The Inhibitory Concentration of Natural Food Preservatives May Be Biased by the Determination Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Cultures and Growth Conditions
2.2. Preparation of Antimicrobial Solutions
2.3. Antimicrobial Activity and Minimum Inhibitory Concentration (MIC)
2.3.1. Inoculum
2.3.2. Determination of Antimicrobial Activity and MIC by Different Methods and pH Conditions
Agar Dilution Method
Drop Diffusion on Agar Method
2.4. Statistical Analysis
3. Results and Discussion
Antimicrobial Activity and Minimal Inhibitory Concentration
3.1.1. Antimicrobial Activity and MIC of Chitosan
3.1.2. Antimicrobial Activity and MIC of Ethanolic Propolis Extract (EPE)
3.1.3. Antimicrobial Activity and MIC of Nisin
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mogoșanu, G.D.; Grumezescu, A.M.; Bejenaru, C.; Bejenaru, L.E. Natural products used for food preservation. In Food Preservation, 1st ed.; Grumezescu, A., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 365–411. ISBN 978-0-12-804303-5. [Google Scholar]
- Gomes, J.; Barbosa, J.; Teixeira, P. Natural antimicrobial agents as an alternative to chemical antimicrobials in the safety and preservation of food products. Curr. Chem. Biol. 2019, 12, 25–37. [Google Scholar] [CrossRef]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Arancibia, M.Y.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Fernández-García, M.; Fernández-Martín, F.; Montero, P. Antimicrobial and rheological properties of chitosan as affected by extracting conditions and humidity exposure. Lwt Food Sci. Technol. 2014, 60, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Davidson, P.M.; Taylor, T.M.; Schmidt, S.E. Chemical Preservatives and Natural Antimicrobial Compounds. In Food Microbiology: Fundamentals and Frontiers, 4th ed.; Doyle, M.P., Buchanan, R.L., Eds.; ASM Press: Washington, DC, USA, 2013; ISBN 978-1-555-81996-5. [Google Scholar]
- Zhong, Y.; Song, X.; Li, Y. Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydr. Polym. 2011, 84, 335–342. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Gomes, J.; Teixeira, P.; Barbosa, J. Preservation of Meat Products: Natural Antimicrobial Agents as an Alternative to Chemical Antimicrobials. In Meat Products: Chemistry, Consumption and Health Aspects; Castro, M.P., Cayré, M.E., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2021; pp. 49–87. ISBN 978-1-53618-978-0. [Google Scholar]
- Gond, L.; Pradhan, P.; Bajpai, A. Chapter 10 - Preparation and application of biomimetic and bioinspired membranes based on chitosan. In Handbook of Chitin and Chitosan; Gopi, S., Thomas, S., Pius, A., Eds.; Elsevier: Chennai, India, 2020; pp. 307–339. ISBN 978-0-12-817966-6. [Google Scholar]
