Relationships among Consumer Liking, Lipid and Volatile Compounds from New Zealand Commercial Lamb Loins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lamb Samples
2.2. Consumer Sensory Evaluation
2.3. Fatty Acid Analysis
2.4. Volatile Compound Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pannier, L.; Gardner, G.E.; O’Reilly, R.A.; Pethick, D.W. Factors affecting lamb eating quality and the potential for their integration into an MSA sheepmeat grading model. Meat Sci. 2018, 144, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Arshad, M.S.; Sohaib, M.; Ahmad, R.S.; Nadeem, M.T.; Imran, A.; Arshad, M.U.; Kwon, J.-H.; Amjad, Z. Ruminant meat flavor influenced by different factors with special reference to fatty acids. Lipids Health Dis. 2018, 17, 223. [Google Scholar] [CrossRef] [Green Version]
- Font-i-Furnols, M.; Guerrero, L. Consumer preference, behavior and perception about meat and meat products: An overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Sañudo, C.; Alfonso, M.; San Julián, R.; Thorkelsson, G.; Valdimarsdottir, T.; Zygoyiannis, D.; Stamataris, C.; Piasentier, E.; Mills, C.; Berge, P.; et al. Regional variation in the hedonic evaluation of lamb meat from diverse production systems by consumers in six European countries. Meat Sci. 2007, 75, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Elmore, J.S.; Warren, H.E.; Mottram, D.S.; Scollan, N.D.; Enser, M.; Richardson, R.I. A comparison of the aroma volatiles and fatty acid compositions of grilled beef muscle from Aberdeen Angus and Holstein-Friesian steers fed deits based on silage or concentrates. Meat Sci. 2006, 68, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, B.; Liu, C.; Su, R.; Hou, Y.; Yao, D.; Zhao, L.; Su, L.; Jin, Y. Meat quality, fatty acids, volatile compounds, and antioxidant properties of lambs fed pasture versus mixed diet. Food Sci. Nut. 2019, 7, 2796–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gkarane, V.; Brunton, N.P.; Allen, P.; Gravador, R.S.; Claffey, N.A.; Diskin, M.G.; Fahey, A.G.; Farmer, L.J.; Moloney, A.P.; Alcalde, M.J.; et al. Effect of finishing diet and duration on the sensory quality and volatile profile of lamb meat. Food Res. Int. 2019, 115, 54–64. [Google Scholar] [CrossRef]
- Resconi, V.C.; Campo, M.M.; Montossi, F.; Ferreira, V.; Sañudo, C.; Escudero, A. Relationship between odour-active compounds and flavour perception in meat from lambs fed different diets. Meat Sci. 2010, 85, 700–706. [Google Scholar] [CrossRef]
- Howes, N.L.; Bekhit, A.E.-D.A.; Burritt, D.J.; Campbell, A.W. Opportunities and implications of pasture-based lamb fattening to enhance the long-chain fatty acid composition in meat. Compr. Rev. Food Sci. Food Saf. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- Rodríguez, R.; Alomar, D.; Morales, R. Milk and meat fatty acids from sheep fed a plantain–chicory mixture or a grass-based permanent sward. Animal 2020, 14, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- De Brito, G.F.; Holman, B.W.B.; McGrath, S.R.; Friend, M.A.; van de Ven, R.; Hopkins, D.L. The effect of forage-types on the fatty acid profile, lipid and protein oxidation, and retail colour stability of muscles from White Dorper lambs. Meat Sci. 2017, 130, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Y.; Eyres, G.T.; Reis, M.G.; Schreurs, N.M.; Silcock, P.; Agnew, M.P.; Johnson, P.L.; Maclean, P.; Realini, C.E. Fatty acid composition and volatile profile of m. longissimus thoracis from commercial lambs reared in different forage systems. Foods 2020, 9, 1885. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Schreurs, N.M.; Johnson, P.L.; Corner-Thomas, R.A.; Agnew, M.P.; Silcock, P.; Eyres, G.T.; Maclennan, G.; Realini, C.E. Carcass characteristics and meat quality of commercial lambs reared in different forage systems. Livest. Sci. 2020, 232, 103908. [Google Scholar] [CrossRef]
