Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques
Abstract
:1. Introduction
2. High-Added Value Compounds in Olive Oil Production Wastes
2.1. Olive Leaves
2.2. Olive Pomace and Olive Oil Mill Wastewater
3. Structural Characterization of Phenolic Bioactive Compounds in Waste Products
3.1. Olive Leaves
3.2. Olive Pomace (OP) and Olive Oil Mill Wastewater (OOMW)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. An overview on olive mill wastes and their valorisation methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Gonzálvez, J.; García, D.; Cegarra, J. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 2004, 91, 195–200. [Google Scholar] [CrossRef]
- Gogebakan, Z.; Gogebakan, Y.; Selçuk, N.; Selçuk, E. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite. Bioresour. Technol. 2009, 100, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Kaczala, F.; Hogland, W.; Marques, M.; Paraskeva, C.A.; Papadakis, V.G.; Sillanpää, M. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control-a review. Environ. Sci. Pollut. Res. 2014, 21, 268–298. [Google Scholar] [CrossRef] [PubMed]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process. Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Rahmanian, N.; Jafari, S.M.; Galanakis, C.M. Recovery and removal of phenolic compounds from olive mill wastewater. J. Am. Oil Chem. Soc. 2014, 91, 1–18. [Google Scholar] [CrossRef]
- Ammar, S.; Contreras, M.D.M.; Gargouri, B.; Segura-Carretero, A.; Bouaziz, M. RP-HPLC-DAD-ESI-QTOF-MS based metabolic profiling of the potential Olea europaea by-product “wood” and its comparison with leaf counterpart. Phytochem. Anal. 2017, 28, 217–229. [Google Scholar] [CrossRef]
- Savarese, M.; De Marco, E.; Sacchi, R. Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry. Food Chem. 2007, 105, 761–770. [Google Scholar] [CrossRef]
- Bouaziz, M.; Sayadi, S. Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur. J. Lipid Sci. Technol. 2005, 107, 497–504. [Google Scholar] [CrossRef]
- Bouaziz, M.; Grayer, R.J.; Simmonds, M.S.J.; Damak, M.; Sayadi, S. Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar Chemlali growing in Tunisia. J. Agric. Food Chem. 2005, 53, 236–241. [Google Scholar] [CrossRef]
- Pérez-Bonilla, M.; Salido, S.; van Beek, T.A.; Linares-Palomino, P.J.; Altarejos, J.; Nogueras, M.; Sánchez, A. Isolation and identification of radical scavengers in olive tree (Olea europaea) wood. J. Chromatogr. A 2006, 1112, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Vichi, S.; Cortés-Francisco, N.; Caixach, J. Insight into virgin olive oil secoiridoids characterization by high-resolution mass spectrometry and accurate mass measurements. J. Chromatogr. A 2013, 1301, 48–59. [Google Scholar] [CrossRef]
- Şahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Flamminii, F.; Di Mattia, C.D.; Nardella, M.; Chiarini, M.; Valbonetti, L.; Neri, L.; Difonzo, G.; Pittia, P. Structuring alginate beads with different biopolymers for the development of functional ingredients loaded with olive leaves phenolic extract. Food Hydrocoll. 2020, 108, 105849. [Google Scholar] [CrossRef]
- Alcaide, E.M.; Nefzaoui, A. Recycling of Olive Oil By-Products: Possibilities of Utilization in Animal Nutrition. Int. Biodeterior. Biodegrad. 1996, 38, 227–235. [Google Scholar] [CrossRef]
- Hidalgo-Carrillo, J.; Martín-Gómez, J.; Herrera-Beurnio, M.C.; Estévez, R.C.; Urbano, F.J.; Marinas, A. Olive leaves as biotemplates for enhanced solar-light harvesting by a titania-based solid. Nanomaterials 2020, 10, 1057. [Google Scholar] [CrossRef] [PubMed]
- Cedola, A.; Palermo, C.; Centonze, D.; Del Nobile, M.A.; Conte, A. Characterization and bio-accessibility evaluation of olive leaf extract-enriched “Taralli”. Foods 2020, 9, 1268. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Moreno, J.L.; Doula, M.K. Olive oil waste management EU legislation: Current situation and policy recommendations. Int. J. Chem. Environ. Eng. Syst. 2012, 3, 65–77. [Google Scholar]
- Guinda, Á. Use of solid residue from the olive industry. Grasas y Aceites 2006, 57, 107–115. [Google Scholar] [CrossRef]
- Kamran, M. Olive (Olea Europaea L.) Leaf Biophenols as Nutraceuticals; Charles Sturt University: Bathurst, Australia, 2016. [Google Scholar]
- Ben Salem, M.; Affes, H.; Ksouda, K.; Sahnoun, Z.; Zeghal, K.M.; Hammami, S. Pharmacological Activities of Olea europaea Leaves. J. Food Process. Preserv. 2015, 39, 3128–3136. [Google Scholar] [CrossRef]
- Ranalli, A.; Contento, S.; Lucera, L.; Di Febo, M.; Marchegiani, D.; Di Fonzo, V. Factors affecting the contents of iridoid oleuropein in olive leaves (Olea europaea L.). J. Agric. Food Chem. 2006, 54, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Difonzo, G.; Russo, A.; Trani, A.; Paradiso, V.M.; Ranieri, M.; Pasqualone, A.; Summo, C.; Tamma, G.; Silletti, R.; Caponio, F. Green extracts from Coratina olive cultivar leaves: Antioxidant characterization and biological activity. J. Funct. Foods 2017, 31, 63–70. [Google Scholar] [CrossRef]
- Liu, Y.; McKeever, L.C.; Suo, Y.; Jin, T.Z.; Malik, N.S.A. Antimicrobial Activities of Olive Leaf Extract and Its Potential Use in Food Industry. ACS Symp. Ser. 2018, 1287, 119–132. [Google Scholar] [CrossRef]
- Noori, N.; Rajabian, M.; Nasrabadi, H.G.; Soofiani, M.R.A. Effect of Olea europaea Leaf Extract as A Prebiotic on Survival of Lactobacillus casei in UF Cheese During Cold Storage. J. Veterenary Res. 2020, 75, FA38–FA46. [Google Scholar] [CrossRef]
- Guglielmotti, M.; Passaghe, P.; Buiatti, S. Use of olive (Olea europaea L.) leaves as beer ingredient, and their influence on beer chemical composition and antioxidant activity. J. Food Sci. 2020, 85, 2278–2285. [Google Scholar] [CrossRef] [PubMed]
- Gambacorta, G.; Faccia, M.; Previtali, M.A.; Pati, S.; Notte, E.L.; Baiano, A. Effects of olive maturation and stoning on quality indices and antioxidant content of extra virgin oils (cv. coratina) during storage. J. Food Sci. 2010, 75, C229–C235. [Google Scholar] [CrossRef] [PubMed]
- Cinquanta, L.; Esti, M.; La Notte, E. Evolution of phenolic compounds in virgin olive oil during storage. J. Am. Oil Chem. Soc. 1997, 74, 1259–1264. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Teixeira, H.; Bento, A.; Pereira, J.A. Effect of Olive Leaves Addition during the Extraction Process of Overmature Fruits on Olive Oil Quality. Food Bioprocess. Technol. 2013, 6, 509–521. [Google Scholar] [CrossRef]
- Kiritsakis, K.; Kontominas, M.G.; Kontogiorgis, C.; Hadjipavlou-Litina, D.; Moustakas, A.; Kiritsakis, A. Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. J. Am. Oil Chem. Soc. 2010, 87, 369–376. [Google Scholar] [CrossRef]
- Paiva-Martins, F.; Correia, R.; Félix, S.; Ferreira, P.; Gordon, M.H. Effects of enrichment of refined olive oil with phenolic compounds from olive leaves. J. Agric. Food Chem. 2007, 55, 4139–4143. [Google Scholar] [CrossRef]
- Calvano, C.D.; Ventura, G.; Cataldi, T.R.I.; Palmisano, F. Improvement of chlorophyll identification in foodstuffs by MALDI ToF/ToF mass spectrometry using 1,5-diaminonaphthalene electron transfer secondary reaction matrix. Anal. Bioanal. Chem. 2015, 407, 6369–6379. [Google Scholar] [CrossRef] [PubMed]
- Calvano, C.D.; Ventura, G.; Trotta, M.; Bianco, G.; Cataldi, T.R.I.; Palmisano, F. Electron-Transfer Secondary Reaction Matrices for MALDI MS Analysis of Bacteriochlorophyll a in Rhodobacter sphaeroides and Its Zinc and Copper Analogue Pigments. J. Am. Soc. Mass Spectrom. 2017, 28, 125–135. [Google Scholar] [CrossRef]
- Tarchoune, I.; Sgherri, C.; Eddouzi, J.; Zinnai, A.; Quartacci, M.F.; Zarrouk, M. Olive leaf addition increases olive oil nutraceutical properties. Molecules 2019, 24, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, I.A. Olea europaea. In Medicinal Plants of the World; Humana Press: Totowa, NJ, USA, 2007; Volume 3, pp. 373–400. [Google Scholar]
- Ribeiro, R.D.A.; De Melo, M.R.; De Barros, F.; Gomes, C.; Trolin, G. Acute antihypertensive effect in conscious rats produced by some medicinal plants used in the state of São Paulo. J. Ethnopharmacol. 1986, 15, 261–269. [Google Scholar] [CrossRef]
- Darias, V.; Bravo, L.; Barquin, E.; Herrera, D.M.; Fraile, C. Contribution to the ethnopharmacological study of the Canary Islands. J. Ethnopharmacol. 1986, 15, 169–193. [Google Scholar] [CrossRef]
- Reynolds, J.E.F. Martindale: The Extra Pharmacopoeia, 31st ed.; Royal Pharmaceutical Society of Great Britain, Ed.; Royal Pharmaceutical Society: London, UK, 1996. [Google Scholar]
- De Feo, V.; Senatore, F. Medicinal plants and phytotherapy in the Amalfitan Coast, Salerno Province, Campania, Southern Italy. J. Ethnopharmacol. 1993, 39, 39–51. [Google Scholar] [CrossRef]
- Pieroni, A.; Heimler, D.; Pieters, L.; Van Poel, B.; Vlietinck, A.J. In vitro anti-complementary activity of flavonoids from olive (Olea europaea L.) leaves. Pharmazie 1996, 51, 765–768. [Google Scholar]
- Bellakhdar, J.; Claisse, R.; Fleurentin, J.; Younos, C. Repertory of standard herbal drugs in the Moroccan pharmacopoea. J. Ethnopharmacol. 1991, 35, 123–143. [Google Scholar] [CrossRef]
- Simpson, G.E. Folk Medicine in Trinidad. J. Am. Folk. 1962, 75, 326. [Google Scholar] [CrossRef]
- Vardanian, S.A. Phytotherapy of bronchial asthma in medieval Armenian medicine. Ter. Arkhiv 1978, 50, 133–136. [Google Scholar]
- Dilucia, F.; Lacivita, V.; Conte, A.; Del Nobile, M.A. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods 2020, 9, 857. [Google Scholar] [CrossRef]
- Bastante, C.C.; Cardoso, L.C.; Fernández-Ponce, M.T.; Serrano, C.M.; de la Ossa, E.J.M. Supercritical impregnation of olive leaf extract to obtain bioactive films effective in cherry tomato preservation. Food Packag. Shelf Life 2019, 21, 100338. [Google Scholar] [CrossRef]
- European Environment Agency. Diverting waste from landfill: Effectiveness of waste management policies in the European Union. EEA Rep. 2009, 1–68. [Google Scholar]
- Istituto Superiore per la protezione e la Ricerca Ambientale (ISPRA). Rapporto Rifiuti Speciali Edizione 2017. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/rapporto-rifiuti-speciali-edizione-2017 (accessed on 18 April 2021).