- Szliszka, E.; Czuba, Z.P.; Domino, M.; Mazur, B.; Zydowicz, G.; Krol, W. Ethanolic Extract of Propolis (EEP) Enhances the Apoptosis-Inducing Potential of TRAIL in Cancer Cells. Molecules 2009, 14, 738–754. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Gwak, J.W.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical Applications of Nisin. J. Appl. Microbiol. 2016, 120, 1449–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucera, A.; Costa, C.; Conte, A.; del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, V.M.; Moreira, A.F.; de Melo-Diogo, D.; Costa, E.C.; Queiroz, J.A.; Sousa, F.; Pichon, C.; Correia, I.J. Chapter 6—Multifunctional nanocarriers for codelivery of nucleic acids and chemotherapeutics to cancer cells. In Nanobiomaterials in Medical Imaging; Grumezescu, A.M., Ed.; Elsevier: Chennai, India, 2016; pp. 163–207. ISBN 978-0-323-41736-5. [Google Scholar]
- Xing, K.; Zhu, X.; Peng, X.; Qin, S. Chitosan antimicrobial and eliciting properties for pest control in agriculture: A review. Agron. Sustain. Dev. 2014, 35, 569–588. [Google Scholar] [CrossRef] [Green Version]
- Bandara, S.; Du, H.; Carson, L.; Bradford, D.; Kommalapati, R. Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. Nanomaterials 2020, 10, 1903. [Google Scholar] [CrossRef] [PubMed]
- Dillon, V.M. Natural Antimicrobial Systems | Preservative Effects During Storage. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 941–947. ISBN 978-0-12-384733-1. [Google Scholar]
- Bagheri, L.; Khodaei, N.; Salmieri, S.; Karboune, S.; Lacroix, M. Correlation between chemical composition and antimicrobial properties of essential oils against most common food pathogens and spoilers: In-vitro efficacy and predictive modelling. Microb. Pathog. 2020, 147, 104212. [Google Scholar] [CrossRef] [PubMed]
- Iseppi, R.; Camellini, S.; Sabia, C.; Messi, P. Combined antimicrobial use of essential oils and bacteriocin bacLP17 as seafood biopreservative to control Listeria monocytogenes both in planktonic and in sessile forms. Res. Microbiol. 2020, 171, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Vu, K.D.; Riedl, B.; Lacroix, M. Optimization of the antimicrobial activity of nisin, Na-EDTA and pH against gram-negative and gram-positive bacteria. LWT Food Sci. Technol. 2015, 61, 124–129. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2015, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. 2008, 61, 1295–1301. [Google Scholar] [CrossRef] [Green Version]
- The Gale Group Inc. Agar Diffusion. Available online: https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/agar-diffusion (accessed on 26 February 2021).
- Casquete, R.; Castro, S.M.; Texeira, P. Evaluation of the Combined Effect of Chitosan and Lactic Acid Bacteria in Alheira (Fermented Meat Sausage) Paste. J. Food Process. Preserv. 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Casquete, R.; Castro, S.M.; Jácome, S.; Teixeira, P. Antimicrobial activity of ethanolic extract of própolis in “Alheira”, a fermented meat sausage. Cogent Food Agric. 2016, 2, 7. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. Raw-Fermented Sausages. Available online: http://www.fao.org/3/x6556e/X6556E05.htm (accessed on 1 March 2021).
