Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables
Abstract
:1. Introduction
2. Emulsion Methods: Microencapsulation and Nanoencapsulation
2.1. Microemulsions
2.2. Nanoemulsions
2.2.1. High Energy Methods
High-Speed Homogenization
High-Pressure Homogenization
Ultrasounds
2.2.2. Low-Energy Methods
Phase Inversion Methods
Spontaneous Emulsification
3. Polysaccharides and Functional Properties to Form Emulsion Based Coatings
3.1. Polysaccharides as Based Polymers
3.1.1. Cellulose
3.1.2. Chitosan
3.1.3. Alginate
3.1.4. Pectin
3.1.5. Gums
3.2. Methods for the Application of Coatings
3.3. Effect of Emulsion on Polysaccharide-Based Coatings.
4. Application of Emulsion Techniques to Vegetables
5. Conclusions
- -
- Antimicrobial activity: Vegetables coated with active emulsions have been proven to be less sensitive to microbial infection and proliferation than undamaged vegetables, resulting in increasing shelf-life and quality of minimally processed vegetables and fruits.
- -
- Antioxidant performance to avoid or limit the lipid oxidation and quality parameters as appearance and color.
- -
- Film-forming systems help to preserve cell wall integrity and the texture during storage to avoid enzymatic degradation and rejection by the consumers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, S.M.K.K.; Ferrentino, G.; Scampicchio, M. Nanoemulsion as advanced edible coatings to preserve the quality of fresh-cut fruits and vegetables: A review. Int. J. Food Sci. Technol. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Prakash, A.; Baskaran, R.; Paramasivam, N.; Vadivel, V. Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res. Int. 2018, 111, 509–523. [Google Scholar] [CrossRef]
- Scarano, P.; Naviglio, D.; Prigioniero, A.; Tartaglia, M.; Postiglione, A.; Sciarrillo, R.; Guarino, C. Sustainability: Obtaining natural dyes from waste matrices using the prickly pear peels of opuntia ficus-indica (L.) miller. Agronomy 2020, 10, 528. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Deng, Z.; Zhao, Y. A review of cellulose nanomaterials incorporated fruit coatings with improved barrier property and stability: Principles and applications. J. Food Process Eng. 2020, 43. [Google Scholar] [CrossRef]
- Palou, L.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Antifungal edible coatings for fresh citrus fruit: A review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef] [Green Version]
- Galus, S.; Kadzińska, J. Food applications of emulsion-based edible films and coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Maleki, G.; Sedaghat, N.; Woltering, E.J.; Farhoodi, M.; Mohebbi, M. Chitosan-limonene coating in combination with modified atmosphere packaging preserve postharvest quality of cucumber during storage. J. Food Meas. Charact. 2018, 12, 1610–1621. [Google Scholar] [CrossRef]
- Ktari, N.; Feki, A.; Trabelsi, I.; Triki, M.; Maalej, H.; Slima, S.B.; Nasri, M.; Ben Amara, I.; Ben Salah, R. Structure, functional and antioxidant properties in Tunisian beef sausage of a novel polysaccharide from Trigonella foenum-graecum seeds. Int. J. Biol. Macromol. 2017, 98, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Almasi, H.; Azizi, S.; Amjadi, S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 2020, 99, 105338. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Yong, H.; Kan, J.; Jin, C. Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. Int. J. Biol. Macromol. 2018, 116, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.Z.; Hu, X.-F.; Jia, Y.J.; Pan, L.H.; Zheng, Z.; Zhao, Y.Y.; Mu, D.-D.; Zhong, X.Y.; Jiang, S.-T. Camellia oil-based oleogels structuring with tea polyphenol-palmitate particles and citrus pectin by emulsion-templated method: Preparation, characterization and potential application. Food Hydrocoll. 2019, 95, 76–87. [Google Scholar] [CrossRef]
- Jiang, W.; Qi, J.R.; Huang, Y.; Zhang, Y.; Yang, X.Q. Emulsifying properties of high methoxyl pectins in binary systems of water-ethanol. Carbohydr. Polym. 2020, 229, 115420. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tan, Y.; Xu, Y.; McCleiments, D.J.; Wang, D. Formation, characterization, and application of chitosan/pectin-stabilized multilayer emulsions as astaxanthin delivery systems. Int. J. Biol. Macromol. 2019, 140, 985–997. [Google Scholar] [CrossRef]
- Cook, S.L.; Methven, L.; Parker, J.K.; Khutoryanskiy, V.V. Polysaccharide food matrices for controlling the release, retention and perception of flavours. Food Hydrocoll. 2018, 79, 253–261. [Google Scholar] [CrossRef]
- Mendes, J.F.; Norcino, L.B.; Martins, H.H.A.; Manrich, A.; Otoni, C.G.; Carvalho, E.E.N.; Piccoli, R.H.; Oliveira, J.E.; Pinheiro, A.C.M.; Mattoso, L.H.C. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll. 2020, 100, 105428. [Google Scholar] [CrossRef]
- Kakran, M.; Antipina, M.N. Emulsion-based techniques for encapsulation in biomedicine, food and personal care. Curr. Opin. Pharmacol. 2014, 18, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S. Application of chitosan nanoparticles containing Cuminum cyminum oil as a delivery system for shelf life extension of Agaricus bisporus. LWT 2019, 106, 218–228. [Google Scholar] [CrossRef]
- Letsididi, K.S.; Lou, Z.; Letsididi, R.; Mohammed, K.; Maguy, B.L. Antimicrobial and antibiofilm effects of trans-cinnamic acid nanoemulsion and its potential application on lettuce. LWT 2018, 94, 25–32. [Google Scholar] [CrossRef]
