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Abstract: Adulteration in dairy products has received world-wide attention, and at the same time,
near infrared (NIR) spectroscopy has proven to be a promising tool for adulteration detection given its
advantages of real-time response and non-destructive analysis. Regardless, the accurate and robust
NIR model for adulteration detection is hard to achieve in practice. Convolutional neural network
(CNN), as a promising deep learning architecture, is difficult to apply to such chemometrics tasks
due to the high risk of overfitting, despite the breakthroughs it has made in other fields. In this paper,
the ensemble learning method based on CNN estimators was developed to address the overfitting
and random initialization problems of CNN and applied to the determination of two infant formula
adulterants, namely hydrolyzed leather protein (HLP) and melamine. Moreover, a probabilistic
wavelength selection method based on the attention mechanism was proposed for the purpose of
finding the best trade-off between the accuracy and the diversity of the sub-models in ensemble
learning. The overall results demonstrate that the proposed method yielded superiority regression
performance over the comparison methods for both studied data sets, and determination coefficients
(R2) of 0.961 and 0.995 were obtained for the HLP and the melamine data sets, respectively.

Keywords: infant formula adulteration; ensemble learning; convolutional neural network; wavelength
selection; attention mechanism

1. Introduction

Adulteration in dairy products has received wide attention from the international
community [1–3], especially after the global food safety scares caused by melamine adulter-
ation in 2008, because it not only compromises the nutritional quality of the dairy products,
but also brings significant health risks to the consumers. There are two typical types of
adulterants for dairy products, one of which is mainly used to reduce the production cost,
such as starch and maltodextrin, and the other is attempted to boost the apparent protein
content, including melamine, hydrolyzed leather protein (HLP), urea, etc.

An effective detection method is crucial for the control of dairy product adulteration.
For instance, the determination of melamine and hydrolyzed leather protein cannot be
achieved by the widely-used Kjeldahl method [4], because it is a nonspecific procedure
that determines the protein content by quantifying the presence of nitrogen. Improved
methods [5] were proposed for the separation of non-protein nitrogen from true protein
nitrogen by adding some protein precipitating agents during the Kjeldahl test. However,
the detection accuracy still needs to be improved since the composition and the amount
of non-protein nitrogen are susceptible to the type and concentration of protein precipi-
tation [6]. Based on this circumstance, a number of high-precision detection techniques
have been developed. One of the most concerned approaches for adulterants detection
is the chromatography-based methods, such as high-performance liquid chromatogra-
phy (HPLC) [7], gas chromatography-tandem mass spectrometry (GC-MS) [8], capillary
electrophoresis-mass spectrometry (CE-MS) [9] and micellar electrokinetic chromatography
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(MEKC) [10]. Other analytical chemistry methods, such as enzyme-linked immunosorbent
assay (ELISA) [11], polymerase chain reaction (PCR) [12], optical biosensor [13] and spec-
troscopic fluorescence-based techniques [14] were also developed to detect different kinds
of adulterants in dairy products. Most of these methods are highly sensitive (detection
limits reach ppm level), but usually time-consuming, expensive, and require complicated
sample pretreatments and well-trained technicians. Compared with the above methods,
near-infrared (NIR) spectroscopy is an analytical technique that has advantages in real-time
response, simplicity in testing, relatively low-cost instrument, non-destructive behavior
and environmentally friendly analysis [15–17].

Quite a few efforts have been made on chemometric algorithms to achieve better
detection accuracy of dairy product adulteration based on NIR spectroscopy [18–20]. For
instance, Borin et al. adopted least-squares support vector machine (LS-SVM) for the
simultaneous quantification of some common adulterants (starch, whey or sucrose) found
in milk powder [21]. Balabin and Smirnov found that the nonlinear calibration methods
provided better results when concerning predicting melamine in dairy products, after
comparing the performance of partial least squares regression (PLS), polynomial PLS,
artificial neural network (ANN), support vector regression (SVR) and least squares support
vector machine (LS-SVM) [22]. Mabood et al. developed PLS-DA and PLS models for the
qualitative and quantitative analysis of adulteration in camel milk with goat milk [23].