- FDA. Food and Drug Administration of the United States of America. Evaluation and Definition of Potentially Hazardous Foods. Available online: http://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm094145.htm (accessed on 28 February 2021).
- Jiang, L.; Wang, F.; Han, F.; Prinyawiwatkul, W.; No, H.K.; Ge, B. Evaluation of diffusion and dilution methods to determine the antimicrobial activity of water-soluble chitosan derivatives. J. Appl. Microbiol. 2013, 114, 956–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Menconi, A.; Hernandez-Velasco, X.; Latorre, J.D.; Kallapura, G.; Pumford, N.R.; Morgan, M.J.; Hargis, B.; Tellez, G. Effect of chitosan as a biological sanitizer for Salmonella Typhimurium and aerobic Gram-negative spoilage bacteria present on chicken skin. Int. J. Poult. Sci. 2013, 12, 318–321. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, A.; Kathiresan, K.; Nayak, L. Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol. Rep. 2016, 9, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.-Y.; Zhu, J.-F. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym. 2003, 54, 527–530. [Google Scholar] [CrossRef]
- Lu, L.C.; Chen, Y.W.; Chou, C.C. Antibacterial activity of propolis against Staphylococcus aureus. Int. J. Food Microbiol. 2005, 102, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Prudêncio, C.V.; Mantovani, H.C.; Cecon, P.R.; Prieto, M.; Vanetti, M.C.D. Temperature and pH influence the susceptibility of Samonella Typhimurium to nisin combined with EDTA. Food Control 2016, 61, 248–253. [Google Scholar] [CrossRef]
- Silici, S.; Ünlü, M.; Vardar-Ünlü, G. Antibacterial activity and phytochemical evidence for the plant origin of Turkish propolis from different regions. World J. Microbiol. Biotechnol. 2007, 23, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Chung, H.J. The effects of Korean propolis against foodborne pathogens and transmission electron microscopic examination. New Biotechnol. 2011, 28, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Akca, A.E.; Akca, G.; Topçu, F.T.; Macit, E.; Pikdöken, L.; Özgen, I.F. The Comparative Evaluation of the Antimicrobial Effect of Propolis with Chlorhexidine against Oral Pathogens: An In Vitro Study. Biomed. Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pamplona-Zomenhan, L.C.; Pamplona, B.C.; da Silva, C.B.; Marcucci, M.C.; Mimica, L.M.J.M. Evaluation of the in vitro antimicrobial activity of an ethanol extract of Brazilian classified propolis on strains of Staphylococcus aureus. Braz. J. Microbiol. 2011, 42, 1259–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. El propóleos: Conservador potencial para la industria alimentaria. Inteciencia 2013, 38, 705–711. [Google Scholar]
- Tosi, E.A.; Ré, E.; Ortega, M.A.; Cazzoli, A.F. Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chem. 2007, 104, 1025–1029. [Google Scholar] [CrossRef]