- Bhargava, K.; Conti, D.S.; da Rocha, S.R.P.; Zhang, Y. Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol. 2015, 47, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Donsì, F.; Cuomo, A.; Marchese, E.; Ferrari, G. Infusion of essential oils for food stabilization: Unraveling the role of nanoemulsion-based delivery systems on mass transfer and antimicrobial activity. Innov. Food Sci. Emerg. Technol. 2014, 22, 212–220. [Google Scholar] [CrossRef]
- Sow, L.C.; Tirtawinata, F.; Yang, H.; Shao, Q.; Wang, S. Carvacrol nanoemulsion combined with acid electrolysed water to inactivate bacteria, yeast in vitro and native microflora on shredded cabbages. Food Control 2017, 76, 88–95. [Google Scholar] [CrossRef]
- Maherani, B.; Harich, M.; Salmieri, S.; Lacroix, M. Antibacterial properties of combined non-thermal treatments based on bioactive edible coating, ozonation, and gamma irradiation on ready-to-eat frozen green peppers: Evaluation of their freshness and sensory qualities. Eur. Food Res. Technol. 2019, 245, 1095–1111. [Google Scholar] [CrossRef]
- Gazolu-Rusanova, D.; Lesov, I.; Tcholakova, S.; Denkov, N.; Ahtchi, B. Food grade nanoemulsions preparation by rotor-stator homogenization. Food Hydrocoll. 2020, 102, 105579. [Google Scholar] [CrossRef] [Green Version]
- Gharibzahedi, S.M.T.; Hernández-Ortega, C.; Welti-Chanes, J.; Putnik, P.; Barba, F.J.; Mallikarjunan, K.; Escobedo-Avellaneda, Z.; Roohinejad, S. High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties. Food Hydrocoll. 2019, 87, 307–320. [Google Scholar] [CrossRef]
- Solans, C.; Solé, I. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 2012, 17, 246–254. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Li, Y.; Yokoyama, W.; Xu, S.; Zhu, S.; Ma, J.; Zhong, F. Formation and stability of W/O microemulsion formed by food grade ingredients and its oral delivery of insulin in mice. J. Funct. Foods 2017, 30, 134–141. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Y.; Critzer, F.; Davidson, P.M.; Zivanovic, S.; Zhong, Q. Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocoll. 2015, 52, 533–542. [Google Scholar] [CrossRef]
- Montes de Oca-Ávalos, J.M.; Candal, R.J.; Herrera, M.L. Nanoemulsions: Stability and physical properties. Curr. Opin. Food Sci. 2017, 16, 1–6. [Google Scholar] [CrossRef]
- Anton, N.; Vandamme, T.F. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharm. Res. 2011, 28, 978–985. [Google Scholar] [CrossRef]
- Tadros, T.F. Emulsions: Formation, Stability, Industrial Applications; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2016; ISBN 3110452243. [Google Scholar]
- Gupta, A. Nanoemulsions. In Nanoparticles for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 371–384. [Google Scholar]
- Roohinejad, S.; Greiner, R.; Oey, I.; Wen, J. Emulsion-Based Systems for Delivery of Food Active Compounds: Formation, Application, Health and Safety; Shahin, R., Ralf, G., Indrawati, O., Jingyuan, W., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 1119247160. [Google Scholar]
- Dammak, I.; de Carvalho, R.A.; Trindade, C.S.F.; Lourenço, R.V.; do Amaral Sobral, P.J. Properties of active gelatin films incorporated with rutin-loaded nanoemulsions. Int. J. Biol. Macromol. 2017, 98, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Córdoba, L.J.; Norton, I.T.; Batchelor, H.K.; Gkatzionis, K.; Spyropoulos, F.; Sobral, P.J.A. Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocoll. 2018, 79, 544–559. [Google Scholar] [CrossRef]
- Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol. 2019, 51, 224–233. [Google Scholar] [CrossRef]
- Chatzidaki, M.D.; Papadimitriou, K.; Alexandraki, V.; Balkiza, F.; Georgalaki, M.; Papadimitriou, V.; Tsakalidou, E.; Xenakis, A. Reverse micelles as nanocarriers of nisin against foodborne pathogens. Food Chem. 2018, 255, 97–103. [Google Scholar] [CrossRef]
- Cheng, J.; Dudu, O.E.; Wang, D.; Li, X.; Yan, T. Influence of interfacial adsorption of glyceryl monostearate and proteins on fat crystallization behavior and stability of whipped-frozen emulsions. Food Chem. 2020, 310, 125949. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Liao, W.; Charcosset, C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res. Int. 2020, 132, 109035. [Google Scholar] [CrossRef]
- Ghani, S.; Barzegar, H.; Noshad, M.; Hojjati, M. The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int. J. Biol. Macromol. 2018, 112, 197–202. [Google Scholar] [CrossRef]
- Espinosa-Andrews, H.; Páez-Hernández, G. Optimization of ultrasonication curcumin-hydroxylated lecithin nanoemulsions using response surface methodology. J. Food Sci. Technol. 2020, 57, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Radi, M. Food grade microemulsion systems: Canola oil/lecithin:n-propanol/water. Food Chem. 2016, 194, 972–979. [Google Scholar] [CrossRef]
- Amiri-Rigi, A.; Abbasi, S. Extraction of lycopene using a lecithin-based olive oil microemulsion. Food Chem. 2019, 272, 568–573. [Google Scholar] [CrossRef]
- Vélez-Erazo, E.M.; Bosqui, K.; Rabelo, R.S.; Kurozawa, L.E.; Hubinger, M.D. High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocoll. 2020, 105. [Google Scholar] [CrossRef]
- Mellinas, C.; Ramos, M.; Jiménez, A.; Garrigós, M.C. Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications. Materials 2020, 13, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, A.; Wang, X.; Xu, N.; Jiang, L. The radiation assisted-Maillard reaction comprehensively improves the freeze-thaw stability of soy protein-stabilized oil-in-water emulsions. Food Hydrocoll. 2020, 103, 105684. [Google Scholar] [CrossRef]