Convolutional neural network (CNN) [24], which is one of the important network
architectures developed in the ongoing deep learning revolution, has begun to show
impact on chemometrics in recent years [25–28]. Acquarelli et al. employed the CNN
for classification of vibrational spectroscopy (Raman, NIR and FT-IR) and developed a
retraining algorithm for the selection of important wavelengths [29]. Cui et al. used the
CNN for NIR data regression and found that the convolutional filter can automatically
accomplish the suitable spectral preprocessing [30]. Chen et al. divided the NIR spectra
into several subintervals as the inputs of CNN models and applied genetic algorithm (GA)
to optimize the parameters of each subinterval model, which generates more representative
features than fixed convolutional parameters [31]. In addition to the qualitative and
quantitative approaches mentioned above, CNN was also employed for super-resolution
of spectra image [32,33], peak detection [34], and denoising [35] of spectrometry data.
All these recent studies demonstrate that the spectroscopy has greatly benefited from
the involvement of CNN given its advantages in strong comprehensive ability, requiring
less prior knowledge for the data set, easy to integrate the spectral and the morphology
information, and capable of finding effective bands [36].

Despite the promising results of the CNN in processing NIR spectral data, challenges
remain due to the high risk of overfitting. For the chemometrics tasks, it is hard to
obtain labeled sample sets in a large size because of higher sample preparing and testing
costs when compared with the computer vision tasks. Various strategies, such as data
augmentation [37] and shallow CNN [29], have been proposed by the researchers to
avoid the overfitting issue in spectral modeling. Another concern is that the stability and
robustness of the CNN-based models need to be improved because of the random initial
value of the CNN weights. The random initial weights lead to different optimal trajectories
in each training process, thus resulting in unstable predicted values.

Ensemble learning, which combines a number of base estimators to achieve better
predictive performance [38–40], is an appropriate candidate for addressing the overfitting
and random initialization problems of CNN. In the former studies, most of the ensemble
learning approaches for NIR spectra processing adopted PLS, which is a classical linear re-
gressor, as the base estimators [41–43]. Popular ensemble strategies, including bagging [44],
boosting [45] and stacking [46], were employed to integrate and improve the predicting
results of the basic PLS models. Zhou et al. compared bagging-PLS with boosting-PLS in
online near-infrared models for monitoring active pharmaceutical ingredients of Chinese
Medicine [47]. Bi et al. proposed a dual-stacked-PLS algorithm and compared several com-
bination rules of the outer stack step [48]. There are also some ensemble learning methods
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based on other nonlinear classifiers or regressors, such as the extreme learning machine
(ELM) [49] and the support vector machine (SVM) [50]. To the best of our knowledge, the
ensemble learning method based on CNN for spectrometric analysis is rarely reported and
needs to be further studied.

In this paper, we proposed an ensemble-CNN algorithm for the quantitative analysis
of adulteration in infant formula based on NIR spectroscopy. Besides, we designed a
wavelength selection strategy based on the attention mechanism for the proposed ensemble
architecture. It should be mentioned that a good ensemble learner requires sub-models with
good accuracy and diversity. Different wavelength selection strategies have been adopted
by the former ensemble architectures in order to improve the accuracy or the diversity of the
sub-models. Random selection of variable subspaces [39,51] is a frequently-used strategy to
promote the diversity, however, may result in some poorly performing sub-models, given
the selection of some inefficient wavelength combinations. On the other hand, several
wavelength selection methods, including SPA [52], uninformative variable elimination
(UVE) [41] and synergy interval partial least squares algorithm (SiPLS) [44] were employed
to solve the redundancy and collinearity problems and improve the accuracy of sub-models.
However, sharing a wavelength combination for all sub-models may harm the diversity
of the sub-model pool. In our previous studies, it has been found that the weights of the
neural networks can be regarded as a self-trained attention mechanism and indicate the
importance of wavelengths [53]. In the present work, we utilized the weight indicator for
probabilistic wavelength selection, founding the best trade-off between the accuracy and
the diversity of the sub-models.

Two infant formula data sets with typical adulterants, namely HLP and melamine,
were evaluated to validate the proposed ensemble CNN algorithm based on attention
mechanism (named as AM-ECNN). Besides, three classical regression methods (PLS, kernel
PLS and CNN) and a frequently-used ensemble learning method (random forest, RF) were
also adopted for the purpose of comparison. Moreover, the regression coefficient obtained
by the PLS models was also employed for probabilistic wavelength selection and compared
with the proposed weight indicator method.