- Rollema, H.R.; Kuipers, O.P.; Both, P.; De-Vos, W.M.; Siezen, R.J. Improvement of Solubility and Stability of the Antimicrobial Peptide Nisin by Protein Engineering. Appl. Environ. Microbol. 1995, 61, 2873–2878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Bae, Y.-M.; Jung, K.-S.; Heu, S.; Lee, S.-Y. Antimicrobial activity of natural antimicrobial substances against spoilage bacteria isolated from fresh produce. Food Control 2013, 32, 665–672. [Google Scholar] [CrossRef]
- Prudêncio, C.V.; dos Santos, M.T.; Vanetti, M.C.D. Strategies for the use of bacteriocins in Gram-negative bacteria: Relevance in food microbiology. J. Food Sci. Technol. 2015, 52, 5408–5417. [Google Scholar] [CrossRef] [Green Version]
- Sahl, H.G.; Jack, R.W.; Bierbaum, G. Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur. J. Biochem. 1995, 230, 827–853. [Google Scholar] [CrossRef] [PubMed]
- Delves-Broughton, J.; Blackburn, P.; Evans, R.J.; Hugenholtz, J. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoe 1996, 69, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Abee, T.; Delves-Broughton, J. Bacteriocins—Nisin. In Food Preservatives, 2nd ed.; Russell, N.J., Gould, G.W., Eds.; Springer: New York, NY, USA, 2012; pp. 146–178. ISBN 978-0-387-30042-9. [Google Scholar]
- Solomakos, N.; Govaris, A.; Koidis, P.; Botsoglou, N. The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage. Food Microbiol. 2008, 25, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Elliason, D.J.; Tatini, S.R. Enhanced inactivation of Salmonella typhimurium and verotoxigenic Escherichia coli by nisin at 6.5 °C. Food Microbiol. 1999, 16, 257–267. [Google Scholar] [CrossRef]
- Ganzle, M.G.; Hertel, C.; Hammes, W.P. Resistance of Escherichia coli and Salmonella against nisin and curvacin A. Int. J. Food Microbiol. 1999, 48, 37–50. [Google Scholar] [CrossRef]
- Galvão, M.F.; Prudêncio, C.V.; Vanetti, M.C.D. Stress enhances the sensitivity of Salmonella enterica serovar Typhimurium to bacteriocins. J. Appl. Microbiol. 2015, 118, 1137–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alakomi, H.-L.; Saarela, M.; Helander, I.M. Effect of EDTA on Salmonella enterica serovar Typhimurium involves a component not assignable to lipopolysaccharide release. Microbiology 2003, 149, 2015–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anacarso, I.; de Niederhäusern, S.; Iseppi, R.; Sabia, C.; Bondi, M.; Messi, P. Anti-listerial activity of chitosan and Enterocin 416K1 in artificially contaminated RTE products. Food Control 2011, 22, 2076–2080. [Google Scholar] [CrossRef]
- Cao, Y.; Warner, R.D.; Zhongxiang, F. Effect of chitosan/nisin/gallic acid coating on preservation of pork loin in high oxygen modified atmosphere packaging. Food Control 2019, 101, 9–16. [Google Scholar] [CrossRef]
