Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review
Abstract
:1. Introduction
1.1. Role of Sodium Chloride in Meat Products
1.2. Risk of NaCl Intake to Health
1.3. Purpose of this Study
2. Alternative Processing Techniques
2.1. Hot-Boning Technology
2.2. High-Pressure Processing
2.3. Radiation
2.4. Ultrasound
2.5. Pulsed Electric Field Processing
Processing Technology | Product Category and Detailed Method | Significant Effects | Reference |
---|---|---|---|
Hot-boning technology | Chicken breast Mixed addition of pre-rigor salted chicken breast with cold-boned chicken breast | Reduced cooking loss Improved emulsion stability | [3] |
Chicken breast Pre-rigor chicken breast salted with KCl | Increased redness Decreased hardness, gumminess, and chewiness Low overall sensory | [20] | |
High-pressure processing | Breakfast sausage Raw meat treated with high pressure for producing low-salt breakfast sausages (1.5% NaCl) | Reduced cooking loss Increased emulsion stability | [5] |
Chicken meat batter Optimization of high-pressure conditions for improving technological properties | Increased water holding capacity and hardness, and sensory properties (best results for physicochemical properties obtained at 200 MPa among 0.1, 200, and 400 MPa) | [23] | |
Cooked ham Combined application of high pressure and 0.2% salt replacer (KCl) in reduced-salt cooked ham | The production of reduced-salt cooked ham without adverse impacts on water binding and texture in comparison to the product with 1.9% NaCl | [6] | |
Radiation | Emulsion sausage Ionizing irradiation on low-salt emulsion sausage (0.75% NaCl) | Inhibition of the growth of aerobic microbes, coliforms, Enterobacteriaceae, and Pseudomonas spp. during chilled storage | [13] |
Ultrasound | Chicken breast meat batter | Improved gel properties | [36] |
Restructured cooked ham with 0.75% salt | Decreased total fluid release and increased hardness | [37] | |
Pulsed electric field | Beef jerky Pulsed electric field processing in low-salt beef jerky (1.2% NaCl) | Improved the salt diffusion and distribution in the meat matrix and improved the saltiness naturally | [41] |
Loin Deer Longissimus dorsi in pulsed electric field | Higher soluble protein and digestibility of muscle | [44] |
3. Salt Substitutes in Meat Products
3.1. Metallic Agents
3.2. Natural Enhancement
Product Category | Reduced or Replaced Sodium Amount (%) | Sodium Chloride Substitutes | Reference |
---|---|---|---|
Ground meat | |||
Mortadella | 50–75 (50) 1) | CaCl2, MgCl2, KCl | [52] |
Frankfurter | 33 (33) | Fermented red beet | [56] |
Dry-fermented sausage | 61 (61) | KCl, CaCl2 | [48] |
Bologna | 20, 40, and 60 (40) | PuraQ® Arome Na4 | [14] |
50 (50) | Lysine, liquid smoke, KCl | [55] | |
Deli type sausage | 25–50 (50) | Soda-Lo® salt | [62] |
Smoked sausage | 45–50 (50) | OF-45LSN, OF-60LSN, Savory powder | [57] |
Restructured ham | 40–45 (45) | OF-45LSN, OF-60LSN, Savory powder | [57] |
Summer sausage | 30–50 | KCl, soy sauce, fermented flavor enhancer | [58] |
Black pudding | 66.66 | Wheat bran, sodium citrate, carrageenan, pectin, KCl, glycine, carboxymethylcellulose, seaweed wakame, PuraQ®Aroma NA4, KPO4, waxy maize starch | [63] |
Ground beef meat | 50–75 | Microbial transglutaminase, fibrimex, alginate | [64] |
Whole muscle | |||
Beef jerky | 50 (50) | KCl, CaCl2 | [53] |
30–50 (30) | KCl, soy sauce, fermented flavor enhancer | [58] | |
Cooked ham | 25–50 (50) | Soda-Lo® salt | [62] |
Turkey breast | 25–50 (50) | Soda-Lo® salt | [62] |
20–46 (20) | Na2HPO4, Na5P3O10, Na2SO4, C5H8NNaO4,··· | [45] | |
Dry-cured ham | 50–55 (55) | CaCl2, MgCl2, KCl | [47] |
Bacon | 30–50 (50) | KCl, soy sauce, fermented flavor enhancer | [58] |
Boneless ham | 30–50 (30) | KCl, soy sauce, fermented flavor enhancer | [52] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yim, D.G.; Shin, D.J.; Jo, C.; Nam, K.C. Effect of Sodium-Alternative Curing Salts on Physicochemical Properties during Salami Manufacture. Food Sci. Anim. Resour. 2020, 40, 946–956. [Google Scholar] [CrossRef]
