Rheology, Microstructure, and Storage Stability of Emulsion-Filled Gels Stabilized Solely by Maize Starch Modified with Octenyl Succinylation and Pregelatinization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. OSA-PGS Preparation
2.3. Determination of the Degree of Substitution for OSA-PGS
2.4. Fourier Transform Infrared Spectroscopy Measurement
2.5. X-ray Diffractometry
2.6. Differential Scanning Calorimetry
2.7. Preparation of Oil-in-Water (O/W) Emulsions Stabilized by OSA-PGS
2.8. Rheological Characterization
2.9. Microscopic Observation
2.10. Measurement of Oil Droplet Diameters
2.11. Statistical Analyses
3. Results and Discussion
3.1. Characteristics of OSA-PGS
3.2. Rheological Properties of the Emulsions and Emulsion-Filled Gels
3.3. Droplet Diameter and Storage Stability of the Emulsions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gómez-Luría, D.; Vernon-Carter, E.; Alvarez-Ramirez, J.; Cruz-Sosa, F. Insights of the ability of gelatinized fractions from non-chemical modified corn, rice, wheat, and waxy corn starches to stabilize O/W emulsions. Food Hydrocoll. 2019, 89, 726–734. [Google Scholar] [CrossRef]
- Araiza-Calahorra, A.; Wang, Y.; Boesch, C.; Zhao, Y.; Sarkar, A. Pickering emulsions stabilized by colloidal gel particles complexed or conjugated with biopolymers to enhance bioaccessibility and cellular uptake of curcumin. Curr. Res. Food Sci. 2020, 3, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Ye, A.; Wolber, F.M.; Singh, H. Structure of whey protein emulsion gels containing capsaicinoids: Impact on in-mouth breakdown behaviour and sensory perception. Food Hydrocoll. 2019, 92, 19–29. [Google Scholar] [CrossRef]
- Fontes-Candia, C.; Ström, A.; Lopez-Sanchez, P.; López-Rubio, A.; Martínez-Sanz, M. Rheological and structural characterization of carrageenan emulsion gels. Algal Res. 2020, 47, 101873. [Google Scholar] [CrossRef]
- Jo, M.; Ban, C.; Goh, K.K.; Choi, Y.J. Influence of chitosan-coating on the stability and digestion of emulsions stabilized by waxy maize starch crystals. Food Hydrocoll. 2019, 94, 603–612. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; McClements, D.J.; Zou, L.; Liu, W. pH-, ion-and temperature-dependent emulsion gels: Fabricated by addition of whey protein to gliadin-nanoparticle coated lipid droplets. Food Hydrocoll. 2018, 77, 870–878. [Google Scholar] [CrossRef]
- McClements, D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. [Google Scholar] [CrossRef]
- Eccleston, G.M. Emulsions and creams. In Aulton’s Pharmaceutics: The Design and Manufacture of Medicines; Aulton, M.E., Taylor, K.M.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 435–464. [Google Scholar]
- Torres, O.; Murray, B.; Sarkar, A. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends Food Sci. Technol. 2016, 55, 98–108. [Google Scholar] [CrossRef]
- Geremias-Andrade, I.; Souki, N.; Moraes, I.; Pinho, S. Rheology of emulsion-filled gels applied to the development of food materials. Gels 2016, 2, 22. [Google Scholar] [CrossRef]
- Mao, L.; Miao, S.; Yuan, F.; Gao, Y. Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Res. Int. 2018, 103, 1–7. [Google Scholar] [CrossRef]
- Tavernier, I.; Patel, A.R.; Van der Meeren, P.; Dewettinck, K. Emulsion-templated liquid oil structuring with soy protein and soy protein: κ-carrageenan complexes. Food Hydrocoll. 2017, 65, 107–120. [Google Scholar] [CrossRef]