- Phelps, M.R.; Garmyn, A.J.; Brooks, J.C.; Martin, J.N.; Carr, C.C.; Campbell, J.A.; McKeith, A.G.; Miller, M.F. Consumer assessment of lamb loin and leg from Australia, New Zealand, and United States. Meat Muscle Biol. 2018, 2, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Morrow, S.; Garmyn, A.J.; Miller, M.F. US consumer assessment of New Zealand lamb. Meat Muscle Biol. 2018, 2, 120. [Google Scholar] [CrossRef]
- Watson, R.; Gee, A.; Polkinghorne, R.; Porter, M. Consumer assessment of eating quality–development of protocols for Meat Standards Australia (MSA) testing. Aust. J. Exp. Agric. 2008, 48, 1360–1367. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.M.; Gee, A.; Hopkins, D.L.; Pethick, D.W.; Baud, S.R.; O’Halloran, W.J. Development of a sensory protocol for testing palatability of sheep meats. Aust. J. Exp. Agric. 2005, 45, 469–476. [Google Scholar] [CrossRef]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Agnew, M.P.; Craigie, C.R.; Weralupitiya, G.; Reis, M.M.; Johnson, P.L.; Reis, M.G. Comprehensive evaluation of parameters affecting one-step method for quantitative analysis of fatty acids in meat. Metabolites 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, L.G.; Skou, P.B.; Khakimov, B.; Bro, R. Gas chromatography—mass spectrometry data processing made easy. J. Chromatogr. A 2017, 1503, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Young, O.A.; Lane, G.A.; Priolo, A.; Fraser, K. Pastoral and species flavour in lambs raised on pasture, lucerne or maize. J. Sci. Food Agric. 2003, 83, 93–104. [Google Scholar] [CrossRef]
- Gkarane, V.; Brunton, N.P.; Harrison, S.M.; Gravador, R.S.; Allen, P.; Claffey, N.A.; Diskin, M.G.; Fahey, A.G.; Farmer, L.J.; Moloney, A.P.; et al. Volatile profile of grilled lamb as affected by castration and age at slaughter in two breeds. J. Food Sci. 2018, 83, 2466–2477. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Lamas, L.; Barron, L.J.R.; Farmer, L.; Aldai, N. Fatty acid composition of intramuscular fat and odour-active compounds of lamb commercialized in northern Spain. Meat Sci. 2018, 139, 231–238. [Google Scholar] [CrossRef] [PubMed]
- The-Good-Scents-Company. The Good Scents Company Information System. Providing Information for the Flavor, Fragrance, Food and Cosmetic Industries. Available online: http://www.thegoodscentscompany.com/index.html (accessed on 7 May 2021).
- Larick, D.K.; Turner, B.E. Headspace volatiles and sensory characteristics of ground beef from forage- and grain-fed heifers. J. Food Sci. 1990, 54, 649–654. [Google Scholar] [CrossRef]
- Thompson, J.M.; Pleasants, A.B.; Pethick, D.W. The effect of design and demographic factors on consumer sensory scores. Aust. J. Exp. Agric. 2005, 45, 477–482. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Walker, P.J.; Thompson, J.M.; Pethick, D.W. Effect of sheep type on meat and eating quality of sheep meat. Aust. J. Exp. Agric. 2005, 45, 499–507. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Realini, C.E.; Guerrero, L.; Oliver, M.A.; Sañudo, C.; Campo, M.M.; Nute, G.R.; Cañeque, V.; Alvarez, I.; San Julián, R.; et al. Acceptability of lamb fed on pasture, concentrate or combinations of both systems by European consumers. Meat Sci. 2009, 81, 196–202. [Google Scholar] [CrossRef]