- Desmond, E. Reducing salt: A challenge for the meat industry. Meat Sci. 2006, 74, 188–196. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, H.W.; Hwang, K.E.; Song, D.H.; Jeong, T.J.; Jeon, K.H.; Kim, Y.B.; Kim, C.J. Combined effects of presalted prerigor and postrigor batter mixtures on chicken breast gelation. Poult. Sci. 2015, 94, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Chin, K.B. Evaluation of various salt levels and different dairy proteins in combination with microbial transglutaminase on the quality characteristics of restructured pork ham. Int. J. Food Sci. Technol. 2011, 46, 1522–1528. [Google Scholar] [CrossRef]
- O’Flynn, C.C.; Cruz-Romero, M.C.; Troy, D.; Mullen, A.M.; Kerry, J.P. The application of high-pressure treatment in the reduction of salt levels in reduced-phosphate breakfast sausages. Meat Sci. 2014, 96, 1266–1274. [Google Scholar] [CrossRef]
- Tamm, A.; Bolumar, T.; Bajovic, B.; Toepfl, S. Salt (NaCl) reduction in cooked ham by a combined approach of high pressure treatment and the salt replacer KCl. Innov. Food Sci. Emerg. Technol. 2016, 36, 294–302. [Google Scholar] [CrossRef]
- Bidlas, E.; Lambert, R.J. Comparing the antimicrobial effectiveness of NaCl and KCl with a view to salt/sodium replacement. Int. J. Food Microbiol. 2008, 124, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Finan, J.D.; Guilak, F. The effects of osmotic stress on the structure and function of the cell nucleus. J. Cell. Biochem. 2010, 109, 460–467. [Google Scholar] [CrossRef] [Green Version]
- Petit, G.; Jury, V.; de Lamballerie, M.; Duranton, F.; Pottier, L.; Martin, J.L. Salt Intake from Processed Meat Products: Benefits, Risks and Evolving Practices. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1453–1473. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.K.; Kim, Y.B.; Jeon, K.H.; Jang, H.W.; Lee, H.S.; Choi, Y.S. Quality Characteristics of Samgyetang according to the Sodium Chloride Level and with/without Phosphate in Broth. Food Sci. Anim. Resour. 2019, 39, 102. [Google Scholar] [CrossRef]
- Bhana, N.; Utter, J.; Eyles, H. Knowledge, Attitudes and Behaviours Related to Dietary Salt Intake in High-Income Countries: A Systematic Review. Curr. Nutr. Rep. 2018, 7, 183–197. [Google Scholar] [CrossRef]
- Mohan, S.; Campbell, N.R.; Willis, K. Effective population-wide public health interventions to promote sodium reduction. CMAJ 2009, 181, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Song, D.H.; Kim, H.W.; Hwang, K.E.; Kim, Y.J.; Ham, Y.K.; Choi, Y.S.; Shin, D.J.; Kim, T.K.; Lee, J.H.; Kim, C.J. Impacts of Irradiation Sources on Quality Attributes of Low-salt Sausage during Refrigerated Storage. Korean J. Food Sci. Anim. Resour. 2017, 37, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Pires, M.A.; Munekata, P.E.S.; Baldin, J.C.; Rocha, Y.J.P.; Carvalho, L.T.; dos Santos, I.R.; Barros, J.C.; Trindade, M.A. The effect of sodium reduction on the microstructure, texture and sensory acceptance of Bologna sausage. Food Struct. 2017, 14, 1–7. [Google Scholar] [CrossRef]
- Torres, E.; Pearson, A.M.; Gray, J.I.; Booren, A.M.; Shimokomaki, M. Effect of salt on oxidative changes in pre-and post-rigor ground beef. Meat Sci. 1988, 23, 151–163. [Google Scholar] [CrossRef]
- Kim, H.W.; Hwang, K.E.; Song, D.H.; Kim, Y.J.; Ham, Y.K.; Yeo, E.J.; Jeong, T.J.; Choi, Y.S.; Kim, C.J. Effect of pre-rigor salting levels on physicochemical and textural properties of chicken breast muscles. Korean J. Food Sci. Anim. Resour. 2015, 35, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisula, A.; Tyburcy, A. Hot processing of meat. Meat Sci. 1996, 43, 125–134. [Google Scholar] [CrossRef]