- Siraj, N.; Shabbir, M.A.; Ahmad, T.; Sajjad, A.; Khan, M.R.; Khan, M.I.; Butt, M.S. Organogelators as a saturated fat replacer for structuring edible oils. Int. J. Food Prop. 2015, 18, 1973–1989. [Google Scholar] [CrossRef]
- Glusac, J.; Davidesko-Vardi, I.; Isaschar-Ovdat, S.; Kukavica, B.; Fishman, A. Gel-like emulsions stabilized by tyrosinase-crosslinked potato and zein proteins. Food Hydrocoll. 2018, 82, 53–63. [Google Scholar] [CrossRef]
- Farjami, T.; Madadlou, A. An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends Food Sci. Technol. 2019, 86, 85–94. [Google Scholar] [CrossRef]
- Dickinson, E. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll. 2012, 28, 224–241. [Google Scholar] [CrossRef]
- Chen, H.; Mao, L.; Hou, Z.; Yuan, F.; Gao, Y. Roles of additional emulsifiers in the structures of emulsion gels and stability of vitamin E. Food Hydrocoll. 2020, 99, 105372. [Google Scholar] [CrossRef]
- Bortnowska, G.; Balejko, J.; Tokarczyk, G.; Romanowska-Osuch, A.; Krzemińska, N. Effects of pregelatinized waxy maize starch on the physicochemical properties and stability of model low-fat oil-in-water food emulsions. Food Hydrocoll. 2014, 36, 229–237. [Google Scholar] [CrossRef]
- Gamonpilas, C.; Pongjaruvat, W.; Fuongfuchat, A.; Methacanon, P.; Seetapan, N.; Thamjedsada, N. Physicochemical and rheological characteristics of commercial chili sauces as thickened by modified starch or modified starch/xanthan mixture. J. Food Eng. 2011, 105, 233–240. [Google Scholar] [CrossRef]
- Sala, G.; de Wijk, R.A.; van de Velde, F.; van Aken, G.A. Matrix properties affect the sensory perception of emulsion-filled gels. Food Hydrocoll. 2008, 22, 353–363. [Google Scholar] [CrossRef]
- Sala, G.; Van Aken, G.A.; Stuart, M.A.C.; Van De Velde, F. Effect of droplet–matrix interactions on large deformation properties of emulsion-filled gels. J. Texture Stud. 2007, 38, 511–535. [Google Scholar] [CrossRef]
- Sala, G.; Van Vliet, T.; Stuart, M.A.C.; Van Aken, G.A.; Van de Velde, F. Deformation and fracture of emulsion-filled gels: Effect of oil content and deformation speed. Food Hydrocoll. 2009, 23, 1381–1393. [Google Scholar] [CrossRef]
- Sala, G.; Van Vliet, T.; Stuart, M.C.; Van de Velde, F.; Van Aken, G.A. Deformation and fracture of emulsion-filled gels: Effect of gelling agent concentration and oil droplet size. Food Hydrocoll. 2009, 23, 1853–1863. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- No, J.; Mun, S.; Shin, M. Properties and digestibility of octenyl succinic anhydride-modified japonica-type waxy and non-waxy rice starches. Molecules 2019, 24, 765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majzoobi, M.; Kaveh, Z.; Blanchard, C.L.; Farahnaky, A. Physical properties of pregelatinized and granular cold water swelling maize starches in presence of acetic acid. Food Hydrocoll. 2015, 51, 375–382. [Google Scholar] [CrossRef]
- Dapčević-Hadnađev, T.; Dokić, L.; Pojić, M.; Hadnađev, M.; Torbica, A.; Rakita, S. Rheological properties of dough and quality of bread supplemented with emulsifying polysaccharides. Hem. Ind. 2014, 68, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Jo, M.; Ban, C.; Goh, K.K.T.; Choi, Y.J. Gastrointestinal digestion and stability of submicron-sized emulsions stabilized using waxy maize starch crystals. Food Hydrocoll. 2018, 84, 343–352. [Google Scholar] [CrossRef]