- Govaris, A.; Solomakos, N.; Pexara, A.; Chatzopoulou, P.S. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. Int. J. Food Microbiol. 2010, 137, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Raeisi, M.; Tajik, H.; Aminzare, M.; Abadi, S.S.; Yarahmadi, A.; Yarahmadi, E.; Tepe, B. The Role of Nisin, Monolaurin, and EDTA in Antibacterial Effect of Rosmarinus Officinalis L. and Cinnamomum Zeylanicum Blume Essential Oils on Foodborne Pathogens. J. Essent. Oil Bear. Plants 2016, 19, 1709–1720. [Google Scholar] [CrossRef]
- Bahrami, A.; Delshadi, R.; Jafari, S.M.; Williams, L. Nanoencapsulated nisin: An engineered natural antimicrobial system for the food industry. Trends Food Sci. Technol. 2019, 94, 20–31. [Google Scholar] [CrossRef]
Microorganisms | Strains | Source |
---|---|---|
Gram-positive | - Bacillus cereus ESB14 - Bacillus subtilis ESB15 - Geobacillus stearothermophilus ESB16 -Staphylococcus aureus 18N (Methicillin-resistant Staphylococcus aureus—MRSA) - Staphylococcus aureus 2037M1 (MSSA) - Clostridium sporogenes 1.31 - Clostridium sporogenes 1.34 - Clostridium sporogenes 1.61 - Clostridium perfringens 1.16 - Clostridium perfringens 1.19 - Clostridium perfringens 1.22 - Listeria monocytogenes 7946 - Listeria monocytogenes 7947 | Isolates from Culture Collection of Escola Superior de Biotecnologia (Porto, Portugal) |
- Listeria innocua 2030c | Public Health Laboratory Service (PHLS; London, UK) | |
- Enterococcus faecalis ATCC 29212 - Staphylococcus aureus ATCC 29213 | American Type Culture Collection (ATCC; Manassas, VA, USA) | |
- Enterococcus faecalis DSMZ 12956 - Enterococcus faecium DSMZ 13590 - Enterococcus flavescens DSMZ 7370 - Enterococcus gallinarum DSMZ 20628 - Enterococcus casseliflavus DSMZ 20680 | Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures (DSMZ; Braunschweig, Germany) | |
Gram-negative | - Salmonella Braenderup ESB7 - Salmonella Enteritidis ESB8 - Salmonella Typhimurium ESB9 - Klebsiella pneumoniae ESB11 - Proteus vulgaris ESB12 - Proteus mirabilis ESB27 - Pseudomonas aeruginosa ESB13 - Yersinia enterocolitica ESB24 - Acinetobacter baumannii R ESB28 - Acinetobacter baumannii S—1 ESB29 - Acinetobacter baumannii S—2 ESB32 - Acinetobacter calcoaceticus R ESB30 - Acinetobacter calcoaceticus S ESB31 | Isolates from Culture Collection of Escola Superior de Biotecnologia (Porto, Portugal) |
- Escherichia coli ATCC 25922 | American Type Culture Collection (ATCC; Manassas, VA, USA) | |
- Yersinia enterocolitica NCTC 10406 | National Collection of Type Cultures—Culture Collection of Public Health England (NCTC; Salisbury, UK) | |
Fungi | - Saccharomyces cerevisiae ESB26 | Isolates from Culture Collection of Escola Superior de Biotecnologia (Porto, Portugal) |
Microorganisms | MIC (% w/v) | |||||
---|---|---|---|---|---|---|
pH 5 | pH 6 | pH 7 | ||||
Agar Dilution | Drop Diffusion | Agar Dilution | Drop Diffusion | Agar Dilution | Drop Diffusion | |
Gram-positive bacteria | ||||||
Ent. faecalis ATCC 29212 | (1) | 0.3–0.35 | 0.15 | 0.15 | 0.1 | 0.075 |
Ent. faecalis DSMZ 12956 | 0.035–0.15 (2) | 0.075 | 0.08 | 0.075–0.15 | 0.04–0.065 | 0.15–0.3 |
