Effect of Sodium Selenite, Selenium Yeast, and Bacterial Enriched Protein on Chicken Egg Yolk Color, Antioxidant Profiles, and Oxidative Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statements
2.2. Experimental Hens, Design, and Diets
2.3. Blood, Breast, and Egg Yolk Sample Collection and Chemical Analysis
2.4. Egg Yolk Color Measurement
2.5. Antioxidant Profile Determination
2.5.1. Determination of Total Carotene in Egg Yolk, Breast Tissue, and Feed Samples
2.5.2. Total Cholesterol (Spectroscopy AOAC Method)
2.5.3. Total Phenol Determination in Egg Yolk and Breast Tissue
2.5.4. Determination of Flavonoid Content in Egg Yolk and Breast Tissue
2.6. Oxidative Status Determination
2.6.1. Total Antioxidant Capacity (TAC) by the Phosphomolybdenum Method
2.6.2. Antioxidant Activity (GAE/g) by Ferric Reducing Antioxidant Power (FRAP) Assay
2.6.3. Thiobarbituric Acid Reactive Substances (TBARs), µg MDA/g
2.7. Statistical Analysis
3. Results
3.1. Egg Yolk Color
3.2. Egg Yolk and Breast Tissue Antioxidant Profile
3.2.1. Total Carotene Content in Egg Yolk, Breast Tissue, and Feed Samples
3.2.2. Total Cholesterol Content in Egg Yolk and Breast Tissue
3.2.3. Total Phenolic Content in Egg Yolk and Breast Tissue
3.2.4. Total Flavonoid Content in Egg Yolk and Breast Tissue
3.3. Oxidative Status Determination
3.3.1. Total Antioxidant Capacity Assay
3.3.2. Ferric Reducing Antioxidant Power (FRAP) Assay
3.3.3. Thiobarbituric Acid Reactive Substances (TBARs)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stadelman, W.J.; Cotterill, O.J. Egg Science and Technology, 4th ed.; Stadelman, W.J., Cotterill, O.J., Eds.; Avi Publ. Co.: Westport, CT, USA, 2001; ISBN l-56022-854-7. [Google Scholar]
- Fisinin, V.I.; Papazyan, T.T.; Surai, P.F. Producing selenium-enriched eggs and meat to improve the selenium status of the general population. Crit. Rev. Biotechnol. 2009, 29, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Li-Chan, E.C.; Kim, H.O. Structure and chemical composition of eggs. In Egg Bioscience and Biotechnology; Mine, Y., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 1–95. ISBN 0377-8401. [Google Scholar]
- Attia, Y.A.; Al-Harthi, M.A.; Korish, M.A.; Shiboob, M.M. Fatty acid and cholesterol profiles and hypocholesterolemic, atherogenic, and thrombogenic indices of table eggs in the retail market. Lipids Health Dis. 2015, 14, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, Y.A.; Al-Harthi, M.A.; Shiboob, M.M. Evaluation of quality and nutrient contents of table eggs from different sources in the retail market. Ital. J. Anim. Sci. 2014, 13, 369–376. [Google Scholar] [CrossRef]
- Elkin, R.G. Reducing shell egg cholesterol content. I. Overview, genetic approaches, and nutritional strategies. World’s Poult. Sci. J. 2006, 62, 665–687. [Google Scholar] [CrossRef]
- Weggemans, R.M.; Zock, P.L.; Katan, M.B. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans: A meta-analysis. Am. J. Clin. Nutr. 2001, 73, 885–891. [Google Scholar] [CrossRef]
- Lee, A.; Griffin, B. Dietary cholesterol, eggs and coronary heart disease risk in perspective. Nutr. Bull. 2006, 31, 21–27. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Wu, J. Hen egg as an antioxidant food commodity: A review. Nutrients 2015, 7, 8274–8293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdrojewicz, Z.; Herman, M.; Starostecka, E. Hen’s egg as a source of valuable biologically active substances. Postepy Hig. Med. Dosw. 2016, 70, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liao, W.; Nimalaratne, C.; Chakrabarti, S.; Wu, J. Purification and characterization of antioxidant peptides from cooked eggs using a dynamic in vitro gastrointestinal model in vascular smooth muscle A7r5 cells. NPJ Sci. Food 2018, 2, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santini, A.; Novellino, E. Nutraceuticals—shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharmacol. 2018, 11, 545–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimrin, T.; Avsaroglu, M.D.; Tunca, R.; Ivgin, K.S.; Ayasan, T. Diets with natural and synthetic antioxidant additives on yolk lipid peroxidation and fatty acid composition of eggs stored at different temperatures and duration. Braz. J. Food Technol. 2019, 21, 001–008. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The antioxidant role of selenium and seleno-compounds. Biomed. Pharmacother. 2003, 57, 134–144. [Google Scholar] [CrossRef]