- Fonseca-Florido, H.; Vázquez-García, H.; Méndez-Montealvo, G.; Basilio-Cortés, U.; Navarro-Cortés, R.; Rodríguez-Marín, M.; Castro-Rosas, J.; Gómez-Aldapa, C. Effect of acid hydrolysis and OSA esterification of waxy cassava starch on emulsifying properties in Pickering-type emulsions. LWT 2018, 91, 258–264. [Google Scholar] [CrossRef]
- Ye, F.; Miao, M.; Jiang, B.; Hamaker, B.R.; Jin, Z.; Zhang, T. Characterizations of oil-in-water emulsion stabilized by different hydrophobic maize starches. Carbohydr. Polym. 2017, 166, 195–201. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, C.; Jiang, S.; Xiong, L.; Sun, Q. Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type. Ind. Crop. Prod. 2016, 87, 182–190. [Google Scholar] [CrossRef]
- Sun, Q.; Gong, M.; Li, Y.; Xiong, L. Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch. Carbohydr. Polym. 2014, 110, 128–134. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Zhang, R.; Zhong, Y.; Luo, Y.; Xu, S.; Liu, J.; Xue, J.; Guo, D. Effects of extrusion treatment on physicochemical properties and in vitro digestion of pregelatinized high amylose maize flour. J. Cereal Sci. 2016, 68, 108–115. [Google Scholar] [CrossRef]
- Yusoff, A.; Murray, B.S. Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocoll. 2011, 25, 42–55. [Google Scholar] [CrossRef]
- Kasprzak, M.M.; Macnaughtan, W.; Harding, S.; Wilde, P.; Wolf, B. Stabilisation of oil-in-water emulsions with non-chemical modified gelatinised starch. Food Hydrocoll. 2018, 81, 409–418. [Google Scholar] [CrossRef]
- Liu, Q. Understanding Starches and Their Role in foods. In Food Carbohydrates: Chemistry, Physical Properties, and Applications; Cui, S.W., Ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Dickinson, E. Understanding food structures: The colloid science approach. In Food Structures, Digestion and Health; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–49. [Google Scholar]
- Santos, J.; Calero, N.; Guerrero, A.; Munoz, J. Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum. Food Hydrocoll. 2015, 44, 109–114. [Google Scholar] [CrossRef]
- Bortnowska, G.; Krzemińska, N.; Mojka, K. Effects of waxy maize and potato starches on the stability and physicochemical properties of model sauces prepared with fresh beef meat. Int. J. Food Sci. Technol. 2013, 48, 2668–2675. [Google Scholar] [CrossRef]
- Lorenzo, G.; Zaritzky, N.; Califano, A. Modeling rheological properties of low-in-fat o/w emulsions stabilized with xanthan/guar mixtures. Food Res. Int. 2008, 41, 487–494. [Google Scholar] [CrossRef]
- Ahmadi-Abhari, S.; Woortman, A.; Hamer, R.; Oudhuis, A.; Loos, K. Influence of lysophosphatidylcholine on the gelation of diluted wheat starch suspensions. Carbohydr. Polym. 2013, 93, 224–231. [Google Scholar] [CrossRef]
- Putseys, J.A.; Derde, L.J.; Lamberts, L.; Ostman, E.; BJOrck, I.M.; Delcour, J.A. Functionality of short chain amylose− lipid complexes in starch− water systems and their impact on in vitro starch degradation. J. Agric. Food Chem. 2009, 58, 1939–1945. [Google Scholar] [CrossRef]
- Báez, L.A.; Santos, J.; Ramírez, P.; Trujillo-Cayado, L.A.; Muñoz, J. Development of emulgels formulated with sweet fennel oil and rhamsan gum, a biological macromolecule produced by Sphingomonas. Int. J. Biol. Macromol. 2019, 129, 326–332. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Natera, A.; García González, M.D.C.; Muñoz, J.; Alfaro Rodríguez, M.D.C. Rheological properties and physical stability of ecological emulsions stabilized by a surfactant derived from cocoa oil and high pressure homogenization. Grasas Aceites 2015, 66, e087. [Google Scholar]