- Seideman, S.C.; Cross, H.R. The economics and palatability attributes of hot-boned beef: A review. J. Food Qual. 1982, 5, 183–201. [Google Scholar] [CrossRef]
- Sukumaran, A.T.; Holtcamp, A.J.; Englishbey, A.K.; Campbell, Y.L.; Kim, T.; Schilling, M.W.; Dinh, T.T.N. Effect of deboning time on the growth of Salmonella, E. coli, aerobic, and lactic acid bacteria during beef sausage processing and storage. Meat Sci. 2018, 139, 49–55. [Google Scholar] [CrossRef]
- Song, D.H.; Ham, Y.K.; Ha, J.H.; Kim, Y.R.; Chin, K.B.; Kim, H.W. Impacts of pre-rigor salting with KCl on technological properties of ground chicken breast. Poul. Sci. 2020, 99, 597–603. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Iwasaki, T.; Noshiroya, K.; Saitoh, N.; Okano, K.; Yamamoto, K. Studies of the effect of hydrostatic pressure pretreatment on thermal gelation of chicken myofibrils and pork meat patty. Food Chem. 2006, 95, 474–483. [Google Scholar] [CrossRef]
- Zheng, H.B.; Han, M.Y.; Yang, H.J.; Tang, C.B.; Xu, X.L.; Zhou, G.H. Application of high pressure to chicken meat batters during heating modifies physicochemical properties, enabling salt reduction for high-quality products. LWT-Food Sci. Technol. 2017, 84, 693–700. [Google Scholar] [CrossRef]
- Lee, H.L.; Choe, J.H.; Yong, H.I.; Lee, H.J.; Kim, H.J.; Jo, C. Combination of sea tangle powder and high-pressure treatment as an alternative to phosphate in emulsion-type sausage. J. Food Process Preserv. 2018, 42, e13712. [Google Scholar] [CrossRef]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.-S.; de Lamballerie, M.; Hertel, C.; Brüggemann, D.A. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. [Google Scholar] [CrossRef] [PubMed]
- O’bryan, C.A.; Crandall, P.G.; Ricke, S.C.; Olson, D.G. Impact of irradiation on the safety and quality of poultry and meat products: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 442–457. [Google Scholar] [CrossRef] [PubMed]
- Ham, Y.K.; Kim, H.W.; Hwang, K.E.; Song, D.H.; Kim, Y.J.; Choi, Y.S.; Song, B.S.; Park, J.H.; Kim, C.J. Effects of irradiation source and dose level on quality characteristics of processed meat products. Radiat. Phys. Chem. 2017, 130, 259–264. [Google Scholar] [CrossRef]
- Li, C.; He, L.; Jin, G.; Ma, S.; Wu, W.; Gai, L. Effect of different irradiation dose treatment on the lipid oxidation, instrumental color and volatiles of fresh pork and their changes during storage. Meat Sci. 2017, 128, 68–76. [Google Scholar] [CrossRef]
- Kim, T.K.; Hwang, K.E.; Ham, Y.K.; Kim, H.W.; Paik, H.D.; Kim, Y.B.; Choi, Y.S. Interactions between raw meat irradiated by various kinds of ionizing radiation and transglutaminase treatment in meat emulsion systems. Radiat. Phys. Chem. 2020, 166, 108452. [Google Scholar] [CrossRef]
- Turantaş, F.; Kılıç, G.B.; Kılıç, B. Ultrasound in the meat industry: General applications and decontamination efficiency. Int. J. Food Microbiol. 2015, 198, 59–69. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Janacua, H.; Rodriguez, J.C.; Paniwnyk, L.; Mason, T.J. Power ultrasound in meat processing. Meat Sci. 2015, 107, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Stadnik, J.; Dolatowski, Z.J. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus). Eur. Food Res. Technol. 2011, 233, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Stadnik, J.; Dolatowski, Z.J.; Baranowska, H.M. Effect of ultrasound treatment on water holding properties and microstructure of beef (M. semimembranosus) during ageing. LWT-Food Sci. Technol. 2008, 41, 2151–2158. [Google Scholar] [CrossRef]
- Carcel, J.A.; Benedito, J.; Bon, J.; Mulet, A. High intensity ultrasound effects on meat brining. Meat Sci. 2007, 76, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Kordowska-Wiater, M.; Stasiak, D.M. Effect of ultrasound on survival of gram-negative bacteria on chicken skin surface. Bull. Vet. Inst. Pulawy. 2011, 55, 207–210. [Google Scholar]