2. Materials and Methods
2.1. Samples

Infant formula, as a suitable alternative to breast milk, is a widely consumed and
highly concerned powdered dairy product. In the present work, samples for two infant
formula adulteration data sets were prepared. The first data set is HLP adulteration [54],
consisting of 100 infant formula samples with concentrations of HLP ranged from 0% to
20%. The samples in this data set contained infant formula powder of three brands: Wyeth
(Madison, NJ, USA), Mead Johnson (Chicago, IL, USA) and Beingmate (Hangzhou, China),
and their mixtures with random proportions. The HLP powder purchased from three
producers (Kaitai, Beijing, China; Cargill, Hamburg, Germany; AccoBio, Wuxi, China) was
mixed into infant formula to form adulteration samples. Such an experimental design
was aimed to improve the robustness of the NIR model to the variations in chemical
composition of infant formula and HLP powder in practical use. All of the adulteration
samples were well stirred before NIR spectroscopy measurement.

The second data set is melamine adulteration, consisting of 100 infant formula samples
with concentrations of melamine ranged from 0% to 10%. Same as the HLP data set, the
infant formula powder in the melamine adulteration data set contained infant formula
of three brands: Aptamil (Rotterdam, The Netherlands), Wyeth (Vevey, Switzerland)
and Frisolac Prestige (Amersfoort, The Netherlands), and their mixtures with random
proportions. The melamine powder was purchased from Kermel (Tianjin, China) and well
mixed with the infant formula powder before the measurement.
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2.2. NIR Spectroscopy Measurement

The NIR spectra were acquired with a handheld NIR analyzer (DLP NIRscan Nano: Texas
Instruments, Dallas, TX, USA). The spectra ranged from 900 to 1700 nm (1100–5880 cm−1)
with a scanning resolution of 2.8 nm. Sixteen diffuse reflectance scans were averaged for each
spectrum. All of the measurements were taken at room temperature (24–27 ◦C) and relative
humidity between 50% and 65%.

2.3. Wavelength Selection Based on Attention Mechanism

In the proposed ensemble architecture, an artificial neural network (ANN) was first
trained to obtain an attention curve, which is used for the wavelength selection of the
sub-models. All of the training samples and all of the NIR variables were fed into the ANN
with two hidden layers. The trained weights of the first hidden layer were used to calculate
the attention indicator T:

Tb = ∑n
i=1

∣∣∣wb
i

∣∣∣, b = 1, 2, 3, . . . . . . m, (1)

where wb
i represents the weights corresponding to the bth wavelength and the i hidden

node, n is the total number of the hidden node in this layer, m is the total number of
wavelengths. For the weights of this hidden layer with a shape of n × m, T calculates the
sum of their absolute values for each wavelength. A large value of T indicates that this
wavelength is highlighted by the ANN and has a greater contribution on the outputs of
subsequent layers.

To ensure sufficient diversity of the sub-models, instead of simply picking important
wavelengths with large T, the attention indicator T was normalized into a probability
distribution Tnor and used for the probabilistic wavelength sampling of each sub-model.

Tb, nor =
Tb

∑m
b=1 Tb

, (2)

Such probabilistic wavelength selection strategy ensures that the important bands
have greater probabilities of being selected and at the same time keeps the randomness of
wavelength combination, as a consequence, achieving a good compromise between the
accuracy and the diversity of the sub-models.

2.4. Convolutional Neural Network

With the fast development of deep learning technology in recent years, CNN has been
proved to be a powerful tool for representing complicated data and learning features of
multiple levels. In this section, we describe the basic theory of CNN and the training details
of the CNN sub-models in AM-ECNN.

The CNN architecture adopted in the proposed ensemble learning method is a fully-
convolutional network, which is stacked by convolution layers without the usage of
fully-connected layer. In the convolution layer, the spectral features of the previous layer
are convolved by the learnable convolutional filter, followed by the nonlinear activation.
The operation of the lth convolution layer is:

Fl = g
(

Fl−1 ∗ wl + bl
)

(3)

g(x) = LeakyReLU(x) =
{

x, if x > 0
x
a , if x ≤ 0

(4)

where Fl−1 indexes the feature map in the previous layer and Fl presents the feature map
of the current layer, wl and bl are the trainable weight and bias of the lth convolution layer,
* represents the convolution operation. g(x) is the nonlinear activation of the convolution
layer which is LeakyReLU in this paper. LeakyReLU is a nonlinear function that simply
passes the positive input, while divides the negative inputs by a fixed parameter in range
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(1, +∞) [55]. Batch normalization layer, which helps to speed up the training process [56],
was used before each convolution layer.