- Demichelis, F.; Piovano, F.; Fiore, S. Biowaste Management in Italy: Challenges and Perspectives. Sustainability 2019, 11, 4213. [Google Scholar] [CrossRef] [Green Version]
- Malapert, A.; Reboul, E.; Loonis, M.; Dangles, O.; Tomao, V. Direct and Rapid Profiling of Biophenols in Olive Pomace by UHPLC-DAD-MS. Food Anal. Methods 2018, 11, 1001–1010. [Google Scholar] [CrossRef]
- Nunes, M.A.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Lama-Muñoz, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Fernández-Bolaños, J. Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll. 2012, 28, 92–104. [Google Scholar] [CrossRef]
- Tortosa, G.; González-Gordo, S.; Ruiz, C.; Bedmar, E.J.; Palma, J.M. “Alperujo” compost improves the ascorbate (Vitamin C) content in pepper (Capsicum annuum L.) fruits and influences their oxidative metabolism. Agronomy 2018, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Romero-García, J.M.; Niño, L.; Martínez-Patiño, C.; Álvarez, C.; Castro, E.; Negro, M.J. Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 2014, 159, 421–432. [Google Scholar] [CrossRef]
- Bonet-Ragel, K.; Canet, A.; Benaiges, M.D.; Valero, F. Synthesis of biodiesel from high FFA alperujo oil catalysed by immobilised lipase. Fuel 2015, 161, 12–17. [Google Scholar] [CrossRef]
- Ghilardi, C.; Negrete, P.S.; Carelli, A.A.; Borroni, V. Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa. Bioresour. Bioprocess. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- de la Casa, J.A.; Lorite, M.; Jiménez, J.; Castro, E. Valorisation of wastewater from two-phase olive oil extraction in fired clay brick production. J. Hazard. Mater. 2009, 169, 271–278. [Google Scholar] [CrossRef]
- Uceda-Rodríguez, M.; López-García, A.B.; Moreno-Maroto, J.M.; Cobo-Ceacero, C.J.; Cotes-Palomino, M.T.; García, C.M. Evaluation of the environmental benefits associated with the addition of olive pomace in the manufacture of lightweight aggregates. Materials 2020, 13, 2351. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Romero, C.; Brenes, M. Residual Olive Paste as a Source of Phenolic Compounds and Triterpenic Acids. Eur. J. Lipid Sci. Technol. 2018, 120, 1700368. [Google Scholar] [CrossRef] [Green Version]
- Zambonin, C.G.; Calvano, C.D.; D’Accolti, L.; Palmisano, F. Laser desorption/ionization time-of-flight mass spectrometry of squalene in oil samples. Rapid Commun. Mass Spectrom. 2006, 20, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Rigane, G.; Salem, R. Ben Microwave-assisted extraction of hydroxytyrosol from alperujo and its impact on the stability of mayonnaise. J. Indian Chem. Soc. 2020, 97, 67–74. [Google Scholar]
- Spizzirri, U.G.; Carullo, G.; Aiello, F.; Paolino, D.; Restuccia, D. Valorisation of olive oil pomace extracts for a functional pear beverage formulation. Int. J. Food Sci. Technol. 2020, 14591. [Google Scholar] [CrossRef]
- Di Nunzio, M.; Picone, G.; Pasini, F.; Chiarello, E.; Caboni, M.F.; Capozzi, F.; Gianotti, A.; Bordoni, A. Olive oil by-product as functional ingredient in bakery products. Influence of processing and evaluation of biological effects. Food Res. Int. 2020, 131, 108940. [Google Scholar] [CrossRef] [Green Version]
- Nasopoulou, C.; Smith, T.; Detopoulou, M.; Tsikrika, C.; Papaharisis, L.; Barkas, D.; Zabetakis, I. Structural elucidation of olive pomace fed sea bass (Dicentrarchus labrax) polar lipids with cardioprotective activities. Food Chem. 2014, 145, 1097–1105. [Google Scholar] [CrossRef]
- Gisbert, E.; Andree, K.B.; Quintela, J.C.; Calduch-Giner, J.A.; Ipharraguerre, I.R.; Pérez-Sánchez, J. Olive oil bioactive compounds increase body weight, and improve gut health and integrity in gilthead sea bream (Sparus aurata). Br. J. Nutr. 2017, 117, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.A.; Pimentel, F.B.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innov. Food Sci. Emerg. Technol. 2016, 35, 139–148. [Google Scholar] [CrossRef]
- La Scalia, G.; Micale, R.; Cannizzaro, L.; Marra, F.P. A sustainable phenolic compound extraction system from olive oil mill wastewater. J. Clean. Prod. 2017, 142, 3782–3788. [Google Scholar] [CrossRef]
- Zbakh, H.; El Abbassi, A. Potential use of olive mill wastewater in the preparation of functional beverages: A review. J. Funct. Foods 2012, 4, 53–65. [Google Scholar] [CrossRef]
- Paraskeva, P.; Diamadopoulos, E. Technologies for olive mill wastewater (OMW) treatment: A review. J. Chem. Technol. Biotechnol. 2006, 81, 1475–1485. [Google Scholar] [CrossRef]
- Morillo, J.A.; Antizar-Ladislao, B.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A.; Russell, N.J. Bioremediation and biovalorisation of olive-mill wastes. Appl. Microbiol. Biotechnol. 2009, 82, 25–39. [Google Scholar] [CrossRef]
- Aviani, I.; Raviv, M.; Hadar, Y.; Saadi, I.; Dag, A.; Ben-Gal, A.; Yermiyahu, U.; Zipori, I.; Laor, Y. Effects of harvest date, irrigation level, cultivar type and fruit water content on olive mill wastewater generated by a laboratory scale “Abencor” milling system. Bioresour. Technol. 2012, 107, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Khdair, A.; Abu-Rumman, G. Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes 2020, 8, 671. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Pereira, R.; Freitas, A.C.; Rocha-Santos, T.A.P.; Panteleitchouk, T.S.L.; Duarte, A.C. Olive oil mill wastewaters before and after treatment: A critical review from the ecotoxicological point of view. Ecotoxicology 2012, 21, 615–629. [Google Scholar] [CrossRef]
- Ouzounidou, G.; Zervakis, G.; Gaitis, F. Raw and microbiologically detoxified olive mill waste and their impact on plant growth. Terr. Aquat. Environ. Toxicol. 2010, 4, 21–38. [Google Scholar]
- Torrecilla, J.S. Phenolic Compounds in Olive Oil Mill Wastewater. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010; pp. 357–365. ISBN 9780123744203. [Google Scholar]
- Bonvino, N.P.; Liang, J.; McCord, E.D.; Zafiris, E.; Benetti, N.; Ray, N.B.; Hung, A.; Boskou, D.; Karagiannis, T.C. OliveNetTM: A comprehensive library of compounds from Olea europaea. Database 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ventura, G.; Calvano, C.D.; Abbattista, R.; Bianco, M.; De Ceglie, C.; Losito, I.; Palmisano, F.; Cataldi, T.R.I. Characterization of bioactive and nutraceutical compounds occurring in olive oil processing wastes. Rapid Commun. Mass Spectrom. 2019, 33, 1670–1681. [Google Scholar] [CrossRef]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R.; Prenzler, P.D.; Robards, K. Investigation of Australian Olive Mill Waste for Recovery of Biophenols. J. Agric. Food Chem. 2005, 53, 9911–9920. [Google Scholar] [CrossRef] [PubMed]
- Barbera, A.C.; Maucieri, C.; Cavallaro, V.; Ioppolo, A.; Spagna, G. Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag. 2013, 119, 43–53. [Google Scholar] [CrossRef]
- Venturi, F.; Sanmartin, C.; Taglieri, I.; Nari, A.; Andrich, G.; Terzuoli, E.; Donnini, S.; Nicolella, C.; Zinnai, A. Development of phenol-enriched olive oil with phenolic compounds extracted from wastewater produced by physical refining. Nutrients 2017, 9, 916. [Google Scholar] [CrossRef] [Green Version]