- Heindl, J.; Ledvinka, Z.; Tůmová, E.; Zita, L. Review the importance, utilization and sources of selenium for poultry: A review. Sci. Agric. Bohem. 2010, 41, 55–64. [Google Scholar]
- Skřivan, M.; Bubancová, I.; Marounek, M.; Dlouhá, G. Selenium and α-tocopherol content in eggs produced by hens that were fed diets supplemented with selenomethionine, sodium selenite and vitamin E. Czech J. Anim. Sci. 2010, 55, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F.; Karadas, F.; Pappas, A.C.; Sparks, N.H.C. Effect of organic selenium in quail diet on its accumulation in tissues and transfer to the progeny. Br. Poult. Sci. 2006, 47, 65–72. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar]
- Mohiti-Asli, M.; Shariatmadari, F.; Lotfollahian, H.; Mazuji, M.T. Effects of supplementing layer hen diets with selenium and vitamin E on egg quality, lipid oxidation and fatty acid composition during storage. Can. J. Anim. Sci. 2008, 88, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Superti, F.; Ammendolia, M.G.; Berlutti, F.; Valenti, P. Ovotransferrin. In Bioactive Egg Compounds; Rainer, H., Rosina, L., Marc, A., Rüdiger, S., Eds.; Springer: New York, NY, USA, 2007; pp. 43–48. ISBN 9783540378839. [Google Scholar]
- Wang, Q.; Jin, G.; Wang, N.; Guo, X.; Jin, Y.; Ma, M. Lipolysis and oxidation of lipids during egg storage at different temperatures. Czech J. Food Sci. 2017, 35, 229–235. [Google Scholar] [CrossRef]
- Fasiangova, M.; Borilova, G. Impact of Se supplementation on the oxidation stability of eggs. World’s Poult. Sci. J. 2017, 73, 175–184. [Google Scholar] [CrossRef]
- Tanguy, S.; Grauzam, S.; de Leiris, J.; Boucher, F. Impact of dietary selenium intake on cardiac health: Experimental approaches and human studies. Mol. Nutr. Food Res. 2012, 56, 1106–1121. [Google Scholar] [CrossRef] [PubMed]
- Asadi, F.; Shariatmadari, F.; Karimi-Torshizi, M.A.; Mohiti-Asli, M.; Ghanaatparast-Rashti, M. Comparison of different selenium sources and vitamin E in laying hen diet and their influences on egg selenium and cholesterol content, quality and oxidative stability. Iran. J. Appl. Anim. Sci. 2017, 7, 83–89. [Google Scholar]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Velichko, O.A. Selenium in poultry nutrition: From sodium selenite to organic selenium sources. J. Poult. Sci. 2018, 55, 79–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaeili, S.; Khosravi-darani, K. Selenium-enriched yeast: As selenium source for nutritional purpose. Curr. Nutr. Food Sci. 2014, 10, 49–56. [Google Scholar] [CrossRef]
- Dalia, A.M.; Loh, T.C.; Sazili, A.Q.; Jahromi, M.F.; Samsudin, A.A. Characterization and identification of organic selenium-enriched bacteria isolated from rumen fluid and hot spring water. Microbiol. Biotechnol. Lett. 2017, 45, 343–353. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994; ISBN 9780309048927. [Google Scholar]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Bermejo-Barrera, P. In vivo and in vitro testing for selenium and selenium compounds bioavailability assessment in foodstuff. Crit. Rev. Food Sci. Nutr. 2017, 57, 805–833. [Google Scholar] [CrossRef] [PubMed]
- Gammelgaard, B.; Rasmussen, L.H.; Gabel-Jensen, C.; Steffansen, B. Estimating intestinal absorption of inorganic and organic selenium compounds by in vitro flux and biotransformation studies in Caco-2 cells and ICP-MS detection. Biol. Trace Elem. Res. 2012, 145, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Lipiec, E.; Siara, G.; Bierla, K.; Ouerdane, L.; Szpunar, J. Determination of selenomethionine, selenocysteine, and inorganic selenium in eggs by HPLC-inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2010, 397, 731–741. [Google Scholar] [CrossRef]
- Lohmann Brown-Classic Management Guide, Lohmann Tierzucht Lohmann. 2018. Available online: https://www.ltz.de (accessed on 10 February 2019).
- Malaysian Standard. Halal Food-Production, Preparation, Handling and Storage-General Guidelines (Second Revision). 2009. Available online: http://www.halal.gov.my/v4/index.php?data=bW9kdWxlcy9uZXdzOzs7Ow==&utama=panduan&ids=gp2 (accessed on 5 June 2019).