- Realini, C.E.; Pavan, E.; Johnson, P.L.; Font, I.F.M.; Jacob, N.; Agnew, M.; Craigie, C.R.; Moon, C.D. Consumer liking of M. longissimus lumborum from New Zealand pasture-finished lamb is influenced by intramuscular fat. Meat Sci. 2021, 173, 108380. [Google Scholar] [CrossRef]
- Realini, C.E.; i Furnols, M.F.; Guerrero, L.; Montossi, F.; Campo, M.M.; Sañudo, C.; Nute, G.R.; Alvarez, I.; Cañeque, V.; Brito, G.; et al. Effect of finishing diet on consumer acceptability of Uruguayan beef in the European market. Meat Sci. 2009, 81, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Chong, F.S.; O’Sullivan, M.G.; Kerry, J.P.; Moloney, A.P.; Methven, L.; Gordon, A.W.; Hagan, T.D.; Farmer, L.J. Understanding consumer liking of beef using hierarchical cluster analysis and external preference mapping. J. Sci. Food Agric. 2020, 100, 245–257. [Google Scholar] [CrossRef]
- Mottram, D.S.; Edwards, R.A. The role of triglycerides and phospholipids in the aroma of cooked beef. J. Sci. Food Agric. 1983, 34, 517–522. [Google Scholar] [CrossRef]
- Phelps, M.R.; Garmyn, A.J.; Brooks, J.C.; Mafi, G.G.; Duckett, S.K.; Legako, J.F.; O’Quinn, T.G.; Miller, M.F. Effects of marbling and postmortem aging on consumer assessment of United States lamb loin. Meat Muscle Biol. 2018, 2, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, D.L.; Hegarty, R.S.; Walker, P.J.; Pethick, D.W. Relationship between animal age, intramuscular fat, cooking loss, pH, shear force and eating quality of aged meat from sheep. Aust. J. Exp. Agric. 2006, 46, 879–884. [Google Scholar] [CrossRef]
- Pannier, L.; Gardner, G.E.; Pearce, K.L.; McDonagh, M.; Ball, A.J.; Jacob, R.H.; Pethick, D.W. Associations of sire estimated breeding values and objective meat quality measurements with sensory scores in Australian lamb. Meat Sci. 2014, 96, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Savell, J.W.; Cross, H.R. The Role of Fat in the Palatability of Beef, Pork, and Lamb. In Committee on Technological Options to Improve the Nutritional Attributes of Animal Products; National Academies Press: Washington, DC, USA, 1988; pp. 345–355. [Google Scholar]
- Scollan, N.; Hocquette, J.-F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Pavan, E.; Duckett, S.K. Fatty acid composition and interrelationships among eight retail cuts of grass-feed beef. Meat Sci. 2013, 93, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Karamichou, E.; Richardson, R.I.; Nute, G.R.; Wood, J.D.; Bishop, S.C. Genetic analyses of sensory characteristics and relationships with fatty acid composition in the meat from Scottish Blackface lambs. Animals 2007, 1, 1524–1531. [Google Scholar] [CrossRef] [Green Version]
- Purchas, R.W.; O’Brien, L.E.; Pendleton, C.M. Some effects of nutrition and castration on meat production from male Suffolk cross (Border Leicester-Romney cross) lambs. N. Z. J. Agric. Res. 1979, 22, 375–383. [Google Scholar] [CrossRef]
- Sañudo, C.; Enser, M.E.; Campo, M.M.; Nute, G.R.; Maria, G.; Sierra, I.; Wood, J.D. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci. 2000, 54, 339–346. [Google Scholar] [CrossRef]
- Prescott, J.; Young, O.; O’Neill, L. The impact of variations in flavour compounds on meat acceptability: A comparison of Japanese and New Zealand consumers. Food Qual. Prefer. 2001, 12, 257–264. [Google Scholar] [CrossRef]