- Servili, M.; Esposto, S.; Veneziani, G.; Urbani, S.; Taticchi, A.; Di Maio, I.; Selvaggini, R.; Sordini, B.; Montedoro, G.F. Improvement of bioactive phenol content in virgin olive oil with an olive-vegetation water concentrate produced by membrane treatment. Food Chem. 2011, 124, 1308–1315. [Google Scholar] [CrossRef]
- Caporaso, N.; Formisano, D.; Genovese, A. Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2829–2841. [Google Scholar] [CrossRef] [PubMed]
- Panizzi, L.; Scarpati, M.L.; Oriente, G. The constitution of oleuropein, a bitter glucoside of the olive with hypotensive action. II. Gazz. Chim. Ital. 1960, 90, 1449–1485. [Google Scholar]
- Bourquelot, E.; Vintilesco, J. Sur l‘oleuropéine, nouveau principe de nature glucosidique retiré de l’Olivier. Acad. Sci. Paris 1908, 147, 533–536. [Google Scholar]
- Capretti, G.; Bonaconza, E. Azione dell’infuso e del decotto di foglie di ulivo (Olea europea) su alcune costanti fisiche del sangue (viscosità e tensione superficiale) e su alcune componenti del ricambio (acido urico, cloruri, Na, K, colesterina). G. Clin. Med. 1949, 30, 630–642. [Google Scholar]
- Inouye, H.; Ueda, S.; Nakammura, Y. Studies on Monoterpene Glucosides. XII. Biosynthesis of Gentianaceous Secoiridoid Glucosides. Chem. Pharm. Bull. 1970, 18, 2043–2049. [Google Scholar] [CrossRef] [Green Version]
- Inouye, H.; Ueda, S.; Aoki, Y.; Takeda, Y. Studies on Monoterpene Glucosides and Related Natural Products. XVII. The Intermediacy of 7-Desoxyloganic Acid and Loganin in the Biosynthesis of Several Iridoid Glucosides. Chem. Pharm. Bull. 1972, 20, 1287–1296. [Google Scholar] [CrossRef] [Green Version]
- Inouye, H.; Ueda, S.; Inoue, K.; Takeda, Y. Studies on Monoterpene Glucosides and Related Natural Products. XXIII. Biosynthesis of the Secoiridoid Glucosides, Gentiopicroside, Morroniside, Oleuropein, and Jasminin. Chem. Pharm. Bull. 1974, 22, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Ragazzi, E.; Veronese, G.; Guiotto, A. Demethyloleoeuropeine, a new glucoside from ripe olives. Ann. Chim. Rome 1973. [Google Scholar]
- Gariboldi, P.; Jommi, G.; Verotta, L. Secoiridoids from Olea europaea. Phytochemistry 1986, 25, 865–869. [Google Scholar] [CrossRef]
- MacKellar, F.A.; Kelly, R.C.; Van Tamelen, E.E.; Dorschel, C. Structure and stereochemistry of elenolic acid. J. Am. Chem. Soc. 1973, 95, 7155–7156. [Google Scholar] [CrossRef]
- Kuwajima, H.; Uemura, T.; Takaishi, K.; Inoue, K.; Inouyet, H. A secoiridoid glucoside from Olea europaea. Phytochemistry 1988, 27, 1757–1759. [Google Scholar] [CrossRef]
- Capasso, R.; Evidente, A.; Visca, C.; Gianfreda, L.; Maremonti, M.; Greco, G. Production of glucose and bioactive aglycone by chemical and enzymatic hydrolysis of purified oleuropein from Olea Europea. Appl. Biochem. Biotechnol. 1997, 61, 365–377. [Google Scholar] [CrossRef]
- De Nino, A.; Lombardo, N.; Perri, E.; Procopio, A.; Raffaelli, A.; Sindona, G. Direct identification of phenolic glucosides from olive leaf extracts by atmospheric pressure ionization tandem mass spectrometry. J. Mass Spectrom. 1997, 32, 533–541. [Google Scholar] [CrossRef]
- Silva, S.; Gomes, L.; Leitão, F.; Coelho, A.V.; Boas, L.V. Phenolic Compounds and Antioxidant Activity of Olea europaea L. Fruits and Leaves. Food Sci. Technol. Int. 2006, 12, 385–395. [Google Scholar] [CrossRef]
- Fabbri, A.; Galaverna, G.; Ganino, T. Polyphenol composition of olive leaves with regard to cultivar, time of collection and shoot type. Acta Hortic. 2008, 459–464. [Google Scholar] [CrossRef]
- Luján, R.J.; Capote, F.P.; Marinas, A.; de Castro, M.D.L. Liquid chromatography/triple quadrupole tandem mass spectrometry with multiple reaction monitoring for optimal selection of transitions to evaluate nutraceuticals from olive-tree materials. Rapid Commun. Mass Spectrom. 2008, 22, 855–864. [Google Scholar] [CrossRef]
- Goulas, V.; Exarchou, V.; Troganis, A.N.; Psomiadou, E.; Fotsis, T.; Briasoulis, E.; Gerothanassis, I.P. Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol. Nutr. Food Res. 2009, 53, 600–608. [Google Scholar] [CrossRef]
- Laguerre, M.; Giraldo, L.J.L.; Piombo, G.; Figueroa-Espinoza, M.C.; Pina, M.; Benaissa, M.; Combe, A.; Castera, A.R.; Lecomte, J.; Villeneuve, P. Characterization of olive-leaf phenolics by esi-ms and evaluation of their antioxidant capacities by the cat assay. J. Am. Oil Chem. Soc. 2009, 86, 1215–1225. [Google Scholar] [CrossRef]
- Fu, S.; Arráez-Roman, D.; Segura-Carretero, A.; Menéndez, J.A.; Menéndez-Gutiérrez, M.P.; Micol, V.; Fernández-Gutiérrez, A. Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Anal. Bioanal. Chem. 2010, 397, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Taamalli, A.; Arráez-Román, D.; Ibañez, E.; Zarrouk, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS2. J. Agric. Food Chem. 2012, 60, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Quirantes-Piné, R.; Lozano-Sánchez, J.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-ESI-QTOF-MS as a Powerful Analytical Tool for Characterising Phenolic Compounds in Olive-leaf Extracts. Phytochem. Anal. 2013, 24, 213–223. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds of “Sikitita” olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents “Arbequina” and “Picual” olive leaves. LWT-Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Tóth, G.; Alberti, Á.; Sólyomváry, A.; Barabás, C.; Boldizsár, I.; Noszál, B. Phenolic profiling of various olive bark-types and leaves: HPLC-ESI/MS study. Ind. Crop. Prod. 2015, 67, 432–438. [Google Scholar] [CrossRef]
- Rodr, C.; Quirantes-pin, R.; Men, J. Composition and Analysis of Functional Components of Olive Leaves. Olives Olive Oil Funct. Foods 2017, 383–399. [Google Scholar] [CrossRef]
- Cittan, M.; Çelik, A. Development and validation of an analytical methodology based on liquid chromatography-electrospray tandem mass spectrometry for the simultaneous determination of phenolic compounds in olive leaf extract. J. Chromatogr. Sci. 2018, 56, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Olmo-García, L.; Kessler, N.; Neuweger, H.; Wendt, K.; Olmo-Peinado, J.; Fernández-Gutiérrez, A.; Baessmann, C.; Carrasco-Pancorbo, A. Unravelling the Distribution of Secondary Metabolites in Olea europaea L.: Exhaustive Characterization of Eight Olive-Tree Derived Matrices by Complementary Platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules 2018, 23, 2419. [Google Scholar] [CrossRef] [Green Version]
- Kanakis, P.; Termentzi, A.; Michel, T.; Gikas, E.; Halabalaki, M.; Skaltsounis, A.L. From olive drupes to olive OilAn HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med. 2013, 79, 1576–1587. [Google Scholar] [CrossRef] [Green Version]
- Michel, T.; Khlif, I.; Kanakis, P.; Termentzi, A.; Allouche, N.; Halabalaki, M.; Skaltsounis, A.L. UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem. Lett. 2015, 11, 424–439. [Google Scholar] [CrossRef]
