments were repeated thrice, and all samples
were analyzed twice.

Data were statistically analyzed with WinSTAT (R. Fitch Software, Bad Krozingen,
Germany). Treatment means were statistically compared using Duncan’s multiple range
test (p < 0.05).
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3. Results
3.1. Effect of ClO2 Treatment on E. coli, S. enterica and L. monocytogenes on Iceberg Lettuce

Compared to controls, all treatments significantly reduced E. coli loads, with higher
ClO2 concentrations tending to improve reduction (Table 1). In this context, a ClO2 concen-
tration of 30 mg L−1 at a 1 min contact time most effectively inactivated E. coli (reduction:
88%). Enhancement of the contact time to 2 min did not further improve germ reduction.

Table 1. Effects of ClO2 treatments, varying in concentrations (cClO2) and duration, on the inactiva-
tion of E. coli, S. enterica and L. monocytogenes on iceberg lettuce leaves in washing water.

Duration (min)

0 (Control) 1 2

cClO2 (mg L−1) E. coli (cfu mL−1)

0 (control) a 1.1 × 104 ± 5.1 × 103

20 b 1.6 × 103 ± 9.5 × 102 b 2.8 × 103 ± 1.7 × 103

30 b 1.3 × 103 ± 1.1 × 103 b 1.5 × 103 ± 1.0 × 103

S. enterica (cfu mL−1)

0 (control) a 2.0 × 104 ± 6.5 × 103

20 b 2.2 × 103 ± 1.1 × 103 b 3.4 × 103 ± 2.4 × 103

30 b 2.3 × 103 ± 4.0 × 102 b 2.0 × 103 ± 9.7 × 102

L. monocytogenes (cfu mL−1)

0 (control) a 1.7 × 105 ± 6.5 × 103

20 a 5.5 104 ± 2.9 × 104 a 4.8 104 ± 2.4 104

30 a 5.0 × 104 ± 2.0 × 104 a 7.2 × 104 ± 5.0 × 104

Given are means (n = 3) ± standard deviation. Different letters indicate the significant difference between means
(p < 0.05).

Given are means (n = 3) ± standard deviation. Different letters indicate the significant
difference between means (p < 0.05).

All ClO2 treatments significantly inactivated S. enterica, irrespective of ClO2 concentra-
tion and treatment time. Nevertheless, chlorine dioxide treatment at a high concentration
(30 mg L−1) and a long treatment time (2 min) yielded the best (90%) reduction of S. enterica,
although the results of the various treatments were not significantly different.

L. monocytogenes proved the most resistant microorganism to ClO2 treatment, which
only insignificantly reduced L. monocytogenes loads by 58 to 72% compared to the controls.

3.2. Effect of ClO2 Treatment to Prevent Cross-Contamination

Before the experiment, iceberg lettuce leaves were analyzed to obtain the starting
concentrations of the respective bacteria on the surfaces (Table 2). After 1 or 2 min of
washing in ClO2 water, which was contaminated with E. coli, S. enterica or L. monocytogenes
at known concentrations, the lettuce leaves were analyzed again. The final concentra-
tions of microorganisms were still in the same range found on the unwashed controls.
Adding chlorine dioxide to the contaminated washing water successfully prevented any
cross-contamination. In fact, it marginally (and insignificantly) reduced the loads of all
microorganisms on the lettuce leaf surface compared to the starting concentrations, except
for S. enterica at a cClO2 of 20 mg L–1 and a treatment duration of 2 min (Table 2).
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Table 2. Efficacy of adding various concentrations of ClO2 to contaminated (E. coli, S. enterica, L. monocytogenes) washing
water (COD 350 mg L−1) to prevent the cross-contamination of iceberg lettuce leaves.

Species Initial Surface Loads (cfu g−1) Loads in Wash Water (cfu mL−1) Surface Loads after Treatment (cfu g−1)
cClO2 (mg L−1; Duration (min))

20; 1 20; 2 30; 1 30; 2

E. coli
a 3.5 × 101 ± 7.0

× 100
2.0 × 105 ± 8.0 ×

104

a 1.9 × 101 ± 8.0
× 100

a 1.1 × 101 ± 2.0
× 100

a 1.8 × 101 ± 5.0 ×
100

a 2.3 × 101 ± 1.2 ×
101

S. enterica
a 2.4 × 102 ± 2.9

× 102
3.3 × 105 ± 4.3 ×

105

a 1.2 × 102 ± 1.0
× 102

a 7.3 × 102 ± 8.4
× 102

a 5.0 × 101 ± 1.8 ×
101

a 4.4 × 101 ± 3.0 ×
101

L. monocyto-
genes

a 2.3 × 103 ± 3.2
× 103

8.7 × 104 ± 6.4 ×
104

a 9.3 × 102 ± 1.4
× 103

a 3.8 × 102 ± 1.9
× 102

a 4.7 × 102 ± 4.6 ×
102

a 2.4 × 102 ± 2.8 ×
102

Given are means (n = 3) ± standard deviation. Different letters indicate the significant difference between means (p < 0.05).