- Wang, S.; Yang, J.; Shao, G.; Qu, D.; Zhao, H.; Yang, L.; Zhu, L.; He, Y.; Liu, H.; Zhu, D. Soy protein isolated-soy hull polysaccharides stabilized O/W emulsion: Effect of polysaccharides concentration on the storage stability and interfacial rheological properties. Food Hydrocoll. 2020, 101, 105490. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Qi, Y.; Zheng, L.; Wu, C.; Wang, Z.; Teng, F. Preparation and digestibility of fish oil nanoemulsions stabilized by soybean protein isolate-phosphatidylcholine. Food Hydrocoll. 2020, 100, 105310. [Google Scholar] [CrossRef]
- Frank, K.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Alginate biocomposite films incorporated with cinnamon essential oil nanoemulsions: Physical, mechanical, and antibacterial properties. Int. J. Polym. Sci. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Hashemi Gahruie, H.; Ziaee, E.; Eskandari, M.H.; Hosseini, S.M.H. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr. Polym. 2017, 166, 93–103. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Lourenço, R.V.; Bittante, A.M.Q.B.; Moraes, I.C.F.; do Amaral Sobral, P.J. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag. Shelf Life 2016, 10, 87–96. [Google Scholar] [CrossRef]
- Dammak, I.; Lourenço, R.V.; do Amaral Sobral, P.J. Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin: Preparation and physicochemical characterization. J. Food Eng. 2019, 240, 9–20. [Google Scholar] [CrossRef]
- Jiménez-Saelices, C.; Trongsatitkul, T.; Lourdin, D.; Capron, I. Chitin Pickering Emulsion for Oil Inclusion in Composite Films. Carbohydr. Polym. 2020, 116366. [Google Scholar] [CrossRef]
- Tyowua, A.T.; Yiase, S.G.; Binks, B.P. Double oil-in-oil-in-oil emulsions stabilised solely by particles. J. Colloid Interface Sci. 2017, 488, 127–134. [Google Scholar] [CrossRef]
- Xu, Y.; Chu, Y.; Feng, X.; Gao, C.; Wu, D.; Cheng, W.; Meng, L.; Zhang, Y.; Tang, X. Effects of zein stabilized clove essential oil Pickering emulsion on the structure and properties of chitosan-based edible films. Int. J. Biol. Macromol. 2020, 156, 111–119. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An overview of pickering emulsions: Solid-particle materials, classification, morphology, and applications. Front. Pharmacol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, P.; Hosseini, S.M.H.; Golmakani, M.T.; Majdinasab, M.; Esteghlal, S. Shelf-life extension of refrigerated rainbow trout fillets using total Farsi gum-based coatings containing clove and thyme essential oils emulsions. Food Hydrocoll. 2018, 77, 677–688. [Google Scholar] [CrossRef]
- Keykhosravy, K.; Khanzadi, S.; Hashemi, M.; Azizzadeh, M. Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int. J. Biol. Macromol. 2020, 150, 904–913. [Google Scholar] [CrossRef]
- Lamba, H.; Sathish, K.; Sabikhi, L. Double emulsions: Emerging delivery system for plant bioactives. Food Bioprocess Technol. 2015, 8, 709–728. [Google Scholar] [CrossRef]
- Muschiolik, G.; Dickinson, E. Double emulsions relevant to food systems: Preparation, stability, and applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef] [Green Version]
- Estévez, M.; Güell, C.; De Lamo-Castellví, S.; Ferrando, M. Encapsulation of grape seed phenolic-rich extract within W/O/W emulsions stabilized with complexed biopolymers: Evaluation of their stability and release. Food Chem. 2019, 272, 478–487. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Muriel Mundo, J.L.; Tan, Y.; Pham, H.; McClements, D.J. Fabrication and characterization of W/O/W emulsions with crystalline lipid phase. J. Food Eng. 2020, 273, 109826. [Google Scholar] [CrossRef]
- Huang, H.; Belwal, T.; Aalim, H.; Li, L.; Lin, X.; Liu, S.; Ma, C.; Li, Q.; Zou, Y.; Luo, Z. Protein-polysaccharide complex coated W/O/W emulsion as secondary microcapsule for hydrophilic arbutin and hydrophobic coumaric acid. Food Chem. 2019, 300, 125171. [Google Scholar] [CrossRef] [PubMed]
- Beldengrün, Y.; Dallaris, V.; Jaén, C.; Protat, R.; Miras, J.; Calvo, M.; García-Celma, M.J.; Esquena, J. Formation and stabilization of multiple water-in-water-in-water (W/W/W) emulsions. Food Hydrocoll. 2020, 102, 105588. [Google Scholar] [CrossRef]
- Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McClements, D.J.; McLandsborough, L. Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: Effect of surfactant concentration on morphology of foodborne pathogens. Food Control 2019, 98, 405–411. [Google Scholar] [CrossRef]
- Mitsou, E.; Pletsa, V.; Sotiroudis, G.T.; Panine, P.; Zoumpanioti, M.; Xenakis, A. Development of a microemulsion for encapsulation and delivery of gallic acid. The role of chitosan. Colloids Surfaces B Biointerfaces 2020, 190, 110974. [Google Scholar] [CrossRef]
- Chatzidaki, M.D.; Balkiza, F.; Gad, E.; Alexandraki, V.; Avramiotis, S.; Georgalaki, M.; Papadimitriou, V.; Tsakalidou, E.; Papadimitriou, K.; Xenakis, A. Reverse micelles as nano-carriers of nisin against foodborne pathogens. Part II: The case of essential oils. Food Chem. 2019, 278, 415–423. [Google Scholar] [CrossRef]
- Sieniawska, E.; Świątek, Ł.; Wota, M.; Rajtar, B.; Polz-Dacewicz, M. Microemulsions of essentials oils—Increase of solubility and antioxidant activity or cytotoxicity? Food Chem. Toxicol. 2019, 129, 115–124. [Google Scholar] [CrossRef]