- Li, K.; Kang, Z.-L.; Zou, Y.-F.; Xu, X.-L.; Zhou, G.-H. Effect of ultrasound treatment on functional properties of reduced-salt chicken breast meat batter. J. Food Sci. Technol. 2015, 52, 2622–2633. [Google Scholar] [CrossRef] [PubMed]
- Barretto, T.L.; Pollonio, M.A.R.; Telis-Romero, J.; da Silva Barretto, A.C. Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction. Meat Sci. 2018, 145, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Jiang, Y.; Xing, L.; Zhou, G.; Zhang, W. Inactivation of Escherichia coli O157: H7 and Bacillus cereus by power ultrasound during the curing processing in brining liquid and beef. Food Res. Int. 2017, 102, 717–727. [Google Scholar] [CrossRef]
- Pinton, M.B.; dos Santos, B.A.; Lorenzo, J.M.; Cichoski, A.J.; Boeira, C.P.; Campagnol, P.C.B. Green technologies as a strategy to reduce NaCl and phosphate in meat products: An overview. Curr. Opin. Food Sci. 2021, 40, 1–5. [Google Scholar] [CrossRef]
- Gomez, B.; Munekata, P.E.S.; Gavahian, M.; Barba, F.J.; Marti-Quijal, F.J.; Bolumar, T.; Campagnol, P.C.B.; Tomasevic, I.; Lorenzo, J.M. Application of pulsed electric fields in meat and fish processing industries: An overview. Food Res. Int. 2019, 123, 95–105. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.A. Current and future prospects for the use of pulsed electric field in the meat industry. Crit. Rev. Food Sci. Nutr. 2019, 59, 1660–1674. [Google Scholar] [CrossRef]
- Toepfl, S.; Siemer, C.; Heinz, V. Effect of high-intensity electric field pulses on solid foods. In Emerging Technologies for Food Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 147–154. [Google Scholar]
- Warner, R.; McDonnell, C.K.; Bekhit, A.; Claus, J.; Vaskoska, R.; Sikes, A.; Dunshea, F.; Ha, M. Systematic review of emerging and innovative technologies for meat tenderisation. Meat Sci. 2017, 132, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.A. The application of pulsed electric field as a sodium reducing strategy for meat products. Food Chem. 2020, 306, 125622. [Google Scholar] [CrossRef]
- Pandya, J.K.; Decker, K.E.; Goulette, T.; Kinchla, A.J. Sodium reduction in Turkey breast meat by using sodium anion species. LWT Food Sci. Technol. 2020, 124, 109110. [Google Scholar] [CrossRef] [Green Version]
- Aaslyng, M.D.; Vestergaard, C.; Koch, A.G. The effect of salt reduction on sensory quality and microbial growth in hotdog sausages, bacon, ham and salami. Meat Sci. 2014, 96, 47–55. [Google Scholar] [CrossRef]
- Blesa, E.; Alino, M.; Barat, J.M.; Grau, R.; Toldra, F.; Pagan, M.J. Microbiology and physico-chemical changes of dry-cured ham during the post-salting stage as affected by partial replacement of NaCl by other salts. Meat Sci. 2008, 78, 135–142. [Google Scholar] [CrossRef]
- Gimeno, O.; Astiasarán, I.; Bello, J. Influence of partial replacement of NaCl with KCl and CaCl2on microbiological evolution of dry fermented sausages. Food Microbiol. 2001, 18, 329–334. [Google Scholar] [CrossRef]
- Beriain, M.J.; Gomez, I.; Petri, E.; Insausti, K.; Sarries, M.V. The effects of olive oil emulsified alginate on the physico-chemical, sensory, microbial, and fatty acid profiles of low-salt, inulin-enriched sausages. Meat Sci. 2011, 88, 189–197. [Google Scholar] [CrossRef]
- Yotsuyanagi, S.E.; Contreras-Castillo, C.J.; Haguiwara, M.M.H.; Cipolli, K.M.V.A.B.; Lemos, A.L.S.C.; Morgano, M.A.; Yamada, E.A. Technological, sensory and microbiological impacts of sodium reduction in frankfurters. Meat Sci. 2016, 115, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Totosaus, A.; Perez-Chabela, M.L. Textural properties and microstructure of low-fat and sodium-reduced meat batters formulated with gellan gum and dicationic salts. LWT-Food Sci. Technol. 2009, 42, 563–569. [Google Scholar] [CrossRef]
- Horita, C.N.; Morgano, M.A.; Celeghini, R.M.S.; Pollonio, M.A.R. Physico-chemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride. Meat Sci. 2011, 89, 426–433. [Google Scholar] [CrossRef]