- Humam, A.M.; Loh, T.C.; Foo, H.L.; Izuddin, W.I.; Zulkifli, I.; Samsudin, A.A.; Mustapha, N.M. Supplementation of postbiotic RI11 improves antioxidant enzyme activity, upregulated gut barrier genes, and reduced cytokine, acute phase protein, and heat shock protein 70 gene expression levels in heat-stressed broilers. Poult. Sci. 2021. [Google Scholar] [CrossRef] [PubMed]
- Benakmoum, A.; Larid, R.; Zidani, S. Enriching egg yolk with carotenoids & phenols. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2013, 7, 489–493. [Google Scholar]
- Omri, B.; Alloui, N.; Durazzo, A.; Lucarini, M.; Aiello, A.; Romano, R.; Santini, A.; Abdouli, H. Egg yolk antioxidants profiles: Effect of diet supplementation with linseeds and tomato-red pepper mixture before and after storage. Foods 2019, 8, 320. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, M.; Petracci, M.; Cavani, C. The influence of genotype, market live weight, transportation, and holding conditions prior to slaughter on broiler breast meat color. Poult. Sci. 2006, 85, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, J.C. Effects of breed and storage duration on the beta-carotene content of egg yolk. Pak. J. Nutr. 2009, 8, 1629–1630. [Google Scholar] [CrossRef] [Green Version]
- Rudel, L.L.; Morris, M.D. Determination of cholesterol using o-phthalaldehyde. J. Lipid Res. 1973, 14, 364–366. [Google Scholar] [CrossRef]
- Buğdayci, K.E.; Oğuz, F.K.; Oğuz, M.N.; Kuter, E. Effects of fennel seed supplementation of ration on performance, egg quality, serum cholesterol, and total phenol content of egg yolk of laying quails. Rev. Bras. Zootec. 2018, 47, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kamtekar, S.; Keer, V.; Patil, V. Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. J. Appl. Pharm. Sci. 2014, 4, 61–65. [Google Scholar] [CrossRef]
- Patel, A.; Patel, A.; Patel, N.M. Estimation of flavonoid, polyphenolic content and in-vitro antioxidant capacity of leaves of Tephrosia purpurea. Int. J. Pharma Sci. Res. 2010, 1, 66–77. [Google Scholar]
- Benzie, I.F.F.; Szeto, Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT Food Sci. Technol. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiou, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Englmaierová, M.; Skřivan, M.; Bubancová, I. A comparison of lutein, spray-dried Chlorella, and synthetic carotenoids effects on yolk color, oxidative stability, and reproductive performance of laying hens. Czech J. Anim. Sci. 2013, 58, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Marusich, W.; De Ritter, E.; Bauernfeind, J.C. Evaluation of carotenoid pigments for coloring egg yolks. Poult. Sci. 1960, 39, 1338–1345. [Google Scholar] [CrossRef]
- Omri, B.; Amraoui, M.; Tarek, A.; Lucarini, M.; Durazzo, A.; Cicero, N.; Santini, A.; Kamoun, M. Arthrospira platensis (Spirulina) supplementation on laying hens’ performance: Eggs physical, chemical, and sensorial qualities. Foods 2019, 8, 386. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, L.; Veloso, V.; Reis, A.; Fernandas, H.; Novais, J.; Empis, J. Chlorella vulgaris used to color egg yolk. J. Sci. Food Agric. 1996, 70, 167–172. [Google Scholar] [CrossRef]
- Salma, U.; Miah, A.G.; Tareq, K.M.A.; Maki, T.; Tsujii, H. Effect of dietary Rhodobacter capsulatus on egg-yolk cholesterol and laying hen performance. Poult. Sci. 2007, 86, 714–719. [Google Scholar] [CrossRef]
- Mariey, Y.A.; Samak, H.; Ibrahem, M. Effect of using Spirulina platensis algae as a feed additive for poultry diets: 1-productive and reproductive performances of local laying hens. Egypt. Poult. Sci. 2012, 32, 201–215. [Google Scholar]
- Park, J.H.; Upadhaya, S.D.; Kim, I.H. Effect of dietary marine microalgae (Schizochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian Australas. J. Anim. Sci. 2015, 28, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Omri, B.; Chalghoumi, R.; Abdouli, H. Study of the Effects of dietary supplementation of linseeds, fenugreek seeds and tomato-pepper mix on laying hens performances, egg yolk lipids and antioxidants profiles and lipid oxidation status. J. Anim. Sci. Livest. Prod. 2017, 1, 8. [Google Scholar] [CrossRef]
- Arpášová, H.; Mellen, M.; Kačániová, M.; Haščík, P.; Petrovič, V.; Čobanová, K.; Leng, L. Effects of dietary supplementation of sodium selenite and selenized yeast on selected qualitative parameters of laying hens eggs. Slovak J. Anim. Sci. 2009, 42, 27–33. [Google Scholar]