- Karunaratne, D.N.; Pamunuwa, G.; Ranatunga, U. Introductory Chapter: Microemulsions. In Properties and Uses of Microemulsions; InTech: Vienna, Austria, 2017. [Google Scholar]
- Acharya, D.P.; Hartley, P.G. Progress in microemulsion characterization. Curr. Opin. Colloid Interface Sci. 2012, 17, 274–280. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Z. A pH-sensitive microemulsion-filled gellan gum hydrogel encapsulated apigenin: Characterization and in vitro release kinetics. Colloids Surfaces B Biointerfaces 2019, 178, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Kavoosi, G.; Maggi, F. The emulsion made with essential oil and aromatic water from Oliveria decumbens protects murine macrophages from LPS-induced oxidation and exerts relevant radical scavenging activities. Biocatal. Agric. Biotechnol. 2019, 17, 538–544. [Google Scholar] [CrossRef]
- Basak, S.; Guha, P. Betel leaf (Piper betle L.) essential oil microemulsion: Characterization and antifungal activity on growth, and apparent lag time of Aspergillus flavus in tomato paste. LWT Food Sci. Technol. 2017, 75, 616–623. [Google Scholar] [CrossRef]
- Deng, L.; Taxipalati, M.; Sun, P.; Que, F.; Zhang, H. Phase behavior, microstructural transition, antimicrobial and antioxidant activities of a water-dilutable thymol microemulsion. Colloids Surfaces B Biointerfaces 2015, 136, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Nunes, R.; da Silva, S.M.M.; de Souza, P.E.N.; Magalhães, P.d.O.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. Incorporation of Eugenia dysenterica extract in microemulsions preserves stability, antioxidant effect and provides enhanced cutaneous permeation. J. Mol. Liq. 2018, 265, 408–415. [Google Scholar] [CrossRef]
- Golwala, P.; Rathod, S.; Patil, R.; Joshi, A.; Ray, D.; Aswal, V.K.; Bahadur, P.; Tiwari, S. Effect of cosurfactant addition on phase behavior and microstructure of a water dilutable microemulsion. Colloids Surfaces B Biointerfaces 2020, 186, 110736. [Google Scholar] [CrossRef]
- Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and their potential applications in food industry. Front. Sustain. Food Syst. 2019, 3, 95. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, X.; Deng, H.; Guo, Y.; Xue, J. Gelatin films incorporated with thymol nanoemulsions: Physical properties and antimicrobial activities. Int. J. Biol. Macromol. 2020, 150, 161–168. [Google Scholar] [CrossRef]
- Amiri, E.; Aminzare, M.; Azar, H.H.; Mehrasbi, M.R. Combined antioxidant and sensory effects of corn starch films with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on fresh ground beef patties. Meat Sci. 2019, 153, 66–74. [Google Scholar] [CrossRef]
- Yang, Y.; Marshall-Breton, C.; Leser, M.E.; Sher, A.A.; McClements, D.J. Fabrication of ultrafine edible emulsions: Comparison of high-energy and low-energy homogenization methods. Food Hydrocoll. 2012, 29, 398–406. [Google Scholar] [CrossRef]
- Silva, E.K.; Rosa, M.T.M.G.; Meireles, M.A.A. Ultrasound-assisted formation of emulsions stabilized by biopolymers. Curr. Opin. Food Sci. 2015, 5, 50–59. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Fuenmayor, C.A.; Otoni, C.G. Nanoemulsions: Synthesis, characterization, and application in bio-based active food packaging. Compr. Rev. Food Sci. Food Saf. 2019, 18, 264–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem. 2018, 246, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Hilbig, J.; Ma, Q.; Davidson, P.M.; Weiss, J.; Zhong, Q. Physical and antimicrobial properties of cinnamon bark oil co-nanoemulsified by lauric arginate and Tween 80. Int. J. Food Microbiol. 2016, 233, 52–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Carli, C.; Moraes-Lovison, M.; Pinho, S.C. Production, physicochemical stability of quercetin-loaded nanoemulsions and evaluation of antioxidant activity in spreadable chicken pâtés. LWT 2018, 98, 154–161. [Google Scholar] [CrossRef]
- Borrin, T.R.; Georges, E.L.; Moraes, I.C.F.; Pinho, S.C. Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: An evaluation of process parameters and physico-chemical stability. J. Food Eng. 2016, 169, 1–9. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, H.; Chen, H.; Lin, J.; Wang, Q. Food-grade nanoemulsions: Preparation, stability and application in encapsulation of bioactive compounds. Molecules 2019, 24, 4242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, S.N.; Utra, U.; Alias, A.K.; Tan, T.B.; Tan, C.P.; Yussof, N.S. Physical, morphological and antibacterial properties of lime essential oil nanoemulsions prepared via spontaneous emulsification method. LWT 2020, 128, 109388. [Google Scholar] [CrossRef]
- Yildirim, S.T.; Oztop, M.H.; Soyer, Y. Cinnamon oil nanoemulsions by spontaneous emulsification: Formulation, characterization and antimicrobial activity. LWT Food Sci. Technol. 2017, 84, 122–128. [Google Scholar] [CrossRef]