Ent. faecium DSMZ 13590 | 0.06–0.15 (2) | 0.075–0.15 | 0.08 | 0.15 | 0.07 | 0.15 |
Ent. flavescens DSMZ 7370 | 0.09–0.15 (2) | 0.075–0.15 | 0.15 (2) | 0.15 | 0.08–0.085 (2) | 0.075–0.15 |
Ent. gallinarum DSMZ 20628 | (1) | 0.0375–0.075 | (1) | 0.15 | 0.15 (2) | 0.15 |
Ent. casseliflavus DSMZ 20680 | (1) | 0.3 (2) | (1) | 0.15–0.3 | 0.07 (2) | 0.075 |
B. cereus ESB14 | (1) | 0.075 (2) | (1) | 0.15 | 0.07 (2) | 0.15 |
B. subtilis ESB54 | (1) | 0.15–0.3 | (1) | 0.3 | 0.15 (2) | (1) |
G. stearothermophilus ESB16 | (1) | 0.075 | (1) | * | 0.065 (2) | * |
Staph. aureus ATCC 29213 | (1) | 0.3 | (1) | 0.3 | 0.15–0.3 (2) | 0.3 |
Staph. aureus 18N (MRSA) | (1) | * | (1) | * | 0.15 | * |
Staph. aureus 2037 M1(MSSA) | (1) | * | (1) | * | 0.15 (2) | 0.3 |
L. monocytogenes 7946 | (1) | 0.0375–0.075 | (1) | 0.15–0.3 | 0.08–0.09 (2) | (1) |
L. monocytogenes 7947 | (1) | 0.0375–0.075 (2) | (1) | 0.075–0.15 | 0.08–0.085 | 0.15 |
L. innocua 2030c | (1) | 0.075 | (1) | 0.15 | 0.08–0.1 (2) | 0.15 |
Cl. sporogenes 1.31 | 0.075 (2) | * | 0.0375 (2) | * | 0.15 (2) | * |
Cl. sporogenes 1.34 | 0.075 (2) | * | 0.0375 (2) | * | 0.15 (2) | * |
Cl. sporogenes 1.61 | 0.075 (2) | * | 0.0375 (2) | * | 0.15 (2) | * |
Cl. perfringens 1.16 | 0.075 | * | 0.0375 | * | 0.15 (2) | * |
Cl. perfringens 1.19 | 0.075 (2) | * | 0.0375 | * | 0.15 (2) | * |
Cl. perfringens 1.22 | 0.075 (2) | * | 0.0375 | * | 0.15 (2) | * |
Gram-negative bacteria | ||||||
Salmonella Braenderup ESB7 | (1) | 0.15–0.3(2) | (1) | 0.3–0.35(2) | (1) | 0.3–0.45(2) |
S. Enteritidis ESB8 | (1) | 0.15(2) | (1) | 0.15 | (1) | 0.3–0.5(2) |
S. Typhimurium ESB9 | (1) | 0.15 | (1) | 0.15 | 0.15 (2) | (1) |
E. coli ATCC 25922 | (1) | 0.15–0.3 (2) | (1) | 0.3–0.35 | 0.15 (2) | (1) |
Klebsiella pneumoniae ESB11 | (1) | 0.15(2) | (1) | 0.15 | (1) | 0.3 (2) |
Proteus vulgaris ESB12 | (1) | 0.15(2) | (1) | 0.15–0.3 (2) | (1) | 0.3–0.35(2) |
P. mirabilis ESB27 | (1) | 0.15 (2) | 0.1 (2) | (1) | 0.055 (2) | 0.15 |
Ps. aeruginosa ESB13 | (1) | 0.15 (2) | (1) | 0.3 (2) | 0.1–0.3 (2) | (1) |
Yersinia enterocolotica NCTC 10406 | (1) | 0.15–0.3 (2) | (1) | 0.3–0.35(2) | (1) | 0.3–0.35(2) |
Y. enterocolitica ESB24 | 0.075–0.09 (2) | 0.15 (2) | (1) | 0.3–0.35 (2) | 0.075 | 0.3 (2) |
A. baumannii R ESB28 | (1) | 0.15 (2) | (1) | 0.15–0.3 (2) | 0.08–0.1 (2) | 0.15–0.3 |
A. baumannii S–1 ESB29 | (1) | 0.15 | (1) | 0.075–0.15 (2) | 0.08 | 0.075 |
A. baumannii S–2 ESB32 | (1) | * | (1) | 0.075–0.15 | 0.08–0.1 (2) | 0.15–0.3 |
A. calcoaceticus R ESB30 | (1) | 0.3 (2) | (1) | 0.15–0.3 (2) | 0.08–0.1 (2) | 0.15–0.3 |
A. calcoaceticus S ESB31 | (1) | (1) | (1) | 0.0375–0.15 (2) | 0.08–0.095 (2) | 0.15 (2) |
Yeast | ||||||
Sac. cerevisiae ESB26 | 0.15 | * | 0.15 | 0.35 | 0.02–0.08 | 0.3–0.5 (2) |
Microorganisms | MIC (mg/mL) | |||||
---|---|---|---|---|---|---|
pH5 | pH6 | pH7 | ||||
Agar Dilution | Drop Diffusion | Agar Dilution | Drop Diffusion | Agar Dilution | Drop Diffusion | |