The output features are fed into the output layer for prediction. The output layer can
be seen as a fully-connected layer with one hidden node. The operation of the output layer
can be presented as:

P = σ
(
∑m

j=1 Fj ×wj + b
)

(5)

σ(x) = sigmoid(x) =
1

1 + e−x (6)

where P represents the output prediction, Fj (j = 1, 2, 3, . . . , m) represents the output
features obtained by the previous layers, m is the feature map size, wj and b represent the
trainable weight and bias of the output layer, σ(x) is the nonlinear activation of the output
layer, which is sigmoid for regression problems.

Before the final ensemble-CNN model was built, the number of the convolution
layers in the sub-models was optimized in range 1~5, while the number of filters for each
convolution layer was optimized in range (8, 16, 32, 64) by an internal cross-validation
procedure. During the parameter optimization process, 25 wavelengths were selected
by the T curve and used to build models. For both data sets, the optimized number of
the convolution layers and the number of filters for each convolution layer are 3 and 16,
respectively. It was also observed that the usage of pooling layer or convolution layer
with stride greater than one deteriorates the accuracy of the sub-models. Since the sub-
models have much fewer input wavelengths compared with the full-spectrum model, the
pooling operation or large convolutional stride may cause obvious information loss. The
detailed structural parameters of the CNN sub-models in AM-ECNN are listed in Table 1.
In the training process, the learning rate was 0.0001 for both adulteration data sets, and
the training iterations were set to 2000 and 2500 for the HLP and the melamine data sets
respectively, in order to gain convergent results. No mini-batch strategy was used in the
training process because the size of training samples is small.

Table 1. The detailed information of sub-models in ensemble convolutional neural network based on attention mechanism
(AM-ECNN) for both data sets.

Layers Number of Filters Kernel Size Stride Padding Nonlinear Activation

Convolution Layer 1 16 5 1 Yes LeakyReLU
Convolution Layer 2 16 5 1 Yes LeakyReLU
Convolution Layer 3 16 5 1 Yes LeakyReLU

Output / / / / Sigmoid

2.5. Architecture of the AM-ECNN

In the present work, an ensemble CNN algorithm based on attention mechanism was
developed to improve the performance of infant formula adulteration detection. As shown
in Figure 1, the proposed AM-ECNN model was constructed as follows: (1) divided the
samples into the training set and the testing set; (2) trained the attention network with all
the samples in the training set and all the wavelengths as inputs; (3) normalized the weight
indicator obtained by the attention network into a probability distribution and selected
the input wavelengths of each sub-model according to it; (4) randomly selected samples
in the training set for sub-model construction, while the rest samples were used as the
validation data for parameter optimization; (5) trained the CNN sub-models based on the
variable and sample selection in steps 3 and 4; (6) fed the testing samples into the trained
sub-models and integrated the results for final prediction.
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Figure 1. Architecture of the proposed attention mechanism ensemble convolutional neural network
(AM-ECNN).

Two structural parameters for the ensemble architecture, including the number of
input wavelengths (nw) and the ratio of training samples (rs) of each sub-model, were
optimized by the prediction results of the validation samples in 10-fold cross-validation.
In the integration step, a simple average strategy was used to obtain the final prediction
result of the testing samples.

2.6. Methods for Comparison

PLS: PLS is a classical chemometrics algorithm for quantitative analysis of NIR
data [57]. In the present work, the number of latent variables used in PLS model was
determined in a range of 3~25 by a 5-fold cross-validation within the training sets.

Kernel PLS: Kernel PLS is an improved PLS method that the original input data are
projected onto a higher dimensional feature space by kernel functions, in order to deal with
the nonlinear problem [58]. The number of latent variables used in the kernel PLS was also
optimized in a range of 3~25.