- Abdouli, H.; Belhouane, S.; Hcini, E. Effect of fenugreek seeds on hens’ egg yolk color and sensory quality. J. New Sci. 2014, 5, 20–24. [Google Scholar]
- Barbosa, V.C.; Gaspar, A.; Calixto, L.F.L.; Agostinho, T.S.P. Stability of the pigmentation of egg yolks enriched with omega-3 and carophyll stored at room temperature and under refrigeration. Rev. Bras. Zootec. 2011, 40, 1540–1544. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F.; Fisinin, V.I.; Karadas, F. Antioxidant systems in chick embryo development. Part 1. Vitamin E, carotenoids and selenium. Anim. Nutr. 2016, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Karadas, F.; Grammenidis, E.; Surai, P.F.; Acamovic, T.; Sparks, N.H.C. Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. Br. Poult. Sci. 2006, 47, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chick. Br. Poult. Sci. 2000, 41, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Mohiti-Asli, M.; Shariatmadari, F.; Lotfollahian, H. The influence of dietary vitamin E and selenium on egg production parameters, serum and yolk cholesterol and antibody response of laying hen exposed to high environmental temperature. Arch. Geflügelk. 2010, 74, 43–50. [Google Scholar]
- Surai, P.F.; Bortolotti, G.R.; Fidgett, A.L.; Blount, J.D.; Speake, B.K. Effects of piscivory on the fatty acid profiles and antioxidants of avian yolk: Studies on eggs of the gannet, skua, pelican and cormorant. J. Zool. 2001, 255, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 1. World’s Poult. Sci. J. 2012, 68, 465–475. [Google Scholar] [CrossRef]
- Møller, A.P.; Biard, C.; Blount, J.D.; Houston, D.C.; Ninni, P.; Saino, N.; Surai, P.F. Carotenoid-dependent Signals: Indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poult. Biol. Rev. 2000, 11, 137–159. [Google Scholar]
- Krinsky, N.I.; Landrum, J.T.; Bone, R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 2003, 23, 171–201. [Google Scholar] [CrossRef] [Green Version]
- Trevithick-Sutton, C.C.; Foote, C.S.; Collins, M.; Trevithick, J.R. The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: A chemiluminescence and ESR study. Mol. Vis. 2006, 12, 1127–1135. [Google Scholar]
- Chopra, P.A.; Willson, R.L.; Thurnham, D.I. Free radical scavenging of lutein in vitro. Ann. N. Y. Acad. Sci. 2008, 691, 246–249. [Google Scholar] [CrossRef]
- Karadas, F.; Pappas, A.C.; Surai, P.F.; Speake, B.K. Embryonic development within carotenoid-enriched eggs influences the post-hatch carotenoid status of the chicken. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005, 141, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Akdemir, F.; Orhan, C.; Sahin, N.; Sahin, K.; Hayirli, A. Tomato powder in laying hen diets: Effects on concentrations of yolk carotenoids and lipid peroxidation. Br. Poult. Sci. 2012, 53, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Gawecki, K.; Potkanmski, A.; Lipinska, H. Effect of carophyll yellow and carophyll red added to comercial feeds for laying hens on yolk color and its stability during short-term refrigeration. Rocz. Akad. Rol. W Pozn. 1977, 94, 85–93. [Google Scholar]
- Poirier, J.; Cockell, K.; Hidiroglou, N.; Madere, R.; Trick, K.; Kubow, S. The effects of vitamin E and selenium intake on oxidative stress and plasma lipids in hamsters fed fish oil. Lipids 2002, 37, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Masukawa, T.; Goto, J.; Iwata, H. Impaired metabolism of arachidonate in selenium deficient animals. Experrientia 1983, 39, 405–406. [Google Scholar] [CrossRef]
- Nassir, F.; Moundras, C.; Bayle, D.; Sérougne, C.; Gueux, E.; Rock, E.; Rayssiguier, Y.; Mazur, A. Effect of selenium deficiency on hepatic lipid and lipoprotein metabolism in the rat. Br. J. Nutr. 1997, 78, 493–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radwan, N.L.; Salah Eldin, T.A.; El-Zaiat, A.A.; Mostafa, M.A.S.A. Effect of dietary nano-selenium supplementation on selenium content and oxidative stability in table eggs and productive performance of laying hens. Int. J. Poult. Sci. 2015, 14, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.J.; Jessup, W. Oxysterols and atherosclerosis. Atherosclerosis 1999, 142, 1–28. [Google Scholar] [CrossRef]