- Kritikou, E.; Kalogiouri, N.P.; Kolyvira, L.; Thomaidis, N.S. Target and Suspect HRMS Metabolomics for the Determination of Functional Ingredients in 13 Varieties of Olive Leaves and Drupes from Greece. Molecules 2020, 25, 4889. [Google Scholar] [CrossRef] [PubMed]
- Abbattista, R.; Losito, I.; De Ceglie, C.; Castellaneta, A.; Calvano, C.D.; Palmisano, F.; Cataldi, T.R. A comprehensive study of oleuropein aglycone isomers in olive oil by enzymatic/chemical processes and liquid chromatography-Fourier transform mass spectrometry integrated by H/D exchange. Talanta 2019, 205, 120107. [Google Scholar] [CrossRef]
- Abbattista, R.; Losito, I.; De Ceglie, C.; Basile, G.; Calvano, C.D.; Palmisano, F.; Cataldi, T.R. Structural characterization of the ligstroside aglycone isoforms in virgin olive oils by liquid chromatography–high-resolution Fourier-transform mass spectrometry and H/Dexchange. J. Mass Spectrom. 2019, 54, 843–855. [Google Scholar] [CrossRef]
- Ryan, D.; Antolovich, M.; Prenzler, P.; Robards, K.; Lavee, S. Biotransformations of phenolic compounds in Olea europaea L. Sci. Hortic. 2002, 92, 147–176. [Google Scholar] [CrossRef]
- Juven, B.; Henis, Y.; Jacoby, B. Studies on the Mechanism of the Antimicrobial Action of Oleuropein*. J. Appl. Bacteriol. 1972, 35, 559–567. [Google Scholar] [CrossRef]
- Lee-Huang, S.; Zhang, L.; Huang, P.L.; Chang, Y.-T.; Huang, P.L. Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem. Biophys. Res. Commun. 2003, 307, 1029–1037. [Google Scholar] [CrossRef]
- Omar, S.H. Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm. J. 2010, 18, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.; Toral, M.; Gómez-Guzmán, M.; Jiménez, R.; Galindo, P.; Sánchez, M.; Olivares, M.; Gálvez, J.; Duarte, J. Antihypertensive effects of oleuropein-enriched olive leaf extract in spontaneously hypertensive rats. Food Funct. 2016, 7, 584–593. [Google Scholar] [CrossRef]
- Obied, H.K.; Prenzler, P.D.; Omar, S.H.; Ismael, R.; Servili, M.; Esposto, S.; Taticchi, A.; Selvaggini, R.; Urbani, S. Pharmacology of olive biophenols. In Advances in Molecular Toxicology; Elsevier B.V.: Amsterdam, The Netherlands, 2012; Volume 6, pp. 195–242. [Google Scholar]
- Cheurfa, M.; Abdallah, H.H.; Allem, R.; Noui, A.; Picot-Allain, C.M.N.; Mahomoodally, F. Hypocholesterolaemic and antioxidant properties of Olea europaea L. leaves from Chlef province, Algeria using in vitro, in vivo and in silico approaches. Food Chem. Toxicol. 2019, 123, 98–105. [Google Scholar] [CrossRef]
- Wainstein, J.; Ganz, T.; Boaz, M.; Bar Dayan, Y.; Dolev, E.; Kerem, Z.; Madar, Z. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food 2012, 15, 605–610. [Google Scholar] [CrossRef]
- Van der Stelt, I.; Van den Hil, E.F.H.; Swarts, H.J.M.; Vervoort, J.J.M.; Hoving, L.; Skaltsounis, L.; Lemonakis, N.; Andreadou, I.; van Schothorst, E.M.; Keijer, J. Nutraceutical oleuropein supplementation prevents high fat diet-induced adiposity in mice. J. Funct. Foods 2015, 14, 702–715. [Google Scholar] [CrossRef]
- Ventura, G.; Abbattista, R.; Calvano, C.D.; De Ceglie, C.; Losito, I.; Palmisano, F.; Cataldi, T.R.I. Tandem mass spectrometry characterization of a conjugate between oleuropein and hydrated cis -diammineplatinum(II). Rapid Commun. Mass Spectrom. 2019, 33, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Le Tutour, B.; Guedon, D. Antioxidative activities of Olea europaea leaves and related phenolic compounds. Phytochemistry 1992, 31, 1173–1178. [Google Scholar] [CrossRef]
- Lattanzio, V.; Veronica, M.T.; Lattanzio, A.C. Role of Phenolics in the Resistance Mechanisms of Plants Against Fungal Pathogens and Insects; Research Signpost: Kerala, India, 2015; Volume 661, ISBN 8130800349. [Google Scholar]
- Kubo, I.; Matsumoto, A.; Takase, I. A multichemical defense mechanism of bitter olive Olea europaea (oleaceae)-Is oleuropein a phytoalexin precursor? J. Chem. Ecol. 1985, 11, 251–263. [Google Scholar] [CrossRef]
- Spadafora, A.; Mazzuca, S.; Chiappetta, F.F.; Parise, A.; Perri, E.; Innocenti, A.M. Oleuropein-Specific-β-Glucosidase Activity Marks the Early Response of Olive Fruits (Olea europaea) to Mimed Insect Attack. Agric. Sci. China 2008, 7, 703–712. [Google Scholar] [CrossRef]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.H.; Saari, N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)-A review. Int. J. Mol. Sci. 2012, 13, 1291–1340. [Google Scholar] [CrossRef]
- Cardoso, S.M.; Guyot, S.; Marnet, N.; Lopes-da-Silva, J.A.; Renard, C.M.; Coimbra, M.A. Characterisation of phenolic extracts from olive pulp and olive pomace by electrospray mass spectrometry. J. Sci. Food Agric. 2005, 85, 21–32. [Google Scholar] [CrossRef]
- Peralbo-Molina, Á.; Priego-Capote, F.; De Castro, M.D.L. Tentative identification of phenolic compounds in olive pomace extracts using liquid chromatography-tandem mass spectrometry with a quadrupole- quadrupole-time-of-flight mass detector. J. Agric. Food Chem. 2012, 60, 11542–11550. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Martos, S.; Lama-Muñoz, A.; Fernández-Bolaños, J.G.; Rodríguez-Gutiérrez, G.; Fernández-Bolaños, J. Isolation and identification of minor secoiridoids and phenolic components from thermally treated olive oil by-products. Food Chem. 2015, 187, 166–173. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Rodríguez-Gutiérrez, G.; Rubio-Senent, F.; Palacios-Díaz, R.; Fernández-Bolaños, J. A study of the precursors of the natural antioxidant phenol 3,4-dihydroxyphenylglycol in olive oil waste. Food Chem. 2013, 140, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Pavez, I.C.; Lozano-Sánchez, J.; Borrás-Linares, I.; Nuñez, H.; Robert, P.; Segura-Carretero, A. Obtaining an extract rich in phenolic compounds from olive pomace by pressurized liquid extraction. Molecules 2019, 24, 3108. [Google Scholar] [CrossRef] [Green Version]
- Suárez, M.; Romero, M.P.; Ramo, T.; Macià, A.; Motilva, M.J. Methods for preparing phenolic extracts from olive cake for potential application as food antioxidants. J. Agric. Food Chem. 2009, 57, 1463–1472. [Google Scholar] [CrossRef]
- Klen, T.J.; Wondra, A.G.; Vrhovšek, U.; Vodopivec, B.M. Phenolic Profiling of Olives and Olive Oil Process-Derived Matrices Using UPLC-DAD-ESI-QTOF-HRMS Analysis. J. Agric. Food Chem. 2015, 63, 3859–3872. [Google Scholar] [CrossRef]
- Obied, H.K.; Bedgood, D.R.; Prenzler, P.D.; Robards, K. Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Anal. Chim. Acta 2007, 603, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, A.; Pati, S.; Minervini, F.; D’Antuono, I.; Linsalata, V.; Lattanzio, V. Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants. J. Agric. Food Chem. 2012, 60, 1822–1829. [Google Scholar] [CrossRef] [PubMed]
- D’Antuono, I.; Kontogianni, V.G.; Kotsiou, K.; Linsalata, V.; Logrieco, A.F.; Tasioula-Margari, M.; Cardinali, A. Polyphenolic characterization of olive mill wastewaters, coming from Italian and Greek olive cultivars, after membrane technology. Food Res. Int. 2014, 65, 301–310. [Google Scholar] [CrossRef]
- Rigane, G.; Bouaziz, M.; Sayadi, S.; Ben Salem, R. Identification and characterization of a new iridoid compound from two-phase Chemlali olive pomace. Eur. Food Res. Technol. 2012, 234, 1049–1054. [Google Scholar] [CrossRef]