- Nikolic, I.; Mitsou, E.; Damjanovic, A.; Papadimitriou, V.; Antic-Stankovic, J.; Stanojevic, B.; Xenakis, A.; Savic, S. Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity. J. Mol. Liq. 2020, 301, 112479. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of biomolecules from food wastes—A review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, C.; Staebler, A.; Happel, A.; Márquez, M.A.C.; Aguiló-Aguayo, I.; Abadias, M.; Gallur, M.; Cigognini, I.M.; Montanari, A.; López, M.J.; et al. Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A review. Sustainability 2017, 9, 1492. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A.M. Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef] [PubMed]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Parreidt, T.S.; Müller, K.; Schmid, M. Alginate-based edible films and coatings for food packaging applications. Foods 2018, 7, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valencia, G.A.; Zare, E.N.; Makvandi, P.; Gutiérrez, T.J. Self-assembled carbohydrate polymers for food applications: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2009–2024. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Jiménez, A.; Requena, R.; Vargas, M.; Atarés, L.; Chiralt, A. Food Hydrocolloids as Matrices for Edible Packaging Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128114483. [Google Scholar]
- Pereda, M.; Amica, G.; Marcovich, N.E. Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr. Polym. 2012, 87, 1318–1325. [Google Scholar] [CrossRef]
- Pérez-Gago, M.B.; Rhim, J.W. Edible coating and film materials: Lipid bilayers and lipid emulsions. Innov. Food Packag. Second Ed. 2013, 325–350. [Google Scholar] [CrossRef]
- Dhall, R.K. Advances in edible coatings for fresh fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Ghadermazi, R.; Hamdipour, S.; Sadeghi, K.; Ghadermazi, R.; Khosrowshahi Asl, A. Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Sci. Nutr. 2019, 7, 3363–3377. [Google Scholar] [CrossRef] [Green Version]
- Rozenberga, L.; Skute, M.; Belkova, L.; Sable, I.; Vikele, L.; Semjonovs, P.; Saka, M.; Ruklisha, M.; Paegle, L. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria. Carbohydr. Polym. 2016, 144, 33–40. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.W. Chitosan-based biodegradable functional films for food packaging applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Yuan, G.; Chen, X.; Li, D. Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res. Int. 2016, 89, 117–128. [Google Scholar] [CrossRef]
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of edible films and coatings from alginates and carrageenans. Carbohydr. Polym. 2016, 137, 360–374. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Mousavi Khaneghah, A.; Ghaderi Ghahfarrokhi, M.; Eş, I. Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biol. Technol. 2017, 125, 26–34. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Mahunu, G.K.; Arslan, M.; Abdalhai, M.; Zhihua, L. Recent developments in gum edible coating applications for fruits and vegetables preservation: A review. Carbohydr. Polym. 2019, 224, 115141. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F. Edible coating of fruits and vegetables using natural gums: A review. Int. J. Fruit Sci. 2020, 1–20. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of edible coating with essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 2467–2480. [Google Scholar] [CrossRef] [PubMed]
- Peretto, G.; Du, W.X.; Avena-Bustillos, R.J.; De, J.; Berrios, J.; Sambo, P.; McHugh, T.H. Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality. Food Bioprocess Technol. 2017, 10, 165–174. [Google Scholar] [CrossRef]
- Arnon-Rips, H.; Porat, R.; Poverenov, E. Enhancement of agricultural produce quality and storability using citral-based edible coatings; the valuable effect of nano-emulsification in a solid-state delivery on fresh-cut melons model. Food Chem. 2019, 277, 205–212. [Google Scholar] [CrossRef]
- Andrade, R.D.; Skurtys, O.; Osorio, F.A. Atomizing spray systems for application of edible coatings. Compr. Rev. Food Sci. Food Saf. 2012, 11, 323–337. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kumar, S.; Kumar, V.; Sharma, R. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int. J. Biol. Macromol. 2020, 152, 154–170. [Google Scholar] [CrossRef]
- Butnaru, E.; Stoleru, E.; Brebu, M.A.; Darie-Nita, R.N.; Bargan, A.; Vasile, C. Chitosan-based bionanocomposite films prepared by emulsion technique for food preservation. Materials 2019, 12, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagundes, C.; Palou, L.; Monteiro, A.R.; Pérez-Gago, M.B. Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biol. Technol. 2014, 92, 1–8. [Google Scholar] [CrossRef]
- Choi, W.S.; Singh, S.; Lee, Y.S. Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of “Formosa” plum (Prunus salicina L.). LWT Food Sci. Technol. 2016, 70, 213–222. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Kordowska-Wiater, M.; Zięba, E.; Baraniak, B. Effect of carboxymethylcellulose/candelilla wax coating containing potassium sorbate on microbiological and physicochemical attributes of pears. Sci. Hortic. (Amsterdam) 2017, 218, 326–333. [Google Scholar] [CrossRef]
- Oh, Y.A.; Oh, Y.J.; Song, A.Y.; Won, J.S.; Song, K.B.; Min, S.C. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT 2017, 75, 742–750. [Google Scholar] [CrossRef]
- Perdones, A.; Escriche, I.; Chiralt, A.; Vargas, M. Effect of chitosan-lemon essential oil coatings on volatile profile of strawberries during storage. Food Chem. 2016, 197, 979–986. [Google Scholar] [CrossRef]
- Cháfer, M.; Sánchez-González, L.; González-Martínez, C.; Chiralt, A. Fungal decay and shelf life of oranges coated with chitosan and bergamot, thyme, and tea tree essential oils. J. Food Sci. 2012, 77, 182–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nechita, P.; Roman (Iana-Roman), M. Review on polysaccharides used in coatings for food packaging papers. Coatings 2020, 10, 566. [Google Scholar] [CrossRef]