- Ahmad, S.; Khalique, A.; Pasha, T.N.; Mehmood, S.; Hussain, K.; Ahmad, S.; Shaheen, M.S.; Naeem, M.; Shafiq, M. Effect of Moringa oleifera (Lam.) pods as feed additive on egg antioxidants, chemical composition and performance of commercial layers. S. Afr. J. Anim. Sci. 2017, 47, 864–874. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A.; Abdalah, A.A.; Zeweil, H.S.; Bovera, F.; Tag El-Din, A.A.; Araft, M.A. Effect of inorganic or organic selenium supplementation on productive performance, egg quality and some physiological traits of dual-purpose breeding hens. Czech J. Anim. Sci. 2010, 55, 505–519. [Google Scholar] [CrossRef] [Green Version]
- Łukaszewicz, E.; Korzeniowska, M.; Kowalczyk, A.; Bobak, L. Effect of feed supplementation with organic selenium and vitamin E on freezability of Japanese quail (Coturnix coturnix) semen. Pol. J. Food Nutr. Sci. 2011, 57, 371–375. [Google Scholar]
- Konjufca, V.H.; Pesti, G.M.; Bakalli, R.I. Modulation of cholesterol levels in broiler meat by dietary garlic and copper. Poult. Sci. 1997, 76, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Vunta, H.; Davis, F.; Palempalli, U.D.; Bhat, D.; Arner, R.J.; Thompson, J.T.; Peterson, D.G.; Reddy, C.C.; Prabhu, K.S. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Δ12,14-prostaglandin J2 in macrophages. J. Biol. Chem. 2007, 282, 17964–17973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touyz, R.M.; Schiffrin, E.L. Peroxisome proliferator-activated receptors in vascular biology-molecular mechanisms and clinical implications. Vascul. Pharmacol. 2006, 45, 19–28. [Google Scholar] [CrossRef]
- Klopotek, A.; Hirche, F.; Eder, K. PPARγ ligand troglitazone lowers cholesterol synthesis in hepg2 and caco-2 cells via a reduced concentration of nuclear SREBP-2. Exp. Biol. Med. 2006, 231, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Settharaksa, S.; Jongjareonrak, A.; Hmadhlu, P.; Chansuwan, W.; Siripongvutikorn, S. Flavonoid, phenolic contents and antioxidant properties of thai hot curry paste extract and its ingredients as affected of pH, solvent types and high temperature. Int. Food Res. J. 2012, 19, 1581–1587. [Google Scholar]
- Bolling, B.W.; Chen, C.Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Chang, E.J.; Cho, S.H.; Chung, S.K.; Park, H.D.; Choi, S.W. Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeoni. Biosci. Biotechnol. Biochem. 2002, 66, 1990–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siger, A.; Czubinski, J.; Kachlicki, P.; Dwiecki, K.; Lampart-Szczapa, E.; Nogala-Kalucka, M. Antioxidant activity and phenolic content in three lupin species. J. Food Compos. Anal. 2012, 25, 190–197. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Lopes-Lutz, D.; Schieber, A.; Wu, J. Free aromatic amino acids in egg yolk show antioxidant properties. Food Chem. 2011, 129, 155–161. [Google Scholar] [CrossRef]
- Untea, A.E.; Varzaru, I.; Panaite, T.D.; Gavris, T.; Lupu, A.; Ropota, M. The Effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals 2020, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Gasecka, M.; Mleczek, M.; Siwulski, M.; Niedzielski, P.; Kozak, L. The effect of selenium on phenolics and flavonoids in selected edible white rot fungi. LWT Food Sci. Technol. 2015, 63, 726–731. [Google Scholar] [CrossRef]
- Sae-Lee, N.; Kerdchoechuen, O.; Laohakunjit, N. Chemical qualities and phenolic compounds of Assam tea after soil drench application of selenium and aluminium. Plant Soil 2012, 356, 381–393. [Google Scholar] [CrossRef]
- Lei, C.; Ma, Q.; Tang, Q.Y.; Ai, X.R.; Zhou, Z.; Yao, L.; Wang, Y.; Wang, Q.; Dong, J.Z. Sodium selenite regulates phenolics accumulation and tuber development of purple potatoes. Sci. Hortic. 2014, 165, 142–147. [Google Scholar] [CrossRef]
- Kamboh, A.A.; Leghari, R.A.; Khan, M.A.; Kaka, U.; Naseer, M.; Sazili, A.Q.; Malhi, K.K. Flavonoids supplementation-An ideal approach to improve quality of poultry products. World’s Poult. Sci. J. 2019, 75, 115–126. [Google Scholar] [CrossRef]