4. Discussion

The sanitizing effect of ClO2 for human pathogenic bacteria in water has been de-
scribed in several studies [29,35–38]. It was shown that sanitation success closely depends
on multiple factors, including ClO2 concentrations, temperature and duration of treatments
or the concentration of organic matter in the water [39–41].

Particularly relevant for the sanitation of lettuce for fresh-cut salads is the direct effect
of ClO2 solved in the washing water on the microorganisms adherent to the leaf surfaces.
Some protective sites (biofilms, injuries, etc.) or water-suspended solids and aggregates,
and other effects of leaf surfaces may pronouncedly reduce the potential antimicrobial effect
of chlorine dioxide compared to bacteria separately floating in the washing water [41–44].
In addition, the processing status of the produce is relevant for the efficacy of the ClO2
treatment. On minimally processed produce such as fresh-cut lettuce or apples, ClO2 is
less effective in inactivating E. coli and L. monocytogenes than on intact leaves or fruit [45].
This is mostly due to the increased surface contact area and the wounded tissue. The log
reductions of L. monocytogenes by aqueous ClO2 treatment were significantly higher on
uninjured than on surface-injured green pepper fruit [34]. Even on intact produce, however,
cracks and other surface injuries may partially protect bacteria against decontamination [40].
Furthermore, due to the physicochemical properties of cuticle and waxy layers, pockets
in the leaf epidermis are hydrophobic and, thus, may serve as protective pockets for
microbes. Here, the aqueous chlorine dioxide cannot penetrate, and the bacteria remain
unaffected [46].

Therefore, the above clearly stresses the great practical importance of the effects
of ClO2 treatment on relevant microorganisms located on the product surface for the
sanitation of fresh-cut produce. In the present study, the experimentally chosen ClO2
concentrations and treatment durations only yielded slight (0.5 × log) and insignificant
maximum inactivation efficacies for L. monocytogenes. Although the maximum reduction
of E. coli and S. enterica was more successful (approx. 1 × log), the application of water-
solved ClO2 reduction of relevant microorganisms on the product was indeed much lower
than that of isolated microorganisms solved in water. Even in washing water with a high
COD load (350 mg L−1), reductions of microbial loads of up to 5 log were reported for
ClO2 treatments [39]. The germ-reducing effects of ClO2 washing are severely limited
on the produce surface, and, thus, the economic benefit must be critically challenged.
Obviously, the use of chlorine dioxide seems to be only economically justified if there are
additional benefits. Therefore, the present study evaluated the potential ClO2 application
to prevent cross-contamination during washing, which is an important issue in the practice
of industrial food washing. During processing, especially in recirculated water systems, the
probability of produce cross-contamination increases with cycle durations. In recirculated
water systems, organic matter accumulates more frequently and to a larger amount than
when potable or diluted recirculated water is applied [4,38].

Attempts to assess the efficacy of ClO2 in preventing cross-contamination are only
meaningful under at least semipractical conditions of industrial lettuce washing processes.
Thus, presented experiments were performed with synthetic washing water with a realistic
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COD of 350 mg L−1 [40] and relevant ClO2 concentrations and treatment durations [39].
The presented results clearly demonstrated the capability of ClO2 to diminish the number
of microorganisms (by 0.5–1 × log) on the product surface by reducing the microbial
load of the washing water. ClO2 treatments, thus, obviously contribute to the safety of
fresh-cut salads.

Similarly, the immersion of intact tomatoes in ClO2-containing (5 ppm) water pre-
vented cross-contamination by S. enterica and Erwinia carotovora [5]. In addition, 10 s of
spray washing with ClO2 solution (5 ppm) pronouncedly (4.7 log) reduced the transfer of
Salmonella from contaminated brushes to the fruit surfaces [47]. The application of ClO2
(3 or 5 mg) to highly turbid tomato processing water (NTU turbidity: 0–40) also largely
(7 × log) reduced the loads of S. enterica in a broad temperature range (25–40 ◦C) [47]. At a
pilot-scale level, the addition of ClO2 (5 and 3 mg L−1) to “Lollo Rossa” lettuce washing
water successfully minimized E. coli cross-contamination [48]; the organic contamination
of the washing water, however, typically consumes ClO2 to effective concentrations of
≥ 2.5 mg L−1. In contrast, the ClO2 (3 mg L−1) washing of fresh-cut red chard prevents
the processing of water cross-contamination from inoculated leaves only by E. coli but not
S. enterica [49]. Additionally, the application of ClO2 effectively removes pesticide residues
on lettuce leaves and in the washing water [50].

In summary, the efficacy of ClO2 to reduce human pathogens on the surface of lettuce
leaves is limited; cross-contamination via processing water, however, can be successfully
prevented. The overall positive effects recommend the application of ClO2 in fresh and
fresh-cut lettuce washing systems. Suspended solids and organic matter in the water,
however, enhance the protection of microorganisms against sanitation agents. Thus, the
removal of dirt particles and pollution by coagulation, sedimentation and filtration is
urgently necessary [51], and the application of ClO2 for the disinfection of lettuce washing
water can be particularly advised for a second washing cycle after the thorough elimination
of the pollution.
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