- Sun, X.; Narciso, J.; Wang, Z.; Ference, C.; Bai, J.; Zhou, K. Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries. J. Food Sci. 2014, 79. [Google Scholar] [CrossRef] [PubMed]
- Severino, R.; Vu, K.D.; Donsì, F.; Salmieri, S.; Ferrari, G.; Lacroix, M. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. Int. J. Food Microbiol. 2014, 191, 82–88. [Google Scholar] [CrossRef]
- Severino, R.; Ferrari, G.; Vu, K.D.; Donsì, F.; Salmieri, S.; Lacroix, M. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157:H7 and Salmonella Typhimurium on green beans. Food Control 2015, 50, 215–222. [Google Scholar] [CrossRef]
- Taştan, Ö.; Pataro, G.; Donsì, F.; Ferrari, G.; Baysal, T. Decontamination of fresh-cut cucumber slices by a combination of a modified chitosan coating containing carvacrol nanoemulsions and pulsed light. Int. J. Food Microbiol. 2017, 260, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut fuji apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- Azarakhsh, N.; Osman, A.; Ghazali, H.M.; Tan, C.P.; Mohd Adzahan, N. Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biol. Technol. 2014, 88, 1–7. [Google Scholar] [CrossRef]
- Sanchís, E.; Ghidelli, C.; Sheth, C.C.; Mateos, M.; Palou, L.; Pérez-Gago, M.B. Integration of antimicrobial pectin-based edible coating and active modified atmosphere packaging to preserve the quality and microbial safety of fresh-cut persimmon (Diospyros kaki Thunb. cv. Rojo Brillante). J. Sci. Food Agric. 2017, 97, 252–260. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Rojas-Graü, M.A.; González, L.A.; Varela, P.; Soliva-Fortuny, R.; Hernando, M.I.H.; Munuera, I.P.; Fiszman, S.; Martín-Belloso, O. Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biol. Technol. 2010, 57, 139–148. [Google Scholar] [CrossRef]
- Sharif, Z.I.M.M.; Jai, J.; Subuki, I.; Zaki, N.A.M.M.; Mustapha, F.A.; Mohd Yusof, N. Characterisation of polysaccharide composite incorporated with turmeric oil for application on fresh-cut apples. J. Phys. Conf. Ser. 2019, 1349, 012058. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol. Technol. 2015, 110, 203–213. [Google Scholar] [CrossRef]
- Mustafa, M.A.; Ali, A.; Manickam, S.; Siddiqui, Y. Ultrasound-assisted chitosan–surfactant nanostructure assemblies: Towards maintaining postharvest quality of tomatoes. Food Bioprocess Technol. 2014, 7, 2102–2111. [Google Scholar] [CrossRef]
- Donsì, F.; Marchese, E.; Maresca, P.; Pataro, G.; Vu, K.D.; Salmieri, S.; Lacroix, M.; Ferrari, G. Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biol. Technol. 2015, 106, 21–32. [Google Scholar] [CrossRef]
- Ranjitha, K.; Sudhakar Rao, D.V.; Shivashankara, K.S.; Oberoi, H.S.; Roy, T.K.; Bharathamma, H. Shelf-life extension and quality retention in fresh-cut carrots coated with pectin. Innov. Food Sci. Emerg. Technol. 2017, 42, 91–100. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Amodio, M.L.; Colelli, G. Carvacrol-loaded chitosan nanoparticles maintain quality of fresh-cut carrots. Innov. Food Sci. Emerg. Technol. 2017, 41, 56–63. [Google Scholar] [CrossRef]
- Ben-Fadhel, Y.; Maherani, B.; Manus, J.; Salmieri, S.; Lacroix, M. Physicochemical and microbiological characterization of pectin-based gelled emulsions coating applied on pre-cut carrots. Food Hydrocoll. 2020, 101, 105573. [Google Scholar] [CrossRef]
- Boumail, A.; Salmieri, S.; Lacroix, M. Combined effect of antimicrobial coatings, gamma radiation and negative air ionization with ozone on Listeria innocua, Escherichia coli and mesophilic bacteria on ready-to-eat cauliflower florets. Postharvest Biol. Technol. 2016, 118, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Boumail, A.; Salmieri, S.; St-Yves, F.; Lauzon, M.; Lacroix, M. Effect of antimicrobial coatings on microbiological, sensorial and physico-chemical properties of pre-cut cauliflowers. Postharvest Biol. Technol. 2016, 116, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Noh, N.M.; Mustafa, M.A. Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packag. Shelf Life 2015, 3, 56–61. [Google Scholar] [CrossRef]
- Duran, M.; Aday, M.S.; Zorba, N.N.D.; Temizkan, R.; Büyükcan, M.B.; Caner, C. Potential of antimicrobial active packaging “containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating” to extend shelf life of fresh strawberry. Food Bioprod. Process. 2016, 98, 354–363. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biol. Technol. 2015, 110, 51–60. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. fresh fruit storage. Postharvest Biol. Technol. 2015, 100, 226–233. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. Raspberry fresh fruit quality as affected by pectin- and alginate-based edible coatings enriched with essential oils. Sci. Hortic. (Amsterdam) 2015, 194, 138–146. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; Leyva, J.M.; Ortega-Ramírez, L.A.; Carrazco-Lugo, D.K.; Pérez-Carlón, J.J.; Melgarejo-Flores, B.G.; González-Aguilar, G.A.; Miranda, M.R.A. Pectin-cinnamon leaf oil coatings add antioxidant and antibacterial properties to fresh-cut peach. Flavour Fragr. J. 2013, 28, 39–45. [Google Scholar] [CrossRef]
- Brasil, I.M.; Gomes, C.; Puerta-Gomez, A.; Castell-Perez, M.E.; Moreira, R.G. Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT Food Sci. Technol. 2012, 47, 39–45. [Google Scholar] [CrossRef]