- Saleh, H.; Golian, A.; Kermanshahi, H.; Mirakzehi, M.T. Antioxidant status and thigh meat quality of broiler chickens fed diet supplemented with α-tocopherolacetate, pomegranate pomace and pomegranate pomace extract. Ital. J. Anim. Sci. 2018, 17, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Surai, P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. 2014, 98, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Dalia, A.M.; Loh, T.C.; Sazili, A.Q.; Jahromi, M.F.; Samsudin, A.A. The effect of dietary bacterial organic selenium on growth performance, antioxidant capacity, and Selenoproteins gene expression in broiler chickens. BMC Vet. Res. 2017, 13, 254. [Google Scholar] [CrossRef]
- Nahariah, N.; Legowo, A.M.; Abustam, E.; Hintono, A.; Bintoro, P.; Pramono, Y.B. Endogenous antioxidant activity in the egg whites of various types of local poultry eggs in South Sulawesi, Indonesia. Int. J. Poult. Sci. 2014, 13, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Nimalaratne, C.; Schieber, A.; Wu, J. Effects of storage and cooking on the antioxidant capacity of laying hen eggs. Food Chem. 2015, 194, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jia, R.; Celi, P.; Ding, X.; Bai, S.; Zeng, Q.; Mao, X.; Xu, S.; Zhang, K. Green tea polyphenol epigallocatechin-3-gallate improves the antioxidant capacity of eggs. Food Funct. 2020, 11, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Kullu, S.S.; Das, A.; Bajpai, S.K.; Garg, A.K.; Yogi, R.K.; Saini, M.; Sharma, A.K. Egg production performance, egg yolk antioxidant profile and excreta concentration of corticosterone in golden pheasants (Chrysolophus pictus) fed diets containing different levels of green vegetables. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1–12. [Google Scholar] [CrossRef] [PubMed]
- McGraw, K.J.; Hill, G.E.; Parker, R.S. The physiological costs of being colorful: Nutritional control of carotenoid utilization in the American goldfinch, Carduelis tristis. Anim. Behav. 2005, 69, 653–660. [Google Scholar] [CrossRef]
- Ahmad, H.; Tian, J.; Wang, J.; Khan, M.A.; Wang, Y.; Zhang, L.; Wang, T. Effects of dietary sodium selenite and selenium yeast on antioxidant enzyme activities and oxidative stability of chicken breast meat. J. Agric. Food Chem. 2012, 60, 7111–7120. [Google Scholar] [CrossRef]
- Tufarelli, V.; Ceci, E.; Laudadio, V. 2-Hydroxy-4-methylselenobutanoic acid as new organic selenium dietary supplement to produce selenium-enriched eggs. Biol. Trace Elem. Res. 2016, 171, 453–458. [Google Scholar] [CrossRef]
- Lin, X.; Yang, T.; Li, H.; Ji, Y.; Zhao, Y.; He, J. Interactions between different selenium compounds and essential trace elements involved in the antioxidant system of laying hens. Biol. Trace Elem. Res. 2020, 193, 252–260. [Google Scholar] [CrossRef]
- dos Reis, J.H.; Gebert, R.R.; Fortuoso, B.F.; dos Santos, D.S.; Souza, C.F.; Baldissera, M.D.; de Tavernari, F.C.; Boiago, M.M.; Paiano, D.; Da Silva, A.S. Selenomethionine as a dietary supplement for laying hens: Impacts on lipid peroxidation and antioxidant capacity in fresh and stored eggs. J. Food Biochem. 2019, 43, e12957. [Google Scholar] [CrossRef]
- Wang, Z.G.; Pan, X.J.; Zhang, W.Q.; Peng, Z.Q.; Zhao, R.Q.; Zhou, G.H. Methionine and selenium yeast supplementation of the maternal diets affects antioxidant activity of breeding eggs. Poult. Sci. 2010, 89, 931–937. [Google Scholar] [CrossRef]
- Gajčević, Z.; Kralik, G.; Has-Schön, E.; Pavić, V. Effects of organic selenium supplemented to layer diet on table egg freshness and selenium content. Ital. J. Anim. Sci. 2009, 8, 189–199. [Google Scholar] [CrossRef]
- Kralik, Z.; Kralik, G.; Grčević, M.; Galović, D. Effect of storage period on the quality of table eggs. Acta Agrar. Kaposváriensis 2014, 18, 200–206. [Google Scholar]
- Radwan Nadia, L.; Hassan, R.A.; Qota, E.M.; Fayek, H.M. Effect of natural antioxidant on oxidative stability of eggs and productive and reproductive performance of laying hens. Int. J. Poult. Sci. 2008, 7, 134–150. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhan, X.; Zhang, X.; Wu, R.; Yuan, D. Comparison of different forms of dietary selenium supplementation on growth performance, meat quality, selenium deposition, and antioxidant property in broilers. Biol. Trace Elem. Res. 2011, 143, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Vignola, G.; Lambertini, L.; Mazzone, G.; Giammarco, M.; Tassinari, M.; Martelli, G.; Bertin, G. Effects of selenium source and level of supplementation on the performance and meat quality of lambs. Meat Sci. 2009, 81, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, Y. Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult. Sci. 2011, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Franke, K.W. A new toxicant occuring naturlly in certain samples of plant foodstuffs. J. Nutr. 1934, 8, 597–608. [Google Scholar] [CrossRef]