CNN: Regular 1D CNN models were also established for comparison. A typical CNN
architecture was adopted, which was stacked by one dimensional convolution layers and
pooling layers. A fully convolutional network without fully-connected layers was adopted
to reduce the number of parameters and avoid overfitting. The structural parameters of
the CNN models, including the number of convolution layers and the number of filters for
each convolution layer, were optimized. The detailed information of the optimized CNN
for both data sets is listed in Table S1.

RF: Random forest (RF) is a popular ensemble method that consisting of many
trees [59]. In the present work, RF models were developed for comparison and two
parameters of the RF models, including the number of trees and the maximum depth of
the trees, were optimized.

2.7. Data Processing, Model Optimization and Evaluation

In order to improve the calibration accuracy, the initial and terminal sections of 100 nm
of the spectra were deleted because rather high instrument noise could be observed at
these regions. Therefore, the spectra ranging from 1000 nm to 1600 nm were used for
analysis. A pretreatment of first-order Savitzky–Golay derivative (smoothing points = 9,
polynomial order = 2) was performed on all of the NIR spectra for base line correction and
smoothing purpose.
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In order to fairly evaluate the performance of the models, an external cross-validation
and an internal cross-validation were conducted. The external 10-fold cross-validation was
used for final model evaluation, in which the samples were shuffled and divided into ten
partitions. In each fold of the external cross-validation, nine sample partitions (90 samples)
were used for model training while one sample partition (10 samples) was adopted as an
independent testing set. The average and standard deviation of the root mean squared
error (RMSEP), the determination coefficient (R2) and the ratio of prediction (RPD) of
the test sets obtained by the 10-fold external cross-validation were used to evaluate the
prediction capacity of each regression model. The RPD can be calculated as:

RPD = SD/RMSEP, (7)

where SD is the standard deviation of the test set in each fold.
Before the external cross-validation was carried out, the internal cross-validation

process was conducted within the training sets of each fold for the purpose of parameter
optimization, to ensure that all the methods in comparison were fully optimized. In the
5-fold internal cross-validation process, the samples in training set were divided into
five partitions, and five models were built alternately. The parameter optimizations for
PLS, kernel PLS, RF were performed before each external model was built, whereas the
optimizations (internal cross-validation) for the regular CNN and the sub-models of AM-
ECNN were conducted on one of the external fold and the optimized setting was followed
by the left external folds, because the cross-validation of the CNN-based method is rather
time-consuming. It should also be noticed that for the proposed AM-ECNN, the basic
structural parameters of the sub-model were first optimized through the internal cross-
validation, and then two key parameters of the ensemble learning architecture (the number
of input wavelengths and the ratio of training samples) were optimized through the process
described in Section 3.3.

In this study, all of the CNN-based methods were conducted on the open source
platform TensorFlow, the PLS and RF models were performed in scikit-learn, which is a
machine learning toolbox in python, and the kernel PLS models were performed in the
chemometric software The Unscrambler ver. 10.4 (CAMO, Oslo, Norway).

3. Results and Discussion
3.1. PCA Analysis

PCA was performed based on the pre-treated NIR spectra of two adulteration data sets
to evaluate the potential of quantitative analysis. The first and second principal component
plots for the HLP and the melamine data sets are illustrated in Figure 2a,b respectively, and
the contents of adulterants are marked by color gradient. For both studied adulteration
data sets, PC1 and PC2 explain about 93.0% of the total variance. For the HLP data set,
as shown in Figure 2a, both PC1 and PC2 decrease with the increase of HLP content. On
the other hand, for the PCA plot of melamine data set shown in Figure 2b, PC1 clearly
indicates the change of melamine content but no obvious change in PC2 can be observed.
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Figure 2. Principal component analysis score plots and loading curves of the infant formula adulteration data sets: (a) score
plot of the hydrolyzed leather protein (HLP) data set; (b) score plot of the melamine data set; (c) loading curve of the HLP
data set; (d) loading curve of the melamine data set.

The loading curves of PC1 and PC2 for the HLP and the melamine data sets are
illustrated in Figure 2c,d, respectively. The contribution of x-variables for each principal
component is proportional to its distance from the origin in the loading space. It can be
observed that the melamine data set shows sharper peaks in the loading curves than the
HLP data set, indicating the greater discrimination for wavelength importance.