- Watkins, P.J.; Frank, D. Heptadecanoic acid as an indicator of BCFA content in sheep fat. Meat Sci. 2019, 151, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Watkins, P.J.; Kearney, G.; Rose, G.; Allen, D.; Ball, A.J.; Pethick, D.W.; Warner, R.D. Effect of branched-chain fatty acids, 3-methylindole and 4-methylphenol on consumer sensory scores of grilled lamb meat. Meat Sci. 2014, 96, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P.; Tian, H.; Sun, B.; Zhang, Y.; Chen, H. Quality control of mutton by using volatile compound fingerprinting techniques and chemometric methods. J. Food Qual. 2017, 2017, 9273929. [Google Scholar] [CrossRef]
- Brennand, C.P.; Ha, J.K.; Lindsay, R.C. Aroma properties and thresholds of some branched-chain and other minor volatile fatty acids occurring in milkfat and meat lipids. J. Sens. Stud. 1989, 4, 105–120. [Google Scholar] [CrossRef]
- Bueno, M.; Campo, M.M.; Cacho, J.; Ferreira, V.; Escudero, A. A model explaining and predicting lamb flavour from the aroma-active chemical compounds released upon grilling light lamb loins. Meat Sci. 2014, 98, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Bett, K.L.; Grimm, C.C. Flavor and aroma-its measurement. In Advances in Meat Research-Volume 9. Quality Attributes and Their Measurement in Meat, Poultry and Fish Products; Pearson, A.M., Dutson, T.R., Eds.; Springer-Science + Business Media, B.V.: Berlin/Heidelberg, Germany, 2005; Volume 9. [Google Scholar]
- Flores, M. The eating quality of meat: III-Flavor. In Lawrie’s Meat Science, 8th ed.; Toldrá, F., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, MA, USA, 2017; pp. 383–417. [Google Scholar]
Commercial Lamb Loin Products β | SEM γ | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
WEAN-W | REDC-W | GRASS-W | CHIC-E | CHIC-W | PMER-W | |||
All Consumers α (n = 160) | ||||||||
Tenderness | 70.0 ab | 75.6 a | 71.4 ab | 75.1 a | 74.9 a | 67.4 b | 1.5 | <0.001 |
Juiciness | 62.3 | 64.1 | 65.8 | 65.3 | 64.9 | 63.1 | 1.5 | 0.551 |
Flavor liking | 65.0 b | 71.1 a | 68.2 ab | 68.3 ab | 72.2 a | 64.3 b | 1.4 | <0.001 |
Overall liking | 66.9 bc | 72.0 ab | 69.1 abc | 69.3 abc | 73.1 a | 65.6 c | 1.4 | 0.001 |
Cluster 1 α (n = 85) | ||||||||
Tenderness | 70.8 | 71.3 | 76.2 | 69.8 | 74.2 | 71.7 | 1.9 | 0.141 |
Juiciness | 63.8 ab | 61.1 b | 70.6 a | 61.8 b | 65.5 ab | 68.6 ab | 1.9 | 0.002 |
Flavor liking | 64.1 c | 66.3 bc | 75.6 a | 62.9 c | 71.9 ab | 70.2 abc | 1.9 | <0.001 |
Overall liking | 67.4 bc | 66.8 bc | 76.6 a | 63.2 c | 73.2 ab | 72.2 ab | 1.7 | <0.001 |
Cluster 2 α (n = 75) | ||||||||
Tenderness | 69.2 bc | 80.4 a | 65.9 c | 81.0 a | 75.7 ab | 62.6 c | 2.2 | <0.001 |
Juiciness | 60.5 ab | 67.5 a | 60.3 ab | 69.3 a | 64.2 ab | 57.0 b | 2.2 | <0.001 |
Flavor liking | 65.9 bc | 76.6 a | 59.8 cd | 74.2 a | 72.6 ab | 57.7 d | 2.0 | <0.001 |
Overall liking | 66.3 bc | 77.7 a | 60.5 c | 76.1 a | 72.9 ab | 58.3 c | 2.0 | <0.001 |
Pearson’s Correlation Coefficients α with | ||||||
---|---|---|---|---|---|---|
Overall Liking Scores | Total Fatty Acids | |||||
Variable | Mean | SD β | All Consumers (n= 160) | Cluster 1 (n = 85) | Cluster 2 (n = 75) | |
N (8 per animal group) | 48 | 48 | 48 | |||
Mean | 69.2 | 69.8 | 68.9 | |||
SD | 7.0 | 7.4 | 10.8 | |||
Total fatty acids (FA), mg/100 g fresh tissue | 2500 | 701 | −0.21 | −0.08 | −0.34 * | 1.00 |
Fatty acids, % of total FA | ||||||
C14:0 | 2.5 | 0.9 | −0.03 | −0.07 | 0.02 | 0.16 |
Iso C15:0 | 0.1 | 0.0 | −0.10 | 0.25 t | −0.35 * | 0.37 ** |
Anteiso C15:0 | 0.1 | 0.0 | −0.05 | 0.20 | −0.11 | 0.08 |
Iso C17:0 | 0.3 | 0.1 | −0.13 | 0.27 t | −0.39 ** | 0.21 |