- Wang, Z.G.; Pan, X.J.; Peng, Z.Q.; Zhao, R.Q.; Zhou, G.H. Methionine and selenium yeast supplementation of the maternal diets affects color, water-holding capacity, and oxidative stability of their male offspring meat at the early stage. Poult. Sci. 2009, 88, 1096–1101. [Google Scholar] [CrossRef]
Ingredients | Layers |
---|---|
Corn | 44.00 |
Soybean Meal 48% | 29.00 |
Wheat Pollard | 11.00 |
CPO | 3.50 |
L-Lysine | 0.10 |
DL-Methionine | 0.25 |
Dicalcium Phosphate (18%) | 2.00 |
Calcium Carbonate | 7.70 |
Choline Chloride | 0.10 |
Salt | 0.35 |
Mineral Mix * | 0.60 |
Vitamin Mix ** | 0.60 |
Antioxidant *** | 0.40 |
Toxin Binder **** | 0.40 |
Total | 100 |
Analyzed Composition | |
Metabolizable energy Kcal/Kg | 2761.24 |
Crude protein (%) | 17.66 |
Fat (%) | 5.3 |
Fiber (%) | 3.98 |
Calcium (%) | 3.65 |
Total Phosphorus (%) | 0.88 |
Av. Phosphorus for poultry (%) | 0.48 |
Parameters | Dietary Treatments 1 | p-Value | Contrast, p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Eggs | Con | Na2SeO3 | Se-Yeast | ADS18 | Unsupplemented vs. Supplemented | Inorganic vs. Organic | Se-Yeast vs. ADS18 | ||
RYCF | Initial | 1.83 ± 0.30 | 1.83 ± 0.24 | 2.50 ± 0.29 | 2.00 ± 0.21 | 0.2422 | 0.3641 | 0.2014 | 0.1846 |
Fresh | 2.83 ± 0.30 b | 2.92 ± 0.26 b | 3.25 ± 0.18 a,b | 3.67 ± 0.14 a | 0.0536 | 0.0988 | 0.0591 | 0.2034 | |
Stored | 2.92 ± 0.26 b | 2.92 ± 0.36 b | 3.33 ± 0.26 b | 4.17 ± 0.21 a | 0.0072 | 0.0881 | 0.0176 | 0.0382 | |
L* | Initial | 57.91 ± 0.33 | 56.26 ± 0.70 | 55.78 ± 0.83 | 56.25 ± 1.07 | 0.2414 | 0.0482 | 0.7916 | 0.6786 |
Fresh | 70.79 ± 0.44 a | 72.22 ± 0.54 a | 65.05 ± 0.90 b | 62.83 ± 0.54 c | <0.0001 | <0.0001 | <0.0001 | 0.0154 | |
Stored | 71.22 ± 0.35 a | 68.19 ± 0.66 b | 66.91 ± 0.23 b,c | 65.43 ± 0.85 c | <0.0001 | <0.0001 | 0.0055 | 0.0721 | |
a* | Initial | 1.83 ± 0.11 | 1.55 ± 0.15 | 1.75 ± 0.21 | 1.80 ± 0.18 | 0.6228 | 0.5023 | 0.2628 | 0.8347 |
Fresh | 1.11 ± 0.08 | 1.12 ± 0.14 | 0.93 ± 0.11 | 1.09 ± 0.12 | 0.5954 | 0.6273 | 0.436 | 0.3088 | |
Stored | 0.47 ± 0.06 | 0.48 ± 0.05 | 0.55 ± 0.05 | 0.55 ± 0.06 | 0.596 | 0.358 | 0.3113 | 0.954 | |
b* | Initial | 31.87 ± 0.34 | 31.83 ± 0.31 | 32.17 ± 0.19 | 32.34 ± 0.26 | 0.5212 | 0.4614 | 0.2195 | 0.6634 |
Fresh | 45.85 ± 0.30 c | 46.59 ± 0.36 b,c | 47.24 ± 0.24 b | 49.76 ± 0.42 a | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Stored | 47.63 ± 0.44 d | 49.15 ± 0.54 c | 50.68 ± 0.36 b | 52.26 ± 0.34 a | <0.0001 | <0.0001 | <0.0001 | 0.011 | |
C* | Initial | 31.93 ± 0.33 | 31.87 ± 0.32 | 32.23 ± 0.19 | 32.40 ± 0.27 | 0.5093 | 0.4667 | 0.2061 | 0.6702 |
Fresh | 45.87 ± 0.30 c | 46.60 ± 0.36 b,c | 47.26 ± 0.24 b | 49.78 ± 0.42 a | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Stored | 47.63 ± 0.44 d | 49.15 ± 0.54 c | 50.68 ± 0.36 b | 52.26 ± 0.34 a | <0.0001 | <0.0001 | <0.0001 | 0.011 | |
H* | Initial | 1.51 ± 0.004 | 1.52 ± 0.005 | 1.52 ± 0.006 | 1.52 ± 0.005 | 0.6022 | 0.3844 | 0.3015 | 0.8866 |
Fresh | 1.55 ± 0.002 | 1.55 ± 0.003 | 1.55 ± 0.002 | 1.55 ± 0.002 | 0.5029 | 0.4224 | 0.2704 | 0.4871 | |
Stored | 1.56 ± 0.001 | 1.56 ± 0.001 | 1.56 ± 0.001 | 1.56 ± 0.001 | 0.8445 | 0.6146 | 0.473 | 0.8356 |
Parameters | Days | Dietary Treatments 1 | p-Value | |||
---|---|---|---|---|---|---|
Con | Na2SeO3 | Se-Yeast | ADS18 | |||
Total Carotene | ||||||
Egg yolk | Initial | 21.23 ± 0.58 | 21.80 ± 0.35 | 22.51 ± 0.41 | 21.21 ± 0.39 | 0.1597 |
Fresh | 20.49 ± 0.61 b,c | 20.10 ± 1.12 c | 22.15 ± 0.32 a,b | 23.37 ± 0.37 a | 0.0086 | |
Stored | 15.77 ± 1.20 b | 17.95 ± 0.56 b | 20.97 ± 0.82 a | 22.13 ± 0.49 a | <0.0001 | |
Breast meat | NA | 2.07 ± 0.06 a | 1.99 ± 0.05 a,b | 1.88 ± 0.02 b | 1.95 ± 0.03 a,b | 0.0267 |
Feed sample | NA | 5.14 ± 0.16 b | 5.16 ± 0.21 b | 5.59 ± 0.08 b | 6.27 ± 0.14 a | 0.0001 |
Total Cholesterol | ||||||
Egg yolk | Initial | 12.75 ± 0.24 | 12.75 ± 0.43 | 13.25 ± 0.37 | 12.94 ± 0.33 | 0.7076 |
Fresh | 27.83 ± 0.44 a | 25.70 ± 0.41 b | 22.03 ± 0.51 c | 20.12 ± 0.48 d | <0.0001 | |
Stored | 27.92 ± 0.45 a | 26.35 ± 0.60 a,b | 24.78 ± 0.54 b | 19.83 ± 0.91 c | <0.0001 | |