Gram-positive bacteria | ||||||
Ent. faecalis ATCC 29212 | 0.078 | 1.25–2.5 | 0.156–0.625 | 2 | 0.94 | 0.47 |
Ent. faecalis DSMZ 12956 | 0.078 | 2.5 | 0.156–0.625 | 2.5–3.5 | 0.63 | 1.25–5 |
Ent. faecium DSMZ 13590 | 0.078 | 1.25–2.5 | 0.156–0.625 | 2.5 | 0.47–1.25 | 1.25–2.5 |
Ent. flavescens DSMZ 7370 | 0.078 | 0.94–2.5 | 0.233–0.625 | 1.25 | 0.94 | 5 |
Ent. gallinarum DSMZ 20628 | 0.31 | 0.625–0.94 | 0.233–0.625 | 1.25–2 | 1.25–1.875 | 2 |
Ent. casseliflavus DSMZ 20680 | 0.078 | 0.625–0.94 | 0.233–0.625 | 0.94–2.5 | 1.25 | 1.875 |
B. cereus ESB14 | <0.039 | 0.156 | 0.059 | 0.625 | 0.156–0.625 | 0.47–2.5 |
B. subtilis ESB54 | 0.078 | 1.25–1.875 | 0.233–0.625 | 1.25–2.5 | 1.25 | 1.25 |
G. stearothermophilus ESB16 | <0.039 (1) | 5 | <0.039 | 5–10 | 0.156–0.625 | * |
Staph. aureus ATCC 29213 | 0.078 | 1.25 | 0.078 | 1.25–2.5 | 0.47 | 5 |
Staph. aureus 18N (MRSA) | 0.078 | 2.5 | 0.078 | 2.5–5 | 0.31–0.625 | * |
Staph. aureus 2037 M1(MSSA) | 0.117 | 1.25–2.5 | 0.078 | 1.25–2.5 | 0.31–0.625 | 2.5 |
L. monocytogenes 7946 | 0.117 | 0.31 | 0.117 | 1.25 | 0.47 | 2.5–5 |
L. monocytogenes 7947 | 0.078 | 0.625–0.94 | 0.117 | 0.94–2.5 | 0.47 | 1.25–1.875 |
L. innocua 2030c | 0.156 | 0.625–1.25 | 0.117–0.625 | 1.875 | 0.47 | 2.5–3.5 |
Cl. sporogenes 1.31 | 0.31 | 0.31 | 0.078 | 0.625 | 0.31 | * |
Cl. sporogenes 1.34 | 0.31 | 0.31 | 0.078 | 0.625 | 0.31 | * |
Cl. sporogenes 1.61 | 0.31 | 0.31 | 0.078 | 0.625 | 0.31 | * |
Cl. perfringens 1.16 | 0.31 | 5 | 0.156 | 1.25 | 0.31 | * |
Cl. perfringens 1.19 | 0.31 | 10 | 0.156 | * | 0.31 | * |
Cl. perfringens 1.22 | 0.31 | 5 | 0.156 | 0.625 | 0.31 | * |
Gram-negative bacteria | ||||||
Salmonella Braenderup ESB7 | 4.5–10 (1) | * | 3–10 | * | 10 | * |
S. Enteritidis ESB8 | 4.5–10 (1) | * | 3–10 | * | 10 | * |
S. Typhimurium ESB9 | 3.5 | * | 2–10 (1) | * | 10 | * |
E. coli ATCC 25922 | 4.5 | * | 4–10 | * | 10 | * |
Klebsiella pneumoniae ESB11 | 5–10 (1) | * | 3–10 | * | 10 | * |
Proteus vulgaris ESB12 | 4.5–10 (1) | * | 3–10 | * | 10 | * |
P. mirabilis ESB27 | 5–5.5 | * | 5.5 | * | * | * |
Ps. aeruginosa ESB13 | 4.5 | * | 3–10 | * | 6.5 | * |
Yersinia enterocolotica NCTC 10406 | 10 | * | 5 | * | * | * |
Y. enterocolitica ESB24 | 0.078–1.25 | * | 0.233–5 | * | 0.47–5 | * |
A. baumannii R ESB28 | 2–5 | 5–10 | 2.5–5 | * | 5–10 (1) | 10 |
A. baumannii S–1 ESB29 | 0.63 | 3 | 2–5 | 10 | 4.5–10 | 10 |
A. baumannii S–2 ESB32 | 2–5 | 5–10 | 2.5–5 | 3 | 5.5 | * |
A. calcoaceticus R ESB30 | 0.47 | 0.63–5 | 2–5 | 4 | 4.5–10 (1) | 10 |
A. calcoaceticus S ESB31 | 0.31–1.25 | 5–10 | 2–5 | 5–10 | 4.5–10 (1) | * |
Yeast | ||||||
Sac. cerevisiae ESB26 | 0.117 | 0.625–1.25 | 0.117 | 0.47 | 0.31–0.625 | 0.625–1.25 |
Microorganisms | MIC (µg/mL) | |||||
---|---|---|---|---|---|---|
pH5 | pH6 | pH7 | ||||
Agar Dilution | Drop Diffusion | Agar Dilution | Drop Diffusion | Agar Dilution | Drop Diffusion | |
Gram-positive bacteria | ||||||
Ent. faecalis ATCC 29212 | * | * | * | 12.5 | * | 5 |