Anteiso C17:0 | 0.4 | 0.1 | −0.21 | 0.20 | −0.46 *** | 0.57 *** |
C17:0 | 1.0 | 0.1 | −0.15 | 0.12 | −0.41 ** | 0.46 ** |
C17:1 cis−10 | 0.2 | 0.2 | 0.07 | −0.26 t | 0.32 * | −0.13 |
C16:0 | 21.4 | 1.5 | −0.06 | 0.00 | −0.13 | 0.59 *** |
C18:0 | 14.9 | 1.6 | 0.04 | 0.20 | −0.18 | 0.12 |
C18:1 trans-11 | 2.5 | 0.7 | 0.16 | −0.05 | 0.39 ** | −0.53 *** |
C18:1 cis-9 | 32.1 | 3.7 | −0.27 t | 0.00 | −0.52 *** | 0.62 *** |
C18:1 cis-11 | 1.0 | 0.1 | 0.08 | −0.08 | 0.31 *** | −0.53 *** |
C18:2 n-6 | 4.8 | 1.5 | 0.23 | −0.07 | 0.51 *** | −0.73 *** |
C18:3 n-3 | 2.6 | 0.7 | 0.24 | −0.16 | 0.50 *** | −0.60 *** |
CLA cis-9, trans−11 | 1.0 | 0.3 | 0.07 | −0.09 | 0.24 | 0.12 |
C20:4 n-6 | 1.5 | 0.5 | 0.12 | 0.08 | 0.26 t | −0.77 *** |
C20:5 n-3 | 1.2 | 0.4 | 0.18 | −0.13 | 0.46 ** | −0.73 *** |
C22:5 n-3 | 1.1 | 0.2 | 0.19 | −0.07 | 0.44 ** | −0.73 *** |
C22:6 n-3 | 0.3 | 0.1 | 0.24 | 0.00 | 0.39 ** | −0.61 *** |
BCFA | 1.1 | 0.2 | −0.16 | 0.23 | −0.38 ** | 0.33 * |
SFA | 41.7 | 2.0 | −0.06 | 0.14 | −0.29 * | 0.65 *** |
MUFA | 37.2 | 3.4 | −0.26 t | −0.03 | −0.47 *** | 0.66 *** |
PUFA | 12.6 | 3.3 | 0.23 | −0.09 | 0.52 *** | −0.77 *** |
PUFA n-3 | 5.2 | 1.4 | 0.23 | −0.13 | 0.50 *** | −0.72 *** |
PUFA n-6 | 6.4 | 1.9 | 0.22 | −0.03 | 0.48 *** | −0.79 *** |
n-6:n-3 | 1.2 | 0.2 | 0.01 | 0.18 | 0.04 | −0.34 * |
Compound | Rt, min | Calculated RI α | Odor Descriptor |
---|---|---|---|
Alcohol | |||
Methanol | 5.912 | 910 | Alcoholic |
1-Butanol | 9.555 | 1137 | Fusel, oily, sweet, balsamic |
1-Penten-3-ol | 9.807 | 1153 | Green, fruity |
1-Pentanol | 11.198 | 1241 | Fusel, oily, sweet |
Z-2-Penten-1-ol | 12.270 | 1312 | Green, fruity |
1-Hexanol | 12.719 | 1343 | Green, fruity, oily, fusel |
1-Octen-3-ol | 14.070 | 1439 | Green, mushroom, earthy, oily |
1-Heptanol | 14.159 | 1445 | Green, woody, fatty, musty, fatty |
2-Propyl-1-pentanol | 14.631 | 1480 | - |
1-Octanol | 15.520 | 1548 | Green, waxy, fruity |
E-2-Octen-1-ol | 16.294 | 1609 | Green, fatty, citrus |
2,7-Octadien-1-ol | 17.146 | 1680 | - |
2-Methyl-1-hexadecanol | 18.379 | 1786 | - |
1-(2-Butoxyethoxy)-ethanol | 18.553 | 1801 | - |
Aldehyde | - | ||
2-Methyl-butanal | 6.249 | 922 | Chocolate, roasted, stink beetle |
3-Methyl-butanal | 6.299 | 925 | Aldehydic, sweaty, stink beetle |
Pentanal | 7.174 | 987 | Fermented, fruity, nutty, pungent |
Hexanal | 8.728 | 1085 | Green, fresh, fatty, aldehydic |
Heptanal | 10.434 | 1192 | Green, fresh, fatty, aldehydic |
Z-4-Heptenal | 11.322 | 1249 | Green, oily, fatty, dairy, fishy |
Nonanal | 13.579 | 1403 | Waxy, aldehydic, green, fresh |
Decanal | 15.018 | 1509 | Aldehydic, sweet, waxy, green |
E,E-2,4-Heptadienal | 15.067 | 1513 | Fatty, green, oily, aldehydic |
E-2-Nonenal | 15.592 | 1554 | Fatty, green, aldehydic |
Undecanal | 16.376 | 1616 | Waxy, aldehydic, green, fatty |
E-2-Decenal | 16.946 | 1663 | Waxy, fatty, earthy, green |
2-Undecenal | 18.229 | 1772 | Fresh, fruity, orange peel |
Tridecanal | 18.871 | 1830 | Fresh, clean, aldehydic, nutty |
Pentadecanal | 21.121 | 2042 | Fresh, waxy |
Benzenoid compound | - | ||
Toluene | 8.174 | 1051 | Sweet |
Benzaldehyde | 15.628 | 1557 | Fruity, strong, sharp |
Furans | - | ||
2-Ethyl furan | 6.777 | 959 | Chemical, sweet, burnt, earthy |
2-Pentyl furan | 11.096 | 1234 | Fruity, green, earthy, vegetable |
Hydrocarbons | - | ||
Pentane | 3.823 | - | |
E-2-Octene | 5.361 | 844 | Sweet, green, floral, burning |
Z-2-Octene | 5.679 | 875 | Fatty, oil |
2,2,6-Trimethyl-octane | 6.426 | 934 | - |
Decane | 7.361 | 1000 | - |
Ketone | |||
2-Butanone | 6.069 | 909 | Acetone, ethereal, fruity |