- Mattonai, M.; Vinci, A.; Degano, I.; Ribechini, E.; Franceschi, M.; Modugno, F. Olive mill wastewaters: Quantitation of the phenolic content and profiling of elenolic acid derivatives using HPLC-DAD and HPLC/MS2 with an embedded polar group stationary phase. Nat. Prod. Res. 2019, 33, 3171–3175. [Google Scholar] [CrossRef] [PubMed]
- Bazoti, F.N.; Gikas, E.; Skaltsounis, A.L.; Tsarbopoulos, A. Development of a liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) method for the quantification of bioactive substances present in olive oil mill wastewaters. Anal. Chim. Acta 2006, 573–574, 258–266. [Google Scholar] [CrossRef]
- Damak, N.; Allouche, N.; Hamdi, B.; Litaudon, M.; Damak, M. New secoiridoid from olive mill wastewater. Nat. Prod. Res. 2012, 26, 125–131. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Brenes, M.; García, P.; Garrido, A. Hydroxytyrosol 4-β-D-glucoside, an important phenolic compound in olive fruits and derived products. J. Agric. Food Chem. 2002, 50, 3835–3839. [Google Scholar] [CrossRef]
- Servili, M.; Baldioli, M.; Selvaggini, R.; Macchioni, A.; Montedoro, G.F. Phenolic compounds of olive fruit: One- and two-dimensional nuclear magnetic resonance characterization of nuzhenide and its distribution in the constitutive parts of fruit. J. Agric. Food Chem. 1999, 47, 12–18. [Google Scholar] [CrossRef]
- Esti, M.; Cinquanta, L.; La Notte, E. Phenolic Compounds in Different Olive Varieties. J. Agric. Food Chem. 1998, 46, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.M.; Guyot, S.; Marnet, N.; Lopes-Da-Silva, J.A.; Silva, A.M.S.; Renard, C.M.G.C.; Coimbra, M.A. Identification of oleuropein oligomers in olive pulp and pomace. J. Sci. Food Agric. 2006, 86, 1495–1502. [Google Scholar] [CrossRef]
- Cioffi, G.; Pesca, M.S.; De Caprariis, P.; Braca, A.; Severino, L.; De Tommasi, N. Phenolic compounds in olive oil and olive pomace from Cilento (Campania, Italy) and their antioxidant activity. Food Chem. 2010, 121, 105–111. [Google Scholar] [CrossRef]
- Cicerale, S.; Conlan, X.A.; Barnett, N.W.; Keast, R.S.J. The concentration of oleocanthal in olive oil waste. Nat. Prod. Res. 2011, 25, 542–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano-Sánchez, J.; Giambanelli, E.; Quirantes-Piné, R.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Wastes generated during the storage of extra virgin olive oil as a natural source of phenolic compounds. J. Agric. Food Chem. 2011, 59, 11491–11500. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Fernández-Bolaños, J.; García-Borrego, A.; Lama-Muñoz, A.; Rodríguez-Gutiérrez, G. Influence of pH on the antioxidant phenols solubilised from hydrothermally treated olive oil by-product (alperujo). Food Chem. 2017, 219, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.; Bonaccorsi, I.L.; Cacciola, F.; Dugo, L.; De Gara, L.; Dugo, P.; Mondello, L. Distribution of bioactives in entire mill chain from the drupe to the oil and wastes. Nat. Prod. Res. 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, G.; Lama, A.; Trujillo, M.; Espartero, J.L.; Fernández-Bolaños, J. Isolation of a powerful antioxidant from Olea europaea fruit-mill waste: 3,4-Dihydroxyphenylglycol. LWT-Food Sci. Technol. 2009, 42, 483–490. [Google Scholar] [CrossRef]
- Del Coco, L.; De Pascali, S.A.; Iacovelli, V.; Cesari, G.; Schena, F.P.; Fanizzi, F.P. Following the olive oil production chain: 1D and 2D NMR study of olive paste, pomace, and oil. Eur. J. Lipid Sci. Technol. 2014, 116, 1513–1521. [Google Scholar] [CrossRef]
- Hafidi, M.; Amir, S.; Revel, J.C. Structural characterization of olive mill waster-water after aerobic digestion using elemental analysis, FTIR and 13C NMR. Process. Biochem. 2005, 40, 2615–2622. [Google Scholar] [CrossRef]
- Evci, E.; Yılmaz, Ö.; Bekfelavi, E.Y.; Kuş, N.S. Degradation of olive mill wastewater by different methods and antioxidant activity of olive mill wastewater extraction. SN Appl. Sci. 2019, 1, 1206. [Google Scholar] [CrossRef] [Green Version]
- Losito, I.; Abbattista, R.; De Ceglie, C.; Castellaneta, A.; Calvano, C.D.; Cataldi, T.R.I. Bioactive Secoiridoids in Italian Extra-Virgin Olive Oils: Impact of Olive Plant Cultivars, Cultivation Regions and Processing. Molecules 2021, 26, 743. [Google Scholar] [CrossRef]
- De Ceglie, C.; Abbattista, R.; Losito, I.; Castellaneta, A.; Calvano, C.D.; Bianco, G.; Palmisano, F.; Cataldi, T.R.I. Influence of Horizontal Centrifugation Processes on the Content of Phenolic Secoiridoids and Their Oxidized Derivatives in Commercial Olive Oils: An Insight by Liquid Chromatography-High-Resolution Mass Spectrometry and Chemometrics. J. Agric. Food Chem. 2020, 68, 3171–3183. [Google Scholar] [CrossRef]
- Abbattista, R.; Losito, I.; Castellaneta, A.; De Ceglie, C.; Calvano, C.D.; Cataldi, T.R.I. Insight into the Storage-Related Oxidative/Hydrolytic Degradation of Olive Oil Secoiridoids by Liquid Chromatography and High-Resolution Fourier Transform Mass Spectrometry. J. Agric. Food Chem. 2020, 68, 12310–12325. [Google Scholar] [CrossRef]
- Brenes, M.; Romero, C.; García, A.; Hidalgo, F.J.; Ruiz-Méndez, M.V. Phenolic compounds in olive oils intended for refining: Formation of 4-ethylphenol during olive paste storage. J. Agric. Food Chem. 2004, 52, 8177–8181. [Google Scholar] [CrossRef]
- Tirado, D.F.; de la Fuente, E.; Calvo, L. A selective extraction of hydroxytyrosol rich olive oil from alperujo. J. Food Eng. 2019, 263, 409–416. [Google Scholar] [CrossRef]
- Skaltsounis, A.L.; Argyropoulou, A.; Aligiannis, N.; Xynos, N. Recovery of High. Added Value Compounds from Olive Tree Products and Olive Processing Byproducts; AOCS Press: Urbana, IL, USA, 2015; ISBN 9781630670429. [Google Scholar]
- Cardoso, S.M.; Falcão, S.I.; Peres, A.M.; Domingues, M.R.M. Oleuropein/ligstroside isomers and their derivatives in Portuguese olive mill wastewaters. Food Chem. 2011, 129, 291–296. [Google Scholar] [CrossRef]
- Calvano, C.D.; Monopoli, A.; Ditaranto, N.; Palmisano, F. 1,8-Bis(dimethylamino)naphthalene/9-aminoacridine: A new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry. Anal. Chim. Acta 2013, 798, 56–63. [Google Scholar] [CrossRef] [PubMed]
Country | Assumption Form of Olive Leaf-Based Products | Route | Treatments | References |
---|---|---|---|---|
Arabic countries | Dried plant fumigation | Nasal | Abortifacient, and treatment of cystitis and sore throat | [35] |
Brazil | Herbal tea of the fresh leaves | Oral | To induce diuresis, and treatment of hypertension | [36] |
Canary Islands | An infusion prepared from the fresh or dried leaves | Oral/rectal | Treatment of diabetes; hypertension and haemorrhoids | [37] |
France | Powdered dried leaves as hard capsules | Oral | To promote urinary and digestive elimination functions | [38] |
Germany | Extract with ethanol 96% v/v as liquid or coated tablet | Oral | Treatment of atherosclerosis and hypertension | [38] |