- Ganduri, V.S.R. Evaluation of pullulan-based edible active coating methods on Rastali and Chakkarakeli bananas and their shelf-life extension parameters studies. J. Food Process. Preserv. 2020, 44. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.-J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Moalemiyan, M.; Ramaswamy, H.S. Quality retention and shelf-life extension in mediterranean cucumbers coated with a pectin-based film. J. Food Res. 2012, 1, 159–168. [Google Scholar] [CrossRef] [Green Version]
Emulsion Technique * | Functional Compounds | Benefits | Food | Ref. |
---|---|---|---|---|
Ionic gelation technique | Cuminum cyminum EO | Antimicrobial activity. | Mushroom | [17] |
-- | Trans-cinnamic acid | Antimicrobial and antibiofilm effects. | Lettuce | [18] |
Ultrasonication | Oregano EO | Antimicrobial activity. | Lettuce | [19] |
HPH | Carvacrol | Antimicrobial activity. | Zucchini | [20] |
HPH or ultrasonication | Carvacrol | Antimicrobial activity. | Shredded cabbages | [21] |
HPH | Lemongrass EO Citrus extract Fermented dextrose Prolong 2 Concentrated cranberry juice | Antibacterial activity. | Green peppers | [22] |
Method | Matrix | Experimental Conditions | Structure * and Size (nm) | Ref |
---|---|---|---|---|
High-speed homogenization | Gelatin (0.55 wt%) Thymol (0–0.2 g/mL) in propylene glycol Lecithin (1–2 wt%) | 15.000 rpm for 6 min | O/W 137.9 ± 4.5–333.2 ± 7.6 | [78] |
Pectin (1–2 wt%) Glycerol (50 wt%) Lemongrass EO (0–1% vol) Tween 80 (0.1% vol) | 15.000 rpm for 4 min | O/W 301 ± 4–1222 ± 30 | [15] | |
Tween 80 (4.5 wt%) Zataria Multiflora EO (6 wt%) Cinnamaldehyde (6 wt%) | Droplet addition at 400 rpm for 10 min and 10.000 rpm for 15 min | O/W 93.2–109.1 | [79] | |
High-speed homogenization Ultrasounds | Cinnamon EO 1–5% (v/v) Tween 80 | 5.000 rpm for 10 min, 750 W, 40% amplitude and 10 min | O/W 55.8–120 | [49] |
High-pressure homogenization | Tween 20 (3.5 wt%) α-tocopherol (3 wt%) Cinnamaldehyde (3% w/v) Garlic oil (3% w/v) Canoila oil Span 60 (1.5% w/v) | 5.000 rpm for 5 min, 69–100 MPa and 3 cycles | O/W 111.0 ± 2.0–124.8 ± 1.4 | [35] |
Tween 80 (1.25 wt%) Span 80 (3.75 wt%) Rutin (0.1 wt%) Soybean oil | 7.000 rpm for 5 min, 100 MPa and 3 cycles | O/W 150 | [34] | |
Ginger EO (1–5 wt%) Canoila oil Span 60 (4 wt%) Tween 20 (1 wt%) | 24.000 rpm for 5 min, 10.000 Psi and 3–6 cycles | O/W 133 ± 5–150 ± 8 | [51] | |
Ultrasounds | Tween 80 (4.5 wt%) Zataria multiflora EO (6 wt%) | 150 W, 20 KHz, 15 °C and 0–10 min | O/W 90.9–210.5 | [50] |
Tween 80 Thymol Medium chain triglycerides | 700 W, 40% amplitude, 30 s pulse on/off cycles (0–30 min) | O/W 132.4 ± 2.3 | [83] | |
Cinnamon oil (2 wt%) 1% Soy protein isolate (98 wt%) | 25 kHz, 60% amplitude and 2 min | O/W 141.1 | [40] | |
Marjoram EO (1 wt%) Tween 80 (30 wt% of EO) | Mix: 3.000 rpm, 200 W, 20 kHz, and 15 min | O/W 97.5 | [9] | |
Chitosan (2 wt%) Tween 80 (0.2% w/v) Zataria Multiflora Boiss EO (0.5–1 wt%) Bunium persicum Boiss EO (0.5–1 wt%) | 50% amplitude, 45 s pulse on and 15 s pulse off (6 min) | O/W 342.3 ± 2.5–506.8 ± 15.8 | [58] | |
Spontaneous emulsification | Curcumin (0.1–0.3 wt%) Tween 80 (9 wt%) Soybean-lecithin (1 wt%) Medium-chain tryglycerides (10%) | Oil phase added dropwise into aqueous phase, 1.000 rpm for 60 min | W/O 126.0 ± 1.5–146.8 ± 0.8 | [90] |
Lime EO + corn oil (5% v/v) Tween 80 (15% v/v)-water (80% v/v) | Mix oil phase: 30 min, 750 rpm Add aqueous phase: 30 min, 750 rpm | O/W 21–60 | [88] | |
2–10% Cinnamon oil + coconut (10 wt%) Tween 80 (10 wt%) Water (80 wt%) | Mix oil phase: 30 min, 750 rpm Add aqueous phase: 30 min, 750 rpm | O/W 81–343 | [89] | |
Point inversion temperature (PIT) | Cinnamon oil (4 wt%) Tween 80 (10–20 wt%) Water (70–80 wt%) Medium-chain tryglycerides (6 wt%) | Mix 30 min at 25 °C, heat 67–78 °C, cool to 15 °C and 4 °C | O/W 23.5 ± 0.8–100.7 ± 1.0 | [65] |
Cinnamon bark oil (1%) Tween 80 or 20 (3%) Lauric alginate (0–0.375%) | Mix 15.000 rpm, 30 min at 25 °C, heat 90 °C, 30 min and cool to 4 °C | O/W ~100 | [84] | |
Emulsion inversion point (EIP) | Soybean oil (20%) Tween 80 (25%) Quercetin (0.3%) Glycerol (20%) Water (35%) | Aqueous phase added into oil phase at 12 mL min−1. Mix 500 rpm, 30 min | O/W 169 ± 2 | [85] |
Material Edible Coating | Functional Ingredient | Benefits | Food | Ref. |
---|---|---|---|---|
Chitosan | Carvacrol | Escherichia coli reduction reaching >5 log UCF/g | Cucumber | [127] |
Chitosan | Cinnamomum zeylanicum EO | Inhibition of Phytophthora drechsleri, stored 7 days at 4 °C. Reduction of respiration rates, improving the microbiological quality, preserving the fruit weight. | Cucumber | [133] |
Chitosan | Limonene | Prolongation of post-harvest life maintaining weight loss, color, firmness, pH, and organoleptic properties. Reduction of fungal growth | Cucumber | [7] |
Quinoa protein and chitosan | Thymol | Cherry tomatoes inoculated with Botrytis cinereal. Considerable reduction in fungal growth after 7 days at 5 °C | Cherry tomatoes | [83] |
Hydroxypropyl methylcellulose (HPMC), beeswax (BW) | Potassium carbonate, sodium propionate, ammonium carbonate, ammonium phosphate | Reduction of gray mold development on cherry tomatoes. Respiration rate, firmness, sensory flavor, color, off-flavor, and fruit appearance were not badly affected. | Cherry tomatoes | [117] |
Chitosan | Chitosan | A 5 days delay in ripening, enhancing the phenolic content and maintaining a low respiration level. | Tomatoes | [134] |
Chitosan | Mandarin EO | Inhibition of Listeria species. No impact on firmness for 14 days and product color | Green beans | [135] |