2-Octanone | 11.965 | 1291 | Earthy, herbal, woody, fruity |
Acetoin | 12.057 | 1297 | Sweet, buttery, fatty, dairy |
6-Methyl-5-hepten-2-one | 12.742 | 1345 | Citrus, green, musty, cheesy |
2-Nonanone | 13.490 | 1396 | Fruity, fresh, green, cheesy |
2-Decanone | 14.923 | 1302 | Orange, floral, fatty, peach |
Organic Acids | |||
Acetic acid | 14.480 | 1469 | Acidic, sharp, pungent, sour |
Butanoic acid | 16.700 | 1643 | Acetic, cheesy, buttery, fruity |
4-Hydroxy-butanoic acid | 17.051 | 1672 | - |
Hexanoic acid | 19.235 | 1863 | Sour, fatty, sweaty, urine-like |
Heptanoic acid | 20.390 | 1971 | Rancid, sour, sweaty, cheesy |
Octanoic acid | 21.498 | 2079 | Fatty, waxy, rancid, oily, cheesy |
Nonanoic acid | 22.675 | 2189 | Waxy, dirty, cheesy, dairy |
Sulfur compounds | |||
Dimethyl sulfide | 4.652 | 760 | Sulfurous, onion, cabbage, cauliflower |
2-Ethyl-1-hexanethiol | 14.631 | 1480 | - |
Dimethyl sulfone | 20.019 | 1936 | Sulfurous, burnt |
Others | |||
N, N-Dibutyl-formamide | 18.491 | 1795 | - |
Commercial Lamb Loin Products α | Pearson’s Correlation Coef. with Overall, Liking Scores β | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Compound | WEAN-W | REDC-W | GRASS-W | CHIC-E | CHIC-W | PMER-W | SEM γ | p-Value θ | All Consumers | Cluster 1 | Cluster 2 |
Alcohols | |||||||||||
Methanol δ | 0.23 (0.21–0.24) | 0.21 (0.19–0.23) | 0.25 (0.23–0.27) | 0.23 (0.22–0.25) | 0.23 (0.21–0.25) | 0.26 (0.24–0.28) | 0.506 | −0.11 | 0.06 | −0.18 | |
1-Butanol δ | 0.37 a (0.34–0.41) | 0.22 b (0.20–0.25) | 0.19 b (0.17–0.21) | 0.22 b (0.20–0.25) | 0.23 b (0.21–0.25) | 0.42 a (0.38–0.47) | <0.001 | −0.26 t | −0.07 | −0.32 * | |
1-Penten-3-ol | 2.52 a | 1.71 bc | 1.49 c | 1.94 b | 1.88 bc | 1.49 c | 0.16 | <0.001 | 0.04 | −0.21 | 0.14 |
1-Pentanol | 6.38 a | 6.90 a | 7.08 a | 7.37 a | 7.32 a | 4.84 b | 0.47 | 0.004 | 0.33 * | 0.10 | 0.39 ** |
Z-2-Penten-1-ol | 0.68 a | 0.45 bcd | 0.38 cd | 0.53 b | 0.50 bc | 0.36 d | 0.05 | <0.001 | 0.06 | −0.21 | 0.22 |
1-Hexanol | 1.53 | 1.39 | 1.10 | 1.31 | 1.31 | 1.07 | 0.14 | 0.181 | 0.00 | −0.28 * | 0.25 t |
1-Octen-3-ol | 2.44 a | 1.64 b | 1.70 b | 2.08 ab | 2.05 ab | 1.50 b | 0.21 | 0.034 | 0.00 | −0.12 | 0.16 |
1-Heptanol δ | 6.31 a (5.38–6.84) | 6.67 a (6.15–7.22) | 6.94 a (6.40–7.51) | 7.13 a (6.58–7.72) | 7.18 a (6.62–7.77) | 4.55 b (4.20–4.93) | 0.002 | −0.03 | −0.17 | 0.05 | |
2-Propyl-1-pentanol | 0.58 a | 0.42 b | 0.32 b | 0.42 b | 0.39 b | 0.32 b | 0.04 | <0.001 | 0.04 | −0.20 | 0.22 |
1-Octanol | 0.58 (0.52–0.65) | 0.48 (0.43–0.53) | 0.54 (0.48–0.60) | 0.49 (0.44–0.55) | 0.51 (0.46–0.57) | 0.53 (0.47–0.59) | 0.828 | −0.06 | −0.18 | 0.03 | |
E-2-Octen-1-ol | 0.29 a | 0.20 b | 0.19 b | 0.23 ab | 0.23 ab | 0.18 b | 0.02 | 0.022 | 0.01 | −0.13 | 0.19 |
2,7-Octadien-1-ol | 0.15 a | 0.10 b | 0.08 b | 0.11 b | 0.10 b | 0.07 b | 0.01 | 0.001 | 0.05 | −0.19 | 0.24 |
2-methyl-1-Hexadecanol δ | 0.08 (0.07–0.10) | 0.09 (0.07–0.10) | 0.10 (0.09–0.12) | 0.09 (0.08–0.11) | 0.09 (0.08–0.11) | 0.14 (0.12–0.16) | 0.193 | −0.18 | −0.11 | −0.14 | |
1-(2-butoxyethoxy)-Ethanol | 0.07 b | 0.08 b | 0.08 b | 0.11 a | 0.11 a | 0.10 ab | 0.00 | 0.02 | −0.09 | −0.12 | 0.05 |
Aldehydes | |||||||||||
2-methyl-Butanal δ | 0.16 (0.13–0.19) | 0.13 (0.11–0.13) | 0.13 (0.11–0.13 | 0.14 (0.11–0.17) | 0.11 (0.09–0.14) | 0.18 (0.15–0.22) | 0.641 | −0.03 | −0.09 | −0.08 | |
3-methyl-Butanal δ | 0.30 (0.26–0.34) | 0.28 (0.24–0.31) | 0.28 (0.25–0.31) | 0.29 (0.26–0.33) | 0.28 (0.25–0.32) | 0.35 (0.31–0.40) | 0.731 | −0.05 | −0.13 | −0.07 | |