3.2. Attention Mechanism Based on the Weight Indicator

In the proposed ensemble architecture, an ANN was first trained to obtain attention in-
dicators for further wavelength selection of the sub-models. The learned weight indicators
T obtained by 10-fold cross-validation are demonstrated in the form of heat maps (see in
Figure 3), where the horizontal axis represents the wavebands; the vertical axis represents
different folds of cross-validation; while the color bar represents the value of weight indica-
tors. The learned T curves of the two data sets show highlighted areas, indicating obvious
distinction in wavelength importance. For the HLP data set, the highlighted wavelengths
concentrate in three regions: 1150~1200 nm, 1250~1320 nm and 1400~1550 nm. When it
comes to the melamine data set, the highlighted regions are: 1030~1060 nm, 1306 nm and
1420~1490 nm.
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In general, for both adulteration data sets investigated in the present work, the weight
indicator method demonstrated rather good stability that the locations of highlighted
wavelengths were basically unchanged for models built by different resampling runs.
It can also be observed that the melamine data set showed higher stability and greater
discrimination for wavelength importance (sharper and less peaks in the T curves) than
the HLP data set, which is consistent with the results of PLS loading plots. This may be
because melamine is a single substance while HLP is a complex mixture, so it is difficult to
simply indicate its content with a few wavelengths.

The T curve was normalized into a probability distribution and used for wavelength
selection of each sub-model. To demonstrate the validity of the proposed wavelength
selection strategy based on attention mechanism, the prediction accuracy of the sub-models
built with the proposed strategy and random selection was compared. The accuracy
distribution of 500 sub-models obtained in 10-fold external cross-validation (50 sub-models
for each fold) is presented in the form of histogram (see in Figure 4). Each sub-model was
trained with all the samples in the training set and 25 NIR features selected by the attention
curve or randomly. As shown in Figure 4, for both data sets, the proposed wavelength
selection strategy achieved higher accuracies when compared with the random feature
selection in general, especially showing the advantage of avoiding sub-models with poor
performance. With such a feature selection method, the effective wavelengths have high
probabilities of being selected, and at the same time, the diversity of feature combinations
is guaranteed.
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3.3. Parameter Optimization

In this section, we optimized two structural parameters of the ensemble learning
architecture: the number of input wavelengths (nw) and the ratio of training samples (rs)
of the sub-models, before the final models were built for the prediction of the testing sets.
Considering an effective ensemble method requires sub-models with good accuracy and
diversity, we built sub-models and adopted the root mean square error (RMSEV) and the
mean standard deviation (MSDV) of the validating samples for the parameter evaluation.
The MSDV is defined as:

MSDV =
1
m

1√
n ∑m

i=1

√
∑n

j=1

(
ŷj

i − yi

)2
(8)

where ŷj
i represents the prediction result of the ith validation sample obtained by the jth

sub-model, yi represents the average prediction value of the ith validation sample, n is the
total number of the sub-models in which this sample is used for validation, m is the total
number of validation samples. In all the experiments, the number of sub-models was fixed
to 50, which is relatively small because the training of CNN is more time-consuming than
the traditional methods.

Firstly, the nw was set to 25, and the rs varied in the range of 10~90%. Each Sub-model
was built with 25 input wavelengths selected by the attention probability distribution and
evaluated by the validating samples. The RMSEV and MSDV obtained by 10-fold external
cross-validation were illustrated in Figure 5. It is not surprised that both the RMSEV and
the MSDV decrease with the increase of training sample size. It can be seen that the RMSEV
and the MSDV decline sharply first, and the downward trend has leveled off as the sample
size continues to increase, especially in the melamine data set. To balance the accuracy and
the diversity, we set the hyper-parameters rs to 60% for both studied data sets, where the
variation of accuracy is relatively flat and the diversity is maintained at a certain degree.
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Then, sub-models were built with the nw varied in the range of 10~60 and the rs fixed
to 60%. As can be seen in Figure 6, similar to the variation of sample size, the RMSEV
and MSDV obtained by 10-fold cross-validation decline sharply with the increase of input
wavelengths first, and then the plateaus appear as nw continues to increase. Therefore, we
set the hyper-parameters nw to 30 for both data sets since the accuracy and diversity start
to stabilize under this parameter setting. It should also be noticed that under the same
CNN structure (depth and width of the network), more input features also increase the
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number of CNN weights, which brings a higher risk of overfitting and greater training
time consumption to each sub-model. As a consequence, a relatively small nw was chosen
for the proposed ensemble learning architecture.