Italy | Infusion of the dried leaf Infusion of the fresh leaf | Oral | Treatment of hypertension and anti-inflammatory; for wound healing, emollient for ingrown nails and to restore epithelium | [39,40] |
Morocco | Leaves and essential oil from the leaves | Oral Topical | Treatment of stomach and intestinal disease and as a mouth cleanser; treatment of constipation and liver pain; tonic for hairs | [41] |
Trinidad | Hot water extract of the leaf | Oral | To increase milk supply of nursing mother | [42] |
Ukraine | Hot water extract of dried plant | Oral | Treatment of bronchial asthma | [43] |
Name | Formula (M) | m/z [M-H]- | m/z [M + H]+ | Ionization Source | Leaves | Olive Pomace | OOMW |
---|---|---|---|---|---|---|---|
10-hydroxy-oleacin | C17H20O7 | 335.114 | 337.128 | APCI, ESI | [106] 5 | [49] | |
10-hydroxy-oleuropein | C25H32O14 | 555.172 | ESI | [100] | [127] | ||
10-hydroxyoleuropein aglycone | C19H22O9 | 393.120 | 395.133 | APCI, ESI | [106] 5 | ||
1-β-D-glucopyranosyl acyclodihydroelenolic acid glycosylate | C23H28O16 | 569.209 | ESI | [128] | |||
1-β-D-glucopyranosylacyclodihydro elenolic acid (acyclodihydroelenolic acid hexoside) | C17H28O11 | 407.156 | 409.17 | APCI, ESI | [106] 5 | [128] | |
2-(2-ethyl-3-hydroxy-6-propionylcyclohexyl) acetic acid glucoside | C19H32O9 | 403.197 | ESI | [100] | |||
2-hydroxy-oleuropein | C25H32O14 | 555.172 | ESI | [129] | |||
2-phenethyl-β-primeveroside | C19H28O10 | 415.161 | 417.175 | APCI, ESI | [106] 5 | ||
3,4-dihydroxyphenylglycol | C8H10O4 | 151.040 d | 153.054 a | APCI, ESI, MALDI | [106] 5 | [76] 1 | |
4-hydroxyphenylacetic acid | C8H8O3 | 151.040 | 153.054 | APCI, ESI | [106]5 | [130] | |
6′-β-rhamnopyranosyl-oleoside | C22H32O15 | 535.167 | ESI | [130] | |||
6′-O-[2,6-dimethyl-8-hydroxy-2-octenoyloxy]-secologanoside | C26H38O13 | 557.224 | ESI | [101] | |||
7-deoxyloganic acid | C16H24O9 | 359.135 | ESI | [108] | [127] | ||
Acteoside | C29H36O15 | 623.198 | ESI | [103] | |||
Acetoxypinoresinol | C22H24O8 | 415.139 | ESI | [100] | [131] | ||
Aesculetin (Dihydroxhycoumarin isomers) | C9H6O4 | 177.019 | 179.034 | APCI, ESI | [106] 5 [108] | ||
Aesculin | C15H16O9 | 339.072 | 341.088 | APCI, ESI | [106] 5 | ||
Apigenin | C15H10O5 | 269.046 | 271.06 | APCI, ESI | [9] 3 [100] [106] 5 [108,109] | [96,127,131,132,133] | [133] |
Apigenin 6,8-di-C-glucoside (Vicenin 2) | C27H30O15 | 593.151 | ESI | [7] | |||
Apigenin-7-O-glucoside | C21H20O10 | 431.098 | 433.113 | APCI, ESI, FAB | [7] [9] 3 [99,100,101,105] [106] 5 [108] | [96,127,131,133] | [133] |
Apigenin-7-O-rutinoside | C27H30O14 | 577.156 | 579.171 | APCI, ESI | [7,23,100,101,102] [106] 5 [108] | [134] | |
Ascorbyl hexoside | C12H18O11 | 337.078 | ESI | [7] | |||
Azelaic acid | C9H16O4 | 187.097 | 189.113 | APCI, ESI | [106] 5 | ||
β-hydroxy-isoverbascoside | C29H36O16 | 639.193 | ESI | [7,108] | [128,129] | [135,136] | |
β-hydroxyacteoside | C29H36O16 | 639.193 | ESI | [129] | |||
β-methoxyl-verbascoside | C30H38O16 | 653.209 | ESI | [108] | |||
Caffeic acid | C9H8O4 | 179.035 | 181.05 | APCI, ESI | [103,105] [106] 5 | [49,127,131] | [134,136] |
Caffeic acid derivative | C18H18O9 | 377.089 | ESI | [103] | |||
Caffeic acid diglycoside | C21H30O13 | 489.161 | ESI | [108] | |||
Caffeic alcohol derivative | C21H30O13 | 489.161 | ESI | [103] | |||
Caffeoyl-6′-secologanoside (Cafselogoside) | C25H28O14 | 551.141 | 553.155 | APCI, ESI | [106] 5 | [49,50,133] | [133,134] |
Caffeoyl-hexoside | C15H18O9 | 341.088 | ESI | [49] | |||
Calceolarioside | C23H26O11 | 477.14 | ESI | [7,108] | [49] | ||
Chlorogenic acid (Caffeoyl-quinic acid) | C16H18O9 | 353.088 | 355.102 | ESI | [7,105] | [49,130] | [134] |
Chrysoeriol | C16H12O6 | 299.056 | 301.071 | ESI | [134] | ||
Chrysoeriol-7-O-glucoside | C22H22O11 | 461.109 | 463.124 | APCI, ESI | [7,99,100,102] [106] 5 | ||
Cinammic acid | C9H8O2 | 147.045 | ESI | [127] | |||
Citric acid | C6H8O7 | 191.02 | 175.024 a | APCI, ESI | [7] [106] 5 | ||
Comselogoside | C25H27O13 | 535.146 | 537.16 | APCI, ESI | [106] 5 | [49,50,133] | [133,134,136] |
Cyanidin-3-rutinoside | C27H31O15+ | 595.166 | ESI | [95] | |||
D(+)-Erytro-1-(4-hydroxy-3-methoxy)-phenyl-1,2,3-propantriol | C10H14O5 | 213.077 | 215.091 | ESI | [50] | [134] | |
Decaffeoyl verbascoside | C20H30O12 | 461.166 | ESI | [7] | [49] | ||
Dehydro ligstroside aglycone | C19H20O7 | 359.114 | 361.129 | APCI, ESI | [106] 5 | ||
Dehydro oleuropein aglycone | C19H20O8 | 375.109 | 377.124 | APCI, ESI | [106] 5 | ||
Demethyloleuropein | C24H30O13 | 525.161 | ESI | [7,99,102,108] | [132,133] | [133] | |
Deoxyloganic acid lauryl ester | C23H38O5 | 393.264 | ESI | [137] | |||
Desoxyelenolic acid | C11H14O5 | 225.077 | 227.091 | APCI, ESI | [106] 5 | ||
Dihydro-oleuropein | C25H36O13 | 543.208 | APCI, ESI | [7] [106] 5 | [49,127,128,133] | [133] | |
Dihyroxybenzoic acid hexoside | C13H16O9 | 315.072 | ESI | [7] | |||
Dihyroxybenzoic acid hexoside pentoside | C18H24O13 | 447.114 | ESI | [7] | |||
Dimethyl oleuropein aglycone | C21H26O8 | 405.156 | 407.17 | APCI, ESI | [106] 5 | ||
Diosmetin | C16H12O6 | 299.056 | 301.071 | APCI, ESI | [98,100] [106] 5 [108] | [127] | |
Diosmetin glucoside | C22H22O11 | 461.109 | ESI | [108] | |||
Diosmin | C28H32O15 | 607.167 | ESI | [7,100,108] | |||
Elenolic acid (EA)-methyl ester | C12H16O6 | 255.088 | 257.102 | APCI, ESI | [106] 5 | ||
Elenolic acid (EA) | C11H14O6 | 241.072 | 243.086, 225.077 a | APCI, ESI, MALDI | [76] 1 [106] 5 | [49,127,131] | [134,136,138] |
Elenolic acid (EA) derivative (decarboxylated form of hydroxyelenolic acid) | C10H14O5 | 213.077 | 197.081 a | APCI, ESI, MALDI | [106] 5 | [132] | [76] 1 [138] |
Elenolic acid (EA) derivative | C10H16O5 | 215.092 | ESI | [50,132] | |||
Elenolic acid decarboxymethylated (EDA) | C9H12O4 | 183.066 | 185.081 | APCI, ESI, MALDI | [106] 5 | [50] | [76] 1 [136,138] |
Elenolic acid diglucoside | C23H33O16 | 565.177 | ESI | [101] | |||
Elenolic acid glucoside (Oleoside methyl ester) | C17H24O11 | 403.125 | 405.139 | APCI, ESI, MALDI | [7] [76] 1 [99,100,101,102,103] [106] 5 [108] | [127,128,130,133] | [133,134] |
Elenolic acid hexoside derivative | C19H26O13 | 461.13 | ESI | [7] | |||
Eriodictyol | C15H12O6 | 287.056 | ESI | [103,105] | |||
Eudesmic acid | C10H12O5 | 211.06 | 213.076 | APCI, ESI | [106] 5 | ||
Ferulic acid | C10H10O4 | 193.051 | 195.066 | APCI, ESI | [103] [106] 5 [109] | [49,127] | |
Feruloyl-hexoside | C16H20O9 | 401.109 | ESI | [49] | |||
Flavonol diglicoside | C27H30O16 | 609.146 | ESI | [108] | |||
Fraxamoside | C25H30O13 | 537.161 | ESI | [7,108] | |||
Fustin | C15H12O6 | 287.056 | ESI | [103] | |||
Gallic acid | C7H6O5 | 169.014 | APCI, ESI | [7,105] [106] 5 [109] | [127] | [138] | |
Gallocatechin | C15H14O7 | 305.067 | APCI, ESI | [106] 5 [108] | |||
Gingerol | C17H26O4 | 293.176 | 295.19 | APCI, ESI | [106] 5 | ||
Gluconic acid | C6H11O7 | 195.051 | ESI | [101] | |||
Homovanillyl alcohol | C9H12O3 | 167.071 | ESI | [103] | |||
Hydrogenated EDA | C9H14O4 | 185.082 | MALDI | [76] 1 | |||
Hydrogenated-EA | C11H16O6 | 243.087 | ESI | [50] | |||
Hydro-oleuropein | C25H34O13 | 541.193 | ESI | [128] | |||
Hydroxy-oleocanthal | C17H20O6 | 319.119 | 321.134 | APCI, ESI | [106] 5 | ||