Chitosan | Mandarin EO | Control the growth of Listeria innocua. Reduction in the sample firmness and no color changes during storage. | Green beans | [125] |
Chitosan | Bergamot, carvacrol, mandarin and lemon EOs | Inhibition during storage of Escherichia coli O157:H7 and Salmonella Typhimurium with carvacrol | Green beans | [126] |
Pectin | Sesame oil | Antioxidant activity, preservation of quality attributes and control of microbial growth after 12 days. | Cut carrots | [136] |
Chitosan | Carvacrol | Control of microbial growth for 13 days at 5 °C. | Cut carrots | [137] |
Pectin | Biosecur F440D (citrus extract) and a mixture of four EOs | Increase the shelf-life by 2 days and control of Listeria species and Penicillium chrysogenum. | Cut carrots | [138] |
Maltodextrin and methylcellulose | Lactic acid, citrus extract, lemongrass EO | Inhibition against Listeria monocytogenes and Escherichia coli. Variations in the respiration rates with no major color modification. | Cauliflower florets | [139] |
Starch and maltodextrin | Lactic acid, citrus extract, lemongrass EO | Inhibition against Listeria monocytogenes. No major changes in color, texture and respiration | Cauliflower florets | [140] |
Chitosan | Lemongrass EO | Fungal growth was effectively controlled for 21 days at room temperature. Maintenance of the fruit quality: weight loss, firmness, color. | Bell pepper | [141] |
Hydroxypropyl methylcellulose | Oregano and bergamot EOs | Reduction in the respiration rate and ethylene production, total weight loss, no surface color change, and total cell count. | Plum | [118] |
Carboxymethyl cellulose | Potassium sorbate | Decrease in ripening and minimum changes in the green skin color with no loss of firmness. | Pears | [119] |
Alginate | Lemongrass EO | Complete inhibition of the natural microflora for 2 weeks and no significant influence on the quality parameters during storage. | Fuji apples | [128] |
Starch and carboxymethyl cellulose | Turmeric EO | Antioxidant activity and low weight loss, firmness loss, and moisture content | Fuji apples | [132] |
Chitosan and carboxymethyl cellulose | Citral | Good antimicrobial protection (up to a 5-log reduction), and significant extension of the shelf-life up to 13 days. | Melons | [113] |
Chitosan | Lemongrass EO | High inhibition of Salmonella typhimurium; inhibition of yeasts, molds, and total mesophilic aerobes. Preservation of total soluble solid content, colour, and antioxidant activity during storage. | Grapes | [120] |
Chitosan | Nisin, natamycin, pomegranate and grape seed extract | Antimicrobial effect against yeasts, molds, and mesophilic bacteria. | Strawberries | [142] |
Chitosan | Lemon EO | Antifungal activity and no effect on sensorial perception | Strawberries | [121] |
Alginate | Carvacrol Methyl cinnamate | Antimicrobial effect. Maintenance of firmness, color retention, and weight loss reduction up to 13 days. Antioxidant effect. | Strawberries | [112] |
Alginate Pectin | Eugenol Citral | Antimicrobial and antioxidant effect. | Strawberries | [143] |
Chitosan | Bergamot, thyme, and tea tree EOs | Reduction of microbial growth and no changes on the food quality. | Oranges | [122] |
Chitosan | Trans-cinnamaldehyde Cinnamaldehyde Carvacrol | Reduction of the bacterial and yeasts/molds growth on the fruit. Antimicrobial effect. Shelf-life extension. | Blueberries | [124] |
Alginate | Eugenol Citral | Preservation of nutritional and sensory attributes and reduction of microbial spoilage. Antioxidant effect. | Arbutus unedo L. fruit | [144] |
Alginate | Lemongrass EO | Decrease in the firmness and sensory scores (taste, texture, and overall acceptability). Extension of the shelf-life up to 16 days. | Pineapple | [129] |
Alginate and pectin | Eugenol Citral | Antimicrobial and antioxidant effect. | Raspberries | [145] |
Pectin | Cinnamon leaf EO | Increase the antioxidant activity, odor acceptability, and inhibition of Escherichia coli O157:H7, Staphylococcus aureus, and Listeria monocytogenes. Preservation of food quality. | Peach | [146] |
Pectin | Nisin Calcium chloride Citric acid | Antibrowning effect and maintenance of the sensorial and microbiological quality for more than 9 days. | Persimmon | [130] |
Chitosan and pectin | trans-cynnamaldehyde-CD inclusion complex | Antimicrobial effect. | Papaya | [147] |
Basil seed gum | Oregano EO | Reduction of the microbial population and antioxidant activity. | Apricot | [108] |
Pullulan | Calcium chloride Lemon juice | Antibrowning. Enhancement of the overall quality and extension of the shelf-life. | Bananas | [148] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, M.; Mellinas, C.; Solaberrieta, I.; Garrigós, M.C.; Jiménez, A. Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables. Foods 2021, 10, 665. https://doi.org/10.3390/foods10030665
Ramos M, Mellinas C, Solaberrieta I, Garrigós MC, Jiménez A. Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables. Foods. 2021; 10(3):665. https://doi.org/10.3390/foods10030665
Chicago/Turabian StyleRamos, Marina, Cristina Mellinas, Ignacio Solaberrieta, María Carmen Garrigós, and Alfonso Jiménez. 2021. "Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables" Foods 10, no. 3: 665. https://doi.org/10.3390/foods10030665
APA StyleRamos, M., Mellinas, C., Solaberrieta, I., Garrigós, M. C., & Jiménez, A. (2021). Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables. Foods, 10(3), 665. https://doi.org/10.3390/foods10030665