Foods 2021, 10, x FOR PEER REVIEW 11 of 16 
 

 

 

 
Figure 5. Optimization of the training sample ratio (r௦) for the infant formula adulteration data 
sets: (a) hydrolyzed leather protein (HLP) data set; (b) melamine data set. 

 
Figure 6. Optimization of the number of wavelengths (n௪) for the infant formula adulteration data 
sets: (a) hydrolyzed leather protein (HLP) data set; (b) melamine data set. 

3.4. Results Comparison 
The proposed AM-ECNN models were established for the prediction of the testing 

data, after the parameter optimization process. For a comparison, the regression coeffi-
cient obtained by the PLS models was also adopted for probabilistic wavelength selec-
tion to construct ensemble CNNs. In the PLS models, wavelengths with large absolute 
values of regression coefficient represent more importance on predicting y-variable. 
Therefore, the absolute values of regression coefficient were also normalized to a proba-
bility distribution for wavelength selection, and the corresponding ensemble CNN net-
work was denoted as RC-ECNN. In Tables 2 and 3, the root mean squared error of pre-
diction (RMSEP), the determination coefficient of the testing samples (R2) and the ratio 
of prediction (RPD) of the HLP and the melamine data sets were summarized. It can be 
clearly observed in these two tables that the ensemble CNN models outperform the PLS, 
kernel PLS, CNN and RF models, and the AM-ECNN models always provide the best 
performances of RMSEP, R2 and RPD for both the HLP and the melamine adulteration 
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3.4. Results Comparison

The proposed AM-ECNN models were established for the prediction of the testing
data, after the parameter optimization process. For a comparison, the regression coefficient
obtained by the PLS models was also adopted for probabilistic wavelength selection to
construct ensemble CNNs. In the PLS models, wavelengths with large absolute values of
regression coefficient represent more importance on predicting y-variable. Therefore, the
absolute values of regression coefficient were also normalized to a probability distribution
for wavelength selection, and the corresponding ensemble CNN network was denoted
as RC-ECNN. In Tables 2 and 3, the root mean squared error of prediction (RMSEP), the
determination coefficient of the testing samples (R2) and the ratio of prediction (RPD) of
the HLP and the melamine data sets were summarized. It can be clearly observed in these
two tables that the ensemble CNN models outperform the PLS, kernel PLS, CNN and RF
models, and the AM-ECNN models always provide the best performances of RMSEP, R2

and RPD for both the HLP and the melamine adulteration data sets. The average accuracy
gains of two data sets obtained by the AM-ECNN are 33.3%, 27.8%, 22.5%, 44.4% and 3.9%
respectively, when compared with the PLS, kernel PLS, CNN, RF and RC-ECNN models.
The regression plots of the regular CNN and the AM-CNN are illustrated in Figure 7, while
the regression plots of other contrast methods can be found in Figure S1.

Table 2. Regression results of the hydrolyzed leather protein (HLP) data set obtained by the ensemble
convolutional neural network based on attention mechanism (AM-ECNN) and the contrast methods.

RMSEP R2 RPD

PLS 1 1.600 ± 0.295 0.930 ± 0.025 4.157 ± 0.728
Kernel PLS 2 1.444 ± 0.254 0.949 ± 0.021 4.933 ± 1.085

CNN 3 1.546 ± 0.366 0.933 ± 0.029 4.412 ± 1.197
RF 4 1.780 ± 0.393 0.911 ± 0.042 3.789 ± 0.813

RC-ECNN 5 1.225 ± 0.238 0.957 ± 0.019 5.548 ± 1.516
AE-ECNN 6 1.168 ± 0.231 0.961 ± 0.016 5.804 ± 1.818

1 Partial least squares regression; 2 Kernel partial least squares regression; 3 Convolutional neural network; 4 Ran-
dom forest; 5 Ensemble convolutional neural network based on regression coefficient; 6 Ensemble convolutional
neural network based on attention mechanism.
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Table 3. Regression results of the melamine data set obtained by the AM-ECNN and the con-
trast methods.