Ent. faecalis DSMZ 12956 | 12.5 | 6.25–12.5 | 15 | 12.5 | 12.5–25 | 5 |
Ent. faecium DSMZ 13590 | 12.5 | 6.25–12.5 | 25 | 6.25–12.5 | 12.5–25 | 5 |
Ent. flavescens DSMZ 7370 | 12.5 | 3.125–6.25 | 5–25 | 12.5 | 25 | 8 |
Ent. gallinarum DSMZ 20628 | 3.125 | 6.25–12.5 | 3.125 | 10 | 5 | 12.5 |
Ent. casseliflavus DSMZ 20680 | <1.563 | 6.25 | 6.25–12.5 | 8 | 6.25 | 12.5 |
B. cereus ESB14 | 5–25 | 25 | * | * | * | 12.5–25 |
B. subtilis ESB54 | 12.5–25 | 25 | * | 10 | * | 8 |
G. stearothermophilus ESB16 | 5–25 | 25 | * | * | * | * |
Staph. aureus ATCC 29213 | * | * | * | * | * | * |
Staph. aureus 18N (MRSA) | * | * | * | * | * | 25 |
Staph. aureus 2037 M1(MSSA) | 15 | * | 20 | 25 | 8–25 | 20 |
L. monocytogenes 7946 | 6.25 | 12.5 | 12.5–15 | 8 | * | 10–25 |
L. monocytogenes 7947 | 6.25 | 6.25–12.5 | 15 | 5 | 20 | 10 |
L. innocua 2030c | 5–25 | 10 | * | 5 | * | 12.5–25 |
Cl. sporogenes 1.31 | 6.25 | 25 | * | * | * | * |
Cl. sporogenes 1.34 | 25 | 25 | * | * | * | * |
Cl. sporogenes 1.61 | 25 | * | * | * | * | * |
Cl. perfringens 1.16 | 6.25 | * | 12.5 | * | 25 | * |
Cl. perfringens 1.19 | 25 | * | * | 6.25 | * | * |
Cl. perfringens 1.22 | 25 | * | 25 | * | * | * |
Gram-negative bacteria | ||||||
Salmonella Braenderup ESB7 | * | * | * | * | * | * |
S. Enteritidis ESB8 | * | * | * | * | * | * |
S. Typhimurium ESB9 | * | * | * | * | * | * |
E. coli ATCC 25922 | * | * | * | * | * | * |
Klebsiella pneumoniae ESB11 | * | * | * | * | * | * |
Proteus vulgaris ESB12 | * | * | * | * | * | * |
P. mirabilis ESB27 | * | * | * | * | * | * |
Ps. aeruginosa ESB13 | * | * | * | * | * | * |
Yersinia enterocolotica NCTC 10406 | * | * | * | * | * | * |
Y. enterocolitica ESB24 | * | * | * | * | * | * |
A. baumannii R ESB28 | 12.5–25 | * | * | * | * | * |
A. baumannii S–1 ESB29 | 8–25 | * | * | * | * | * |
A. baumannii S–2 ESB32 | * | * | * | * | * | * |
A. calcoaceticus R ESB30 | 12.5–25 | * | * | * | * | * |
A. calcoaceticus S ESB31 | 5–25 | * | * | * | * | * |
Yeast | ||||||
Sac. cerevisiae ESB26 | * | * | * | * | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, J.; Barbosa, J.; Teixeira, P. The Inhibitory Concentration of Natural Food Preservatives May Be Biased by the Determination Methods. Foods 2021, 10, 1009. https://doi.org/10.3390/foods10051009
Gomes J, Barbosa J, Teixeira P. The Inhibitory Concentration of Natural Food Preservatives May Be Biased by the Determination Methods. Foods. 2021; 10(5):1009. https://doi.org/10.3390/foods10051009
Chicago/Turabian StyleGomes, Joana, Joana Barbosa, and Paula Teixeira. 2021. "The Inhibitory Concentration of Natural Food Preservatives May Be Biased by the Determination Methods" Foods 10, no. 5: 1009. https://doi.org/10.3390/foods10051009
APA StyleGomes, J., Barbosa, J., & Teixeira, P. (2021). The Inhibitory Concentration of Natural Food Preservatives May Be Biased by the Determination Methods. Foods, 10(5), 1009. https://doi.org/10.3390/foods10051009