Hydroxy-EA | C11H14O7 | 257.067 | 259.081 | APCI, ESI | [106] 5 | ||
Hydroxy-EDA | C9H12O5 | 199.062 | 183.065 a | APCI, ESI | [106] 5 | [49,132] | [136] |
Hydroxy-oleuropein | C25H32O14 | 555.172 | APCI, ESI | [7,101,103] [106] 5 [108] | [132] | ||
Hydroxy-oleuropein aglycone | C22H32O8 | 423.202 | ESI | [108] | |||
Hydroxypinoresinol | C20H22O7 | 373.129 | 375.145 | APCI, ESI | [106] 5 | [127] | |
Hydroxytyrosol (3,4-DHPEA) | C8H10O3 | 153.056 | 155.07 | APCI, ESI, MALDI | [94,97,99,100,101,103] [106] 5 [108,109] | [49,50,96,127,131,132,133] | [76] 1 [133,134,136,138,139] |
Hydroxytyrosol acetate | C10H11O4 | 195.066 | ESI | [97,101] | [131,133] | [133] | |
Hydroxytyrosol diglucoside | C20H28O13 | 475.146 | ESI | [127] | |||
Hydroxytyrosol glucoside | C14H20O8 | 315.109 | 317.124 | APCI, ESI, MALDI | [7,23] [76] 1 [99,102,103,106] 5 [108] | [49,127,130,133] | [133,134,136] |
Hydroxytyrosol rhamnoside | C20H34013 | 481.193 | ESI | [127] | |||
Hydroxytyrosil acyclodihydroelenolate | C19H26O8 | 381.156 | 383.17 | ESI | [134,136] | ||
Isoacetoside | C29H36O15 | 623.198 | 625.213 | ESI | [99] | [134] | |
Isoverbascoside | C29H36O15 | 623.198 | ESI | [7] | [135] | ||
Jaspolyoside | C42H54O23 | 925.298 | ESI | [7,108] | |||
Jaspolyoside derivative | C42H54O22 | 909.303 | ESI | [108] | |||
Ligstroside | C25H32O12 | 523.128 | 525.197 507.185 a 542.223 b | APCI, ESI, FAB | [7,23] [93] 4 [98,99,101,102,103] [106] 5 [108] | [132,133] | [133,134] |
Ligstroside aglycone (p-HPEA-EA) | C19H22O7 | 361.129 | 363.144 | APCI, ESI | [94,99] [106] 5 | [127,128,131,133] | [133,134] |
Loganic acid | C16H24O10 | 375.130 | ESI | [7] | [127,132] | ||
Loganic acid glucoside | C22H33O16 | 537.183 | ESI | [7] | [49,127] | ||
Loganin (7-epiloganin) | C17H26O10 | 389.145 | ESI | [7,101,108] | [127] | ||
Loganin glucoside | C23H38O16 | 569.209 | ESI | [127] | |||
Lucidumoside C | C27H35O14 | 583.203 | APCI, ESI | [101] [106] 5 | |||
Luteolin derivative | C31H36O13 | 615.208 | ESI | [108] | |||
Luteolin | C15H10O6 | 285.041 | 287.055 | APCI, ESI | [9] 3 [23,97,99,100,101,102,103,105] [106] 5 [108,109] | [96,127,130,131,132,133] | [133,134] |
Luteolin derivative | C31H28O14 | 623.141 | ESI | [108] | |||
Luteolin diglucoside | C27H30O16 | 609.146 | 611.161 | APCI, ESI | [7,23,100,101,102] [106] 5 | ||
Luteolin-4′-O-glucoside | C21H20O11 | 447.093 | 449.108 | APCI, ESI | [94,97,101] [106] 5 | [130,133] | [133,134] |
Luteolin-7-O-glucoside | C21H20O11 | 447.093 | 449.108 | APCI, ESI, MALDI | [4,7] [9] 3 [76] 1 [94,97,98,101,105] [106] 5 | [96,128,130,131,132,133] | [133,134] |
Luteolin-7-O-rutinoside | C27H30O15 | 593.151 | 595.166 | ESI APCI | [7] [9] 3 [101] | [130,132] | [134] |
Luteolin-hexoside | C21H20O11 | 447.093 | 449.108 | APCI, ESI | [7,23,99,100,101,102,103] [106] 5 [108] | [127,132] | |
Luteolin-O-rutinoside | C27H30O15 | 593.151 | 595.166 | APCI, ESI | [23,100,102] [106] 5 [108] | [49,130,133] | [133] |
Malic acid | C4H6O5 | 133.014 | ESI | [7] | |||
Maslinic acid | C30H48O4 | 471.348 | ESI | [108] | |||
Methoxyloleuropein | C26H34O14 | 569.188 | ESI | [100,102,103,108] | |||
Methoxyloleuroside | C26H34O14 | 569.188 | ESI | [108] | |||
Methyl oleacein | C18H22O6 | 333.134 | 317.139 a | APCI, ESI | [106] 5 | ||
Methyl oleuropein aglycone | C20H24O8 | 391.14 | 393.154 | APCI, ESI | [106] 5 | ||
Monohydrated oleacein (geminal diol) | C17H22O7 | 337.129 | MALDI | [76] 1 | |||
Monohydrated-EDA | C9H14O5 | 201.077 | MALDI | [76] 1 | |||
Naringenin | C15H12O5 | 271.089 | 273.076 | APCI, ESI | [106] 5 | [132] | |
Neo-nüzhenide | C31H42O18 | 701.23 | ESI, MALDI | [76] 1 [108] | [128] | ||
Nüzhenide | C31H42O17 | 685.235 | 687.25 | APCI, ESI | [99,103] [106] 5 | [49,133] | [133,134] |
Oleacin (3,4-DHPEA-EDA) | C17H20O6 | 319.119 | 321.133 | APCI, ESI, MALDI | [106] 5 [108] | [127,131,133] | [76] 1 [133,134] |
Oleanolic acid | C30H48O3 | 455.353 | ESI | [108] | |||
Olenoside A and B | C11H14O5 | 249.074 c | MALDI | [140] 1 | |||
Oleocanthal (p-HPEA-EDA) | C17H20O5 | 303.124 | 305.138 | APCI, ESI | [106] 5 | [127,131,133] | [133,134] |
Oleoside | C16H22O11 | 389.109 | 391.117 | APCI, ESI | [7,23,94,99,101,102,103] [106] 5 [108] | [49,50,127,130,132,133] | [133,134,136] |
Oleoside diglucoside | C28H42O21 | 713.215 | ESI | [50,127] | |||
Oleoside deoxyriboside | C20H26O15 | 505.12 | ESI | [49,50,127] | |||
Oleoside dimethyl ester | C18H26O11 | 417.14 | ESI | [127] | |||
Oleoside glucoside (6′-β-glucopyranosyl-oleoside) | C22H32O16 | 551.162 | ESI | [127,130] | |||
Oleoside methyl ester derivative | C18H30O11 | 421.172 | ESI | [7] | |||
Oleuricine A (oleuropein glucoside) | C31H42O18 | 701.23 | MALDI | [76] 1 | |||
Oleuricine B (oleuroside glucoside) | C31H42O18 | 701.23 | MALDI | [76] 1 | |||
Oleuropein | C25H32O13 | 539.177 | 541.193 558.218 b 523.176 a | APCI, ESI, FAB, MALDI | [7,23] [76] 1 [92] 2 [93] 4 [94,97,98,99,100,101,102,103] [106] 5 [108,109] | [96,127,128,130,131,132,133] | [133,134,136] |
Oleuropein aglycone (3,4-DHPEA-EA) | C19H22O8 | 377.124 | 379.139 | APCI, ESI, FAB, MALDI | [23] [76] 1 [92] 2 [94,99,102] [106] 5 [108] | [49,127,131,133] | [76] 1 [133,134] |
Oleuropein aglycone derivative | C19H20O7 | 359.117 | ESI | [128] | |||
Oleuropein aglycone derivative | C16H26O10 | 377.145 | ESI | [7,100,103] | [130] | [134,136] | |
Oleuropein derivative | C25H36O12 | 527.213 | ESI | [127] | |||
Oleuropein dimer | C50H62O25 | 1075.33 | ESI | [130] | |||
Oleuropein glucoside isomers | C31H42O18 | 701.23 | 703.244 720.271 b | APCI, ESI, FAB | [7] [93] 4 [94,99,100,101,102,103] [106] 5 [108] | [49,130,133] | [133,134] |
Oleuropein trimer | C75H90O39 | 1613.499 | ESI | [130] | |||
Oleuroside | C25H32O13 | 539.177 | 541.193 | ESI | [94,98,99,101,102,103,108] | [49] | [134] |
Oxidized isoverbascoside | C29H34O15 | 621.183 | ESI | [135] | |||
Oxidized verbascoside | C29H34O15 | 621.183 | ESI | [135] | |||
p-Coumaric acid | C9H8O3 | 163.04 | 165.055 | APCI, ESI | [101,105] [106] 5 | [49,127,131,133] | [133,136] |
p-Coumaroyl aldarate | C15H16O10 | 355.067 | ESI | [49] | |||
p-Coumaroyl hexoside | C15H18O8 | 325.093 | ESI | [49] | |||
Phenylalanine | C9H11NO2 | 164.072 | ESI | [127] | |||
p-Hydroxybenzoic acid (4-hydroxybenzoic acid) | C7H6O3 | 137.024 | 139.038 | APCI, ESI | [101,103] [106] 5 | [138] | |
Peonidin-3-O-rutinoside | C28H33O15+ | 609.181 | ESI | [95] | |||
Pinoresinol | C20H22O6 | 357.134 | 359.149 | APCI, ESI | [100,105] [106] 5 [109] | [50,127,131,132] | |
Protocatechuic acid | C7H6O4 | 153.019 | 155.034 | APCI, ESI | [105] [106] 5 | [127] | [138] |
Quercetin | C15H10O7 | 301.035 | 303.05 | APCI, ESI | [98,99,103,105] [106] 5 [108,109] | [127] | [134] |
Quercetin arabinose | C20H18O11 | 433.078 | ESI | [128] | |||
Quercetin-4-O-glucoside | C21H20O12 | 463.088 | 465.101 | APCI, ESI | [106] 5 [108] | ||
Quercetin-3-O-rhamnoside | C21H20O11 | 447.093 | 449.108 | ESI, MALDI | [76] 1 | [134] | |
Quinic acid | C7H12O6 | 191.056 | 193.071 | APCI, ESI | [7,100,101] [106] 5 | [49,132] | [136] |
Quinone oxydized hydroxytirosol | C8H8O3 | 151.04 | 153.054 | ESI | [132] | ||