Breast meat | NA | 16.17 ± 0.40 a | 15.20 ± 0.18 a | 12.33 ± 0.44 b | 9.09 ± 0.36 c | <0.0001 |
Parameters | Days | Dietary Treatments 1 | p-Value | |||
---|---|---|---|---|---|---|
Con | Na2SeO3 | Se-Yeast | ADS18 | |||
Total Phenol, mg GAE/g * | ||||||
Egg yolk | Initial | 2.63 ± 0.037 | 2.71 ± 0.071 | 2.77 ± 0.067 | 2.81 ± 0.047 | 0.1873 |
Fresh | 1.47 ± 0.20 c | 2.38 ± 0.19 b | 2.56 ± 0.11 a,b | 2.90 ± 0.10 a | 0.0002 | |
Stored | 1.52 ± 0.06 b | 1.45 ± 0.03 b | 1.89 ± 0.08 a | 1.96 ± 0.09 a | 0.0004 | |
Breast meat | NA | 2.16 ± 0.10 b | 2.18 ± 0.16 b | 2.92 ± 0.29 a | 3.41 ± 0.05 a | 0.0006 |
Total Flavonoid, mg RE/g ** | ||||||
Egg yolk | Initial | 2.21 ± 0.52 | 1.48 ± 0.16 | 1.73 ± 0.36 | 2.28 ± 0.18 | 0.3293 |
Fresh | 1.45 ± 0.46 | 1.73 ± 0.27 | 1.50 ± 0.21 | 1.38 ± 0.53 | 0.9245 | |
Stored | 1.79 ± 0.07 | 1.68 ± 0.10 | 1.83 ± 0.10 | 1.74 ± 0.12 | 0.7148 | |
Breast meat | NA | 1.42 ± 0.32 | 1.69 ± 0.15 | 1.69 ± 0.38 | 1.57 ± 0.36 | 0.5416 |
Assay | Parameters | Days | Dietary Treatments 1 | ||||
---|---|---|---|---|---|---|---|
Con | Na2SeO3 | Se-Yeast | ADS18 | p-Value | |||
Phosphomolybdenum Assay (Antioxidant activity, mg AAE/g) * | Egg yolk | Initial | 0.82 ± 0.07 | 0.87 ± 0.04 | 0.81 ± 0.04 | 0.86 ± 0.06 | 0.8073 |
Fresh | 0.83 ± 0.05 d | 1.12 ± 0.02 c | 1.40 ± 0.04 b | 1.81 ± 0.04 a | <0.0001 | ||
Stored | 1.50 ± 0.15 c | 1.55 ± 0.11 b,c | 1.93 ± 0.16 a,b | 2.11 ± 0.06 a | 0.0127 | ||
Breast meat | NA | 0.77 ± 0.05 | 0.74 ± 0.08 | 0.77 ± 0.06 | 0.73 ± 0.05 | 0.957 | |
Ferric Reducing Antioxidant Power (FRAP) assay (Antioxidant activity, mg GAE/g) ** | Egg yolk | Initial | 0.84 ± 0.02 | 0.88 ± 0.01 | 0.85 ± 0.01 | 0.84 ± 0.01 | 0.2238 |
Fresh | 1.73 ± 0.07 b | 1.78 ± 0.06 b | 1.90 ± 0.08 b | 2.23 ± 0.04 a | 0.0005 | ||
Stored | 3.16 ± 0.09 | 3.01 ± 0.07 | 3.08 ± 0.05 | 3.12 ± 0.06 | 0.4896 | ||
Breast meat | NA | 1.90 ± 0.10 | 2.06 ± 0.13 | 2.27 ± 0.18 | 2.13 ± 0.11 | 0.294 |
Parameters | Days | Dietary Treatments 1 | p-Value | |||
---|---|---|---|---|---|---|
Con | Na2SeO3 | Se-Yeast | ADS18 | |||
Egg yolks, µg MDA/Kg | D 3 | 0.093 ± 0.03 | 0.092 ± 0.032 | 0.084 ± 0.006 | 0.088 ± 0.004 | 0.4105 |
D 46 | 0.129 ± 0.004 a | 0.117 ± 0.002 a | 0.102 ± 0.004 b | 0.082 ± 0.006 c | <0.0001 | |
D 60 | 0.133 ± 0.007 a | 0.111 ± 0.007 b | 0.092 ± 0.004 c | 0.084 ± 0.004 c | <0.0001 | |
D 74 | 0.118 ± 0.004 a | 0.109 ± 0.002 b | 0.102 ± 0.001 c | 0.096 ± 0.002 c | <0.0001 | |
D 95 | 0.114 ± 0.004 a | 0.104 ± 0.003 a | 0.086 ± 0.003 b | 0.077 ± 0.003 b | <0.0001 | |
D 109 * | 0.148 ± 0.010 a | 0.127 ± 0.005 b | 0.105 ± 0.004 c | 0.084 ± 0.002 d | <0.0001 | |
Breast meat, µg MDA/g | D 0 | 11.46 ± 0.51 a | 10.05 ± 0.40 b | 9.85 ± 0.09 b | 8.72 ± 0.10 c | 0.0001 |
D 1 | 10.69 ± 1.40 a,b | 12.15 ± 1.17 a | 8.23 ± 0.92 b | 7.59 ± 0.55 b | 0.0211 | |
D 5 | 17.79 ± 1.60 a | 16.31 ± 1.17 a,b | 15.64 ± 0.74 a,b | 13.62 ± 0.53 b | 0.0854 | |
Thigh, µg MDA/g | NA | 27.00 ± 0.89 a | 26.39 ± 1.38 a | 22.62 ± 1.21 b | 18.95 ± 0.84 c | 0.0001 |
Serum, nmol MDA/mL | NA | 0.184 ± 0.006 a | 0.179 ± 0.006 a b | 0.169 ± 0.002 b c | 0.159 ± 0.003 c | 0.0046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, A.I.; Mohamed, D.A.A.; Chwen, L.T.; Akit, H.; Samsudin, A.A. Effect of Sodium Selenite, Selenium Yeast, and Bacterial Enriched Protein on Chicken Egg Yolk Color, Antioxidant Profiles, and Oxidative Stability. Foods 2021, 10, 871. https://doi.org/10.3390/foods10040871
Muhammad AI, Mohamed DAA, Chwen LT, Akit H, Samsudin AA. Effect of Sodium Selenite, Selenium Yeast, and Bacterial Enriched Protein on Chicken Egg Yolk Color, Antioxidant Profiles, and Oxidative Stability. Foods. 2021; 10(4):871. https://doi.org/10.3390/foods10040871
Chicago/Turabian StyleMuhammad, Aliyu Ibrahim, Dalia Abd Alla Mohamed, Loh Teck Chwen, Henny Akit, and Anjas Asmara Samsudin. 2021. "Effect of Sodium Selenite, Selenium Yeast, and Bacterial Enriched Protein on Chicken Egg Yolk Color, Antioxidant Profiles, and Oxidative Stability" Foods 10, no. 4: 871. https://doi.org/10.3390/foods10040871
APA StyleMuhammad, A. I., Mohamed, D. A. A., Chwen, L. T., Akit, H., & Samsudin, A. A. (2021). Effect of Sodium Selenite, Selenium Yeast, and Bacterial Enriched Protein on Chicken Egg Yolk Color, Antioxidant Profiles, and Oxidative Stability. Foods, 10(4), 871. https://doi.org/10.3390/foods10040871