RMSEP R2 RPD

PLS 1 0.263 ± 0.058 0.987 ± 0.010 11.138 ± 4.052
Kernel PLS 2 0.250 ± 0.044 0.992 ± 0.008 12.377 ± 4.826

CNN 3 0.200 ± 0.041 0.992 ± 0.005 14.973 ± 6.975
RF 4 0.349 ± 0.093 0.980 ± 0.011 8.244 ± 2.235

RC-ECNN 5 0.164 ± 0.032 0.995 ± 0.004 17.811 ± 6.228
AE-ECNN 6 0.159 ± 0.028 0.995 ± 0.004 18.004 ± 5.662

1 Partial least squares regression; 2 Kernel partial least squares regression; 3 Convolutional neural network; 4 Ran-
dom forest; 5 Ensemble convolutional neural network based on regression coefficient; 6 Ensemble convolutional
neural network based on attention mechanism.
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Figure 7. Regression plots obtained by the convolutional neural network (CNN) and the ensemble convolutional neural
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set; (b) AM-ECNN regression plot for the HLP data set; (c) CNN regression plot for the melamine data set; (d)AM-ECNN
regression plot for the melamine data set.

As for the comparison of the two infant formula adulteration data sets, the melamine
adulteration data set (best R2 = 0.995) possesses much higher detection accuracy than the
HLP data set (best R2 = 0.961). As mentioned above, HLP is a complex mixture and its
chemical composition varies with different extraction techniques and raw materials (leather
scraps). Besides, compared with the melamine, the chemical composition and the NIR
characteristics of HLP are more similar to those of milk powder. Therefore, as a new type
of adulterant, HLP needs more research to obtain its accurate and robust determination by
NIR spectroscopy.

4. Conclusions

An ensemble CNN method was developed based on attention mechanism for NIR data
processing, called AM-ECNN, and it was evaluated on two infant formula adulteration
data sets. In the proposed algorithm, the learned weight of ANN was regarded as a self-
trained attention mask and used as the probability distribution for wavelength selection,
then the convolutional sub-models were built and the results were integrated for the final
prediction. Compared with the random wavelength selection, the proposed wavelength
selection method achieves a rather good balance between accuracy and diversity of the
sub-models, especially avoiding poorly performing sub-models. The prediction results
demonstrated that the proposed ensemble method yielded superior regression performance
compared with the PLS, kernel PLS, CNN, RF and RC-ECNN, for both the HLP and the
melamine adulteration data sets.

However, as is known, a robust NIR model for adulteration detection in milk powder
is hard to achieve due to multiple variation factors, such as different brands and batches
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of milk powder, simultaneous existence of several adulterants, temperature, humidity
and spectral drift of light sources, making it hard to obtain stable applications in practice.
Therefore, more investigations should be carried out to evaluate and improve the robustness
of the proposed AM-ECNN method. The limitations of the proposed method should also be
further considered and improved. For example, compared with the traditional method and
the regular convolutional network, the ensemble method is much more time-consuming in
training. Thanks to the fast development of deep learning hardware, graphics processing
unit (GPU) for instance, the testing time for the proposed network is acceptable. Another
concern is that although this method proposes a wavelength selection method, it cannot
be applied to the multispectral system, because each wavelength has a probability to be
selected by the sub-models during the wavelength selection process. In conclusion, the
overall results demonstrate that the AM-ECNN is a promising quantitative analysis method
of determining adulteration in infant formula by using NIR spectroscopy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10040785/s1, Figure S1: Regression plots obtained by the contrast methods (a) partial
least squares regression (PLS) regression plot for the hydrolyzed leather protein (HLP) data set; (b)
kernel partial least squares regression (Kernel PLS) regression plot for the HLP data set; (c) random
forest (RF) regression plot for the HLP data set; (d) ensemble convolutional neural network based on
regression coefficient (RC-ECNN) regression plot for the HLP data set; (e) PLS regression plot for the
melamine data set; (f) Kernel PLS regression plot for the melamine data set; (g) RF regression plot
for the melamine data set; (h) RC-ECNN regression plot for the melamine data set, Table S1: The
detailed information of the regular convolutional neural network (CNN) for both data sets.
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