Pentanal | 3.18 abc | 2.93 bc | 2.90 cd | 3.58 ab | 3.73 a | 2.23 d | 0.24 | 0.001 | 0.21 | −0.09 | 0.32 * |
Hexanal | 50.15 a | 34.51 cd | 38.70 bcd | 44.41 abc | 45.52 ab | 31.24 d | 0.006 | 0.03 | −0.10 | 0.11 | |
Heptanal | 8.29 | 8.34 | 6.22 | 8.14 | 8.11 | 5.51 | 0.064 | 0.08 | −0.27 t | 0.34 * | |
Z-4-Heptenal δ | 0.80 (0.70–0.81) | 0.89 (0.78–1.01) | 0.64 (0.56–0.73) | 0.80 (0.70–0.91) | 0.63 (0.55–0.72) | 0.53 (0.47–0.60) | 0.082 | 0.17 | −0.16 | 0.27 t | |
Nonanal δ | 5.79 (5.33–6.28) | 5.21 (4.80–5.66) | 5.59 (5.16–6.07) | 5.94 (5.47–6.44) | 5.48 (5.05–5.95) | 4.84 (4.46–5.26) | 0.676 | −0.02 | −0.22 | 0.15 | |
Decanal δ | 0.19 (0.16–0.22) | 0.17 (0.15–0.20) | 0.19 (0.17–0.22) | 0.19 (0.17–0.22) | 0.24 (0.21–0.28) | 0.21 (0.18–0.24) | 0.705 | 0.16 | 0.07 | 0.15 | |
E,E-2,4-Heptadienal δ | 0.16 a (0.14–0.18) | 0.10 c (0.09–0.11) | 0.09 c (0.08–0.10) | 0.12 bc (0.10–0.13 | 0.14 ab (0.12–0.15) | 0.08 c (0.07–0.09) | 0.002 | 0.12 | −0.12 | 0.18 | |
E-2-Nonenal δ | 0.40 a (0.36–0.45) | 0.34 abc (0.30–0.38) | 0.27 bc (0.24–0.30) | 0.32 abc (0.28–0.35) | 0.35 ab (0.32–0.39) | 0.25 c (0.23–0.28) | 0.045 | 0.05 | −0.29 * | 0.29 t | |
Undecanal δ | 0.06 (0.05–0.07) | 0.05 (0.04–0.06) | 0.06 (0.05–0.07) | 0.05 (0.04–0.06) | 0.07 (0.06–0.09) | 0.06 (0.05–0.08) | 0.748 | 0.08 | 0.02 | 0.10 | |
E-2-Decenal (E) δ | 0.09 (0.07–0.11) | 0.07 (0.06–0.09) | 0.09 (0.08–0.11) | 0.08 (0.07–0.10) | 0.10 (0.08–0.12) | 0.10 (0.08–0.12) | 0.864 | 0.01 | −0.05 | 0.01 | |
2-Undecenal | 0.09 (0.07–0.11) | 0.09 (0.08–0.11) | 0.12 (0.10–0.14) | 0.09 (0.08–0.12) | 0.11 (0.09–0.13) | 0.10 (0.08–0.12) | 0.929 | 0.02 | 0.00 | 0.02 | |
Tridecanal δ | 0.07(0.06–0.07) | 0.06(0.05–0.06) | 0.06 (0.05–0.07) | 0.07 (0.06–0.08) | 0.07 (0.06–0.07) | 0.05 (0.04–0.06) | 0.231 | −0.02 | −0.18 | 0.21 | |
Pentadecanal δ | 0.06 ab (0.05–0.06) | 0.06 ab (0.05–0.06) | 0.05 b (0.04–0.05) | 0.07 a (0.07–0.08) | 0.06 ab (0.06–0.07) | 0.04 c (0.03–0.04) | <0.001 | 0.14 | −0.13 | 0.42 ** | |
Benzenoid compounds | |||||||||||
Toluene δ | 0.25 (0.21–0.31) | 0.22 (0.18–0.27) | 0.19 (0.16–0.24) | 0.16 (0.13–0.19) | 0.14 (0.11–0.17) | 0.16 (0.13–0.20) | 0.321 | −0.24 | −0.23 | −0.13 | |
Benzaldehyde | 0.22 ab | 0.21 ab | 0.19 b | 0.27 a | 0.26 a | 0.17 b | 0.02 | 0.002 | 0.22 | −0.07 | 0.39 ** |
Furans | |||||||||||
2-ethyl-Furan | 0.37 a | 0.33 a | 0.27 ab | 0.37 a | 0.33 a | 0.16 b | 0.04 | 0.010 | 0.10 | −0.18 | 0.29 * |
2-pentyl-Furan | 35.71 a | 29.10 ab | 29.10 ab | 34.65 a | 34.40 a | 25.17 b | 2.38 | 0.022 | 0.06 | −0.14 | 0.22 |
Hydrocarbons | |||||||||||
Pentane | 0.71 bc | 1.12 a | 1.02 a | 1.01 a | 0.92 ab | 0.55 c | 0.08 | <0.001 | 0.38 ** | 0.17 | 0.48 *** |
E-2-Octene δ | 0.75 a (0.62–0.90) | 0.40 bc (0.33–0.48) | 0.38 bc (0.31–0.45) | 0.22 c (0.18–0.26) | 0.26c (0.21–0.31) | 0.44 b (0.36–0.53) | <0.001 | −0.07 | −0.13 | −0.13 | |
Z-2-Octene δ | 0.28 (0.25–0.33) | 0.18 (0.15–0.20) | 0.26 (0.23–0.30) | 0.20 (0.18–0.23) | 0.20 (0.17–0.22) | 0.21 (0.19–0.25) | 0.134 | −0.11 | −0.01 | −0.26 t | |
2,2,6-trimethyl-Octane δ | 0.44 a (0.33–0.59) | 0.01 b (0.01–0.01) | 0.01 b (0.01–0.01) | 0.01 b (0.01–0.01) | 0.01 b (0.01–0.01) | 0.78 a (0.59–1.04) | <0.001 | −0.12 | −0.06 | −0.14 | |
Decane | 0.12 ab | 0.05 c | 0.07 c | 0.07 c | 0.08 bc | 0.16 a | 0.02 | 0.003 | −0.01 | 0.00 | 0.02 |
Ketones | |||||||||||
2-Butanone δ | 0.36 (0.34–0.39) | 0.36 (0.36–0.38) | 0.30 (0.28–0.32) | 0.32 (0.30–0.34) | 0.30 (0.28–0.32) | 0.34 (0.32–0.37) | 0.201 | −0.01 | −0.16 | 0.14 | |
2-Octanone χ | 0.05 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.27 | 0.178 | 0.14 | 0.00 | 0.18 |