- Nguyen, P.T.; Kravchuk, O.; Bhandari, B.; Prakash, S. Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocoll. 2017, 72, 90–104. [Google Scholar] [CrossRef] [Green Version]
Oil Volume Fraction | OSA-PGS Concentration (% w/v) | |||||
---|---|---|---|---|---|---|
0.05 | 3 | - | 0.3 ± 0.0 a | 0.7 ± 0.0 d | 0.3 ± 0.0 a | 0.67 ± 0.00 f |
5 | - | 1.1 ± 0.0 bc | 0.7 ± 0.0 d | 1.1 ± 0.0 a | 0.63 ± 0.00 e | |
10 | 18.4 ± 0.9 c | 4.6 ± 0.2 e | 0.6 ± 0.0 ab | 8.5 ± 0.1 c | 0.57 ± 0.00 c | |
0.10 | 3 | - | 0.4 ± 0.0 a | 0.7 ± 0.0 d | 0.4 ± 0.0 a | 0.66 ± 0.00 f |
5 | - | 1.2 ± 0.0 c | 0.6 ± 0.0 c | 1.2 ± 0.0 a | 0.63 ± 0.00 e | |
10 | 53.9 ± 1.5 d | 2.5 ± 0.1 d | 0.8 ± 0.0 e | 11 ± 0.2 d | 0.54 ± 0.00 b | |
0.20 | 3 | 0.6 ± 0.0 a | 0.8 ± 0.0 b | 0.6 ± 0.0 bc | 0.9 ± 0.0 a | 0.62 ± 0.00 d |
5 | 5.7 ± 0.3 b | 2.5 ± 0.1 d | 0.6 ± 0.0 a | 3.7 ± 0.0 b | 0.57 ± 0.00 c | |
10 | 171.2 ± 3.1 e | 5.4 ± 0.3 f | 0.8 ± 0.0 e | 40 ± 0.9 e | 0.48 ± 0.00 a |
Oil Volume Fraction | OSA-PGS Concentration % (w/v) | ||||||
---|---|---|---|---|---|---|---|
Before Storage | After Storage | Before Storage | After Storage | Before Storage | After Storage | ||
0.05 | 3 | 2.5 ± 0.1 Aa | 4.8 ± 0.3 Cb | 10.1 ± 3.1 Aa | 55.0 ± 7.8 Db | 19.5 ± 9.7 Aa | 78.3 ± 12.2 Cb |
5 | 3.4 ± 0.1 ABa | 4.4 ± 0.3 ABCb | 14.8 ± 1.7 ABa | 24.7 ± 5.0 ABCb | 26.6 ± 2.8 Aa | 42.6 ± 11.1 ABa | |
10 | 3.8 ± 0.1 Ba | 4.0 ± 0.2 ABCa | 14.1 ± 2.1 ABa | 16.0 ± 1.3 Aa | 22.8 ± 4.8 Aa | 23.3 ± 1.8 Aa | |
0.10 | 3 | 3.1 ± 0.2 ABa | 4.6 ± 0.2 BCb | 9.7 ± 1.9 Aa | 30.9 ± 3.7 Cb | 14.6 ± 3.9 Aa | 47.6 ± 4.8 Bb |
5 | 3.7 ± 0.7 Ba | 3.8 ± 0.6 Aa | 15.2 ± 2.3 ABa | 24.2 ± 1.5 ABCb | 26.9 ± 8.7 Aa | 42.3 ± 7.1 ABa | |
10 | 3.8 ± 0.4 Ba | 3.9 ± 0.1 ABa | 18.8 ± 3.1 Ba | 18.3 ± 1.0 ABa | 31.6 ± 6.2 Aa | 31.9 ± 4.4 ABa | |
0.20 | 3 | 3.4 ± 0.1 ABa | 4.5 ± 0.2 ABCb | 11.1 ± 1.1 Aa | 27.4 ± 3.1 BCb | 17.3 ± 2.5 Aa | 43.3 ± 6.2 ABb |
5 | 3.7 ± 0.1 Ba | 4.0 ± 0.2 ABCa | 13.3 ± 2.8 ABa | 24.0 ± 2.3 ABCb | 23.5 ± 11.1 Aa | 42.2 ± 4.6 ABa | |
10 | 3.9 ± 0.3 Ba | 4.0 ± 0.2 ABCa | 16.2 ± 3.8 ABa | 16.3 ± 3.3 Aa | 25.1 ± 8.1 Aa | 25.0 ± 7.9 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, M.; Chang, M.J.; Goh, K.K.T.; Ban, C.; Choi, Y.J. Rheology, Microstructure, and Storage Stability of Emulsion-Filled Gels Stabilized Solely by Maize Starch Modified with Octenyl Succinylation and Pregelatinization. Foods 2021, 10, 837. https://doi.org/10.3390/foods10040837
Jo M, Chang MJ, Goh KKT, Ban C, Choi YJ. Rheology, Microstructure, and Storage Stability of Emulsion-Filled Gels Stabilized Solely by Maize Starch Modified with Octenyl Succinylation and Pregelatinization. Foods. 2021; 10(4):837. https://doi.org/10.3390/foods10040837
Chicago/Turabian StyleJo, Myeongsu, Min Jea Chang, Kelvin K. T. Goh, Choongjin Ban, and Young Jin Choi. 2021. "Rheology, Microstructure, and Storage Stability of Emulsion-Filled Gels Stabilized Solely by Maize Starch Modified with Octenyl Succinylation and Pregelatinization" Foods 10, no. 4: 837. https://doi.org/10.3390/foods10040837
APA StyleJo, M., Chang, M. J., Goh, K. K. T., Ban, C., & Choi, Y. J. (2021). Rheology, Microstructure, and Storage Stability of Emulsion-Filled Gels Stabilized Solely by Maize Starch Modified with Octenyl Succinylation and Pregelatinization. Foods, 10(4), 837. https://doi.org/10.3390/foods10040837