- Vidal, V.A.; Biachi, J.P.; Paglarini, C.S.; Pinton, M.B.; Campagnol, P.C.; Esmerino, E.A.; da Cruz, A.G.; Morgano, M.A.; Pollonio, M.A. Reducing 50% sodium chloride in healthier jerked beef: An efficient design to ensure suitable stability, technological and sensory properties. Meat Sci. 2019, 152, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Prado, I.; Cruz, O.; Valero, M.; Zawadzki, F.; Eiras, C.; Rivaroli, D.; Prado, R.; Visentainer, J. Effects of glycerin and essential oils (Anacardium occidentale and Ricinus communis) on the meat quality of crossbred bulls finished in a feedlot. Anim. Prod. Sci. 2016, 56, 2105–2114. [Google Scholar] [CrossRef]
- dos Santos Alves, L.A.A.; Lorenzo, J.M.; Gonçalves, C.A.A.; Dos Santos, B.A.; Heck, R.T.; Cichoski, A.J.; Campagnol, P.C.B. Impact of lysine and liquid smoke as flavor enhancers on the quality of low-fat Bologna-type sausages with 50% replacement of NaCl by KCl. Meat Sci. 2017, 123, 50–56. [Google Scholar] [CrossRef]
- Hwang, K.E.; Kim, T.K.; Kim, H.W.; Oh, N.S.; Kim, Y.B.; Jeon, K.H.; Choi, Y.S. Effect of fermented red beet extracts on the shelf stability of low-salt frankfurters. Food Sci. Biotechnol. 2017, 26, 929–936. [Google Scholar] [CrossRef]
- Gaudette, N.J.; Pietrasik, Z. The sensory impact of salt replacers and flavor enhancer in reduced sodium processed meats is matrix dependent. J. Sens. Stud. 2017, 32, e12247. [Google Scholar] [CrossRef] [Green Version]
- Sindelar, J.J.; Jiminez-Maroto, L.A.; Rankin, S.A.; Sato, T.; Shazer, W.H.; Shazer, W.H., III. Reducing sodium in processed meats using traditionally brewed soy sauce and fermented flavor enhancer. Meat Muscle Biol. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, B.A.; Campagnol, P.C.B.; Morgano, M.A.; Pollonio, M.A.R. Monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl with KCl. Meat Sci. 2014, 96, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef] [PubMed]
- Raybaudi-Massilia, R.; Mosqueda-Melgar, J.; Rosales-Oballos, Y.; Citti de Petricone, R.; Frágenas, N.N.; Zambrano-Durán, A.; Sayago, K.; Lara, M.; Urbina, G. New alternative to reduce sodium chloride in meat products: Sensory and microbiological evaluation. LWT-Food Sci. Technol. 2019, 108, 253–260. [Google Scholar] [CrossRef]
- Fellendorf, S.; O’Sullivan, M.G.; Kerry, J.P. Impact of ingredient replacers on the physicochemical properties and sensory quality of reduced salt and fat black puddings. Meat Sci. 2016, 113, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Atilgan, E.; Kilic, B. Effects of microbial transglutaminase, fibrimex and alginate on physicochemical properties of cooked ground meat with reduced salt level. J. Food Sci. Technol. 2017, 54, 303–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rios-Mera, J.D.; Saldaña, E.; Cruzado-Bravo, M.L.; Martins, M.M.; Patinho, I.; Selani, M.M.; Valentin, D.; Contreras-Castillo, C.J. Impact of the content and size of NaCl on dynamic sensory profile and instrumental texture of beef burgers. Meat Sci. 2020, 161, 107992. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-K.; Yong, H.-I.; Jung, S.; Kim, H.-W.; Choi, Y.-S. Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review. Foods 2021, 10, 957. https://doi.org/10.3390/foods10050957
Kim T-K, Yong H-I, Jung S, Kim H-W, Choi Y-S. Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review. Foods. 2021; 10(5):957. https://doi.org/10.3390/foods10050957
Chicago/Turabian StyleKim, Tae-Kyung, Hae-In Yong, Samooel Jung, Hyun-Wook Kim, and Yun-Sang Choi. 2021. "Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review" Foods 10, no. 5: 957. https://doi.org/10.3390/foods10050957
APA StyleKim, T. -K., Yong, H. -I., Jung, S., Kim, H. -W., & Choi, Y. -S. (2021). Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review. Foods, 10(5), 957. https://doi.org/10.3390/foods10050957