Rutin | C27H30O16 | 609.146 | 611.161 | APCI, ESI | [7] [9] 3 [23,94,99,100,101,102] [106] 5 [108] | [127,130,131,133] | [133,134,136] |
Secologanic acid | C18H26O10 | 401.145 | ESI | [127] | |||
Secologanin | C17H24O10 | 387.13 | ESI | [127] | |||
Secologanoside (oleoside positional isomer) | C16H23O11 | 389.109 | APCI, ESI | [7,23] [76] 1 [99,100,101,102,103] [106] 5 [108] | [127,132,133] | [133] | |
Shikimic acid | C7H10O5 | 173.05 | APCI, ESI | [127] | |||
Syringaresinol | C22H25O8 | 417.156 | 419.169 | APCI, ESI | [99,100] [106] 5 | ||
Taxifolin | C15H12O7 | 303.051 | 305.066 | APCI, ESI | [7,99,100,103,105] [106] 5 | [127] | |
Tyrosol | C8H10O2 | 137.061 | 121.064 a | APCI, ESI | [23] [106] 5 [109] | [49,50,127,131,133] | [133,136,138,139] |
Tyrosol glucoside | C14H20O7 | 299.114 | 301.13 | APCI, ESI | [102] [106] 5 | [127,133] | [133,134] |
Vanillic acid | C8H8O4 | 167.035 | ESI | [105] | [127,131,132,133] | [133,138] | |
Vanillic acid hexoside | C14H18O9 | 329.088 | ESI | [49] | |||
Vanillin | C8H8O3 | 151.04 | ESI | [7,100,101,103,109] | [131] | ||
Verbascoside | C29H36O15 | 623.198 | 625.213 | APCI, ESI | [7,23,94,98,101,102,105] [106] 5 [108] | [49,96,127,128,130,131,133] | [133,134,135,136] |
Name | Leaves | Refs. | OP | Refs. | OOMW | Refs. |
---|---|---|---|---|---|---|
3,4- dihydroxyphenylglycol | 7.50–20.16 | [150] | ||||
Oleoside glucoside (6′-β- glucopyranosyl-oleoside) | 5.0–5.0 | [130] b | ||||
6′-β-rhamnopyranosyl-oleoside | 6.4–6.6 | [130] b | ||||
Acteoside | 7.8–9.2 | [103] | ||||
Acetoxypinoresinol | 9.32–12.2 14.4–15.2 | [149] [132] | ||||
Apigenin | 0.06–0.12 | [105] | 0.195–0.501 11.4–13.6 19.5–25.5 29.7–29.9 | [149] [151] [96] [132] | 2.5–6.5 | [151] |
Apigenin-7-O-glucoside | 0.197–0.217 0.230–0.386 0.33–0.36 | [96] [102] [105] | 5.3–7.1 | [96] | ||
Apigenin-7-O-rutinoside | 0.7–0.9 | [151] | ||||
Caffeic acid | 0.012–0.018 0.60–0.66 1.0–1.2 | [105] [103] [34] | 6.7–13.5 67–69 | [147] [49] a | 19.2–57.3 0.014–0.017 | [151] [5] d |
Chlorogenic acid (Caffeoyl-quinic acid) | 0.00187–0.00347 | [105] | ||||
Chrysoeriol-7-O-glucoside | 0.581–0.845 | [102] | ||||
Demethyloleuropein | 1.338–6.382 | [102] | 11.2–22.4 | [151] | ||
Elenolic acid (EA) | 2.1–2.6 | [151] | 4.9–11.7 | [151] | ||
Elenolic acid (EA) derivative (decarboxylated form of hydroxyelenolic acid) | 59–61 153–601 | [132] [149] | ||||
Elenolic acid (EA) derivative | 788–896 | [150] | ||||
Elenolic acid decarboxymethylated (EDA) | 515–601 | [150] | ||||
Elenolic acid glucoside (Oleoside methyl ester) | 0.267–1.367 | [102] | 32.9–33.9 | [132] | ||
Eriodictyol | 0.0062–0.0074 | [105] | ||||
Ferulic acid | 0.035–0.055 15–37 | [105] [34] | 12.6 | [147] | ||
Gallic acid | 0.0020–0.0032 0.3–1.8 | [105] [34] | 0.0–1.6 11.4–12.6 | [151] [147] | 3.86–6.71 22.2–61.0 | [138] [151] |
Hydro-oleuropein | 99–101 | [132] | ||||
Hydroxytyrosol (3,4-DHPEA) | 6–24 18.3–20.1 | [34] [97] | 8.4–10.4 60–163 159–181 799–1059 809–853 | [147] [58] [149] [150] [96] | 157.2–245.1 483.0–1733.2 544–1560 1230–1290 0.25–18.2 0.0020–0.1224 | [151] [138] [80] [77] [139] c [5] d |
Hydroxytyrosol acetate | 16.6–18.8 | [97] | 44–167 562–866 | [58] [150] | ||
Hydroxytyrosol diglucoside | 87.0–89.6 | [49] a | ||||
Hydroxytyrosol glucoside | 0.340–0.793 | [102] | 164.0–166.4 6.2–6.8 | [49] a [130] b | 1300 -1700 | [77] |
Ligstroside | 3.251–3.845 | [102] | 2.5–2.9 15.7–17.3 | [151] [132] | 0.0087–0.0092 | [5] d |
Luteolin | 0.216–0.224 0.367–0.497 1.16–1.30 10.4–53.5 | [105] [102] [103] [97] | 11.3–147.3 14.3–32.7 19.3–25.5 217–225 | [149] [151] [96] [132] | 2.5–36.2 270–510 0.0145–0.021 | [151] [77] [5] d |
Luteolin diglucoside | 0.201–0.364 | [102] | 3.2–3.2 | [151] | ||
Luteolin-4′-O-glucoside | 70.1–71.1 | [97] | 0.46–0.48 | [130] b | ||
Luteolin-7-O-glucoside | 0.145–0.165 2.16–2.34 5.6–6.6 68–90 | [96] [105] [45] [97] | 12.0–16.6 19–23 2.1–2.1 | [96] [132] [130] b | 0–0.0214 | [5] d |
Luteolin-7-O-rutinoside | 1.0–1.2 2.2–2.4 | [151] [132] | ||||
Luteolin-hexoside | 1.072–1.744 | [102] | 3.2–24.2 | [151] | ||
Luteolin-O-rutinoside | 0.199–0.491 | [102] | 0.31–0.34 | [130] b | ||
Methoxyloleuropein | 0.870–2.188 | [102] | ||||
Oleacin (3,4-DHPEA-EDA) | 2.5–3.0 | [151] | 11300–45951 | [80] | ||
Oleoside | 0.366–0.399 | [102] | 3.4–3.7 | [130] b | ||
Oleuropein | 0.13–21.34 17.1–18.1 18.2–19.9 52–58 60–90 83–87 92.5–345.3 | [95] [102] [96] [45] [122] [103] [97] | 1.3–11.0 7.62–14.67 33–41 81.7–83.0 93–95 | [151] [150] [96] [147] [132] | 5.7–27.0 420–560 | [151] [77] |
Oleuropein aglycone (3,4-DHPEA-EA) | 0.134–0.288 | [102] | 23.3–24.0 23.5–48.0 | [147] [149] | ||
Oleuropein aglycone derivative | 45.7–152.8 | [149] | ||||
Oleuropein derivative | 0.648–1.948 | [34] | 27.6–39.2 | [150] | 5400–7600 | [77] |
Oleuroside | 2.100–2.337 | [102] | 0.4–1.4 | [151] | 200–400 | [77] |
p-Coumaric acid | 0.072–0.090 0.9–5.6 | [105] [34] | 0.8–0.9 17.2–18.2 | [151] [49] a | 15.9–21.8 | [151] |
Ligstroside aglycone (p-HPEA-EA) | 0.3–10.2 27.1–31.1 | [151] [147] | ||||
Oleocanthal (p-HPEA-EDA) | 1.9–2.3 62.4–128.3 | [151] [148] | ||||
p-Hydroxybenzoic acid (4-hydroxybenzoic acid) | 0.0143–0.0163 0.9–4.2 | [105] [34] | 6.86–13.80 | [150] | 1.75–6.15 | [138] |
Pinoresinol | 0.0033–0.0047 | [105] | 2.6–3.2 17–137 | [132] [58] | ||
Protocatechuic acid | 0.013–0.021 32–37 | [105] [34] | 1.3–3.8 38.4–44.4 | [151] [150] | 2.77–5.29 25.3–136.7 | [138] [151] |
Quercetin | 0.037–0.043 | [105] | ||||
Quinic acid | 203–243 529–1485 | [132] [149] | ||||
Rutin | 0.289–0.651 | [102] | 0.63–0.69 1.1–1.5 | [130] b [151] | 440–640 | [77] |
Secologanoside (oleoside positional isomer) | 1.823–3.677 | [102] | 34–46 | [132] | ||
Taxifolin | 0.0070–0.0094 | [105] | ||||
Tyrosol | 3–14 | [34] | 20.7–21.6 34–71 69.6–196.7 96–124 | [147] [58] [150] [149] | 218.4–581.0 1180–1560 0.19–4.32 0.0145–0.0208 | [138] [77] [139] c [5] d |
Tyrosol glucoside | 0.863–1.278 | [102] | 6.6–12.1 | [151] | ||
Vanillic acid | 0.010–0.020 | [105] | 1.3–1.7 8.8–10.4 20.6–25.2 | [151] [147] [150] | 1.68–62.7 0.0174–0.0198 | [138] [5] d |
Vanillin | 140–150 | [149] | ||||
Verbascoside | 1.127–4.069 1.382–1.474 1.71–2.09 2.730–3.090 | [102] [96] [45] [105] | 0.4–1.6 17.6–23.0 | [151] [96] | 14496–24100 1620–1760 0.0075–0.0155 | [80] [77] [5] d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.I.; Losito, I. Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021, 10, 1236. https://doi.org/10.3390/foods10061236
Abbattista R, Ventura G, Calvano CD, Cataldi TRI, Losito I. Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods. 2021; 10(6):1236. https://doi.org/10.3390/foods10061236
Chicago/Turabian StyleAbbattista, Ramona, Giovanni Ventura, Cosima Damiana Calvano, Tommaso R. I. Cataldi, and Ilario Losito. 2021. "Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques" Foods 10, no. 6: 1236. https://doi.org/10.3390/foods10061236
APA StyleAbbattista, R., Ventura, G., Calvano, C. D., Cataldi, T. R. I., & Losito, I. (2021). Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods, 10(6), 1236. https://doi.org/10.3390/foods10061236