Acetoin δ | 0.12 (0.07–0.23) | 0.43 (0.22–0.85) | 0.10 (0.06–0.20) | 0.94 (0.50–1.76) | 0.47 (0.25–0.89) | 0.18 (0.10–0.32) | 0.127 | 0.00 | −0.25 t | 0.34 * | |
6-methyl-5-Hepten-2-one | 0.41 a | 0.36 ab | 0.23 b | 0.42 a | 0.45 a | 0.12 b | 0.06 | 0.003 | 0.35 * | 0.03 | 0.57 *** |
2-Nonanone δ | 0.04 (0.03–0.05) | 0.03 (0.02–0.04) | 0.03 (0.02–0.04) | 0.03 (0.02–0.04) | 0.04 (0.03–0.05) | 0.04 (0.03–0.05) | 0.705 | 0.12 | 0.05 | 0.15 | |
2-Decanone δ | 0.03 (0.03–0.04) | 0.02 (0.02–0.03) | 0.03 (0.02–0.03) | 0.02 (0.02–0.03) | 0.03 (0.03–0.04) | 0.04 (0.03–0.05) | 0.594 | 0.12 | 0.07 | 0.11 | |
Organic Acids | |||||||||||
Acetic acid δ | 1.23 (1.07–1.43) | 1.05 (0.91–1.22) | 1.02 (0.88–1.18) | 1.28 (1.11–1.48) | 1.09 (0.95–1.27) | 0.86 (0.74–0.99) | 0.442 | −0.06 | −0.15 | 0.13 | |
Butanoic acid δ | 0.90 a (0.75–1.08) | 1.06 a (0.88–1.26) | 0.69 ab (0.57–0.82) | 0.97 a (0.81–1.16) | 0.88 a (0.74–1.05) | 0.44 b (0.37–0.53) | 0.017 | 0.06 | −0.13 | 0.29 * | |
4-hidroxy-Butanoic acid δ, ε | 0.97 b (0.84–1.11) | 1.70 a (1.48–1.95) | 1.08 b (0.94–1.24) | 1.05 b (0.92–1.21) | 1.07 b (0.94–1.23) | 0.54 c (0.47–0.62) | <0.001 | 0.23 | 0.01 | 0.28 t | |
Hexanoic acid ε | 0.77 ± 0.03 | 0.66 ± 0.08 | 0.54 ± 0.06 | 0.80 ± 0.07 | 0.82 ± 0.06 | 0.84 ± 0.07 | 0.064 | −0.06 | −0.19 | 0.13 | |
Heptanoic acid | 0.16 | 0.15 | 0.14 | 0.17 | 0.17 | 0.16 | <0.01 | 0.161 | −0.17 | −0.23 | 0.00 |
Octanoic acid δ | 0.27 (0.25–0.29) | 0.24 (0.22–0.26) | 0.22 (0.21–0.24) | 0.29 (0.26–0.31) | 0.26 (0.23–0.28) | 0.28 (0.25–0.30) | 0.326 | −0.29 * | −0.30 * | −0.12 | |
Nonanoic acid | 4.35 | 4.23 | 4.25 | 4.48 | 4.44 | 4.25 | 0.10 | 0.364 | 0.01 | −0.06 | 0.08 |
Sulphur compounds | |||||||||||
Dimethyl sulphide | 0.88 a | 0.63 bcd | 0.41 d | 0.76 ab | 0.66 abc | 0.45 cd | 0.08 | 0.002 | 0.17 | −0.21 | 0.35 * |
2-ethyl-1-Hexanethiol δ | 0.61 a (0.53–0.70) | 0.37 bc 0.32–0.43) | 0.27 bc (0.24–0.31) | 0.40 b (0.35–0.46) | 0.36 bc (0.31–0.41) | 0.25 c (0.22–0.29) | 0.001 | 0.04 | −0.18 | 0.22 | |
Dimethyl sulfone δ | 0.98 ab (0.84–1.14) | 1.35 a(1.16–1.58) | 0.68 bc (0.59–0.80) | 0.57 c (0.49–0.66) | 0.60 c (0.51–0.69) | 1.04 ab (0.90–1.22) | 0.001 | −0.05 | −0.04 | −0.03 | |
Others | |||||||||||
N, N-dibutyl-Formamide | 0.13 | 0.11 | 0.10 | 0.12 | 0.11 | 0.09 | 0.12 | 0.417 | 0.22 | 0.10 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavan, E.; Ye, Y.; Eyres, G.T.; Guerrero, L.; G. Reis, M.; Silcock, P.; Johnson, P.L.; Realini, C.E. Relationships among Consumer Liking, Lipid and Volatile Compounds from New Zealand Commercial Lamb Loins. Foods 2021, 10, 1143. https://doi.org/10.3390/foods10051143
Pavan E, Ye Y, Eyres GT, Guerrero L, G. Reis M, Silcock P, Johnson PL, Realini CE. Relationships among Consumer Liking, Lipid and Volatile Compounds from New Zealand Commercial Lamb Loins. Foods. 2021; 10(5):1143. https://doi.org/10.3390/foods10051143
Chicago/Turabian StylePavan, Enrique, Yangfan Ye, Graham T. Eyres, Luis Guerrero, Mariza G. Reis, Patrick Silcock, Patricia L. Johnson, and Carolina E. Realini. 2021. "Relationships among Consumer Liking, Lipid and Volatile Compounds from New Zealand Commercial Lamb Loins" Foods 10, no. 5: 1143. https://doi.org/10.3390/foods10051143
APA StylePavan, E., Ye, Y., Eyres, G. T., Guerrero, L., G. Reis, M., Silcock, P., Johnson, P. L., & Realini, C. E. (2021). Relationships among Consumer Liking, Lipid and Volatile Compounds from New Zealand Commercial Lamb Loins. Foods, 10(5), 1143. https://doi.org/10.3390/foods10051143