Effect of Bran Pre-Treatment with Endoxylanase on the Characteristics of Intermediate Wheatgrass (Thinopyrum intermedium) Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Flour and Bran
2.3. Xylanase Treatment of Bran and Preparation of Breads
2.4. Determination of Arabinoxylans, Apparent Endogenous Xylanase Activity and Xylanase Inhibition
2.5. Stickiness
2.6. Bread Analysis
2.7. Accessible and Total Thiols
2.8. Statistical Analysis
3. Results and Discussion
3.1. Specific Loaf Volume
3.2. Crumb Hardness and Resilience
3.3. Crumb Cell Structure
3.4. Dough Stickiness
3.5. Characteristics Related to Arabinoxylans in IWG Flour and Bran
3.6. Effect of Pretreatment and Ascorbic Acid on Thiol Groups in Dough
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willett, W.C.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Van Bussel, L.M.; Kuijsten, A.; Mars, M.; Freskens, E.J.M.; van’t Veer, P. Taste profiles of diets high and low in environ-mental sustainability and health. Food Qual. Prefer 2019, 78, 103730. [Google Scholar] [CrossRef]
- Oh, H.; Kim, H.; Lee, D.H.; Lee, A.; Giovannucci, E.L.; Kang, S.S.; Keum, N. Different dietary fiber sources and risks of colorectal cancer and adenoma: A dose-response meta-analysis of prospective studies. Br. J. Nutr. 2019, 122, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E.M.; Batterham, M.J.; Ray, S.; Beck, E.J. Whole grain, bran and cereal fibre consumption and CVD: A systematic review. Br. J. Nutr. 2019, 121, 914–937. [Google Scholar] [CrossRef] [PubMed]
- Grigor, J.M.; Brennan, C.S.; Hutchings, S.C.; Rowlands, D.S. The sensory acceptance of fibre-enriched cereal foods: A me-ta-analysis. Int. J. Food Sci. Technol. 2016, 51, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Hemdane, S.; Jacobs, P.J.; Dornez, E.; Verspreet, J.; Delcour, J.; Courtin, C.M. Wheat (Triticum aestivum L.) Bran in Bread Making: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 28–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajgain, P.; Zhang, X.; Jungers, J.M.; DeHaan, L.R.; Heim, B.; Sheaffer, C.C.; Anderson, J.A. ‘MN-Clearwater’, the first food-grade intermediate wheatgrass (Kernza perennial grain) cultivar. J. Plant Regist. 2020, 14, 288–297. [Google Scholar] [CrossRef]
- Jungers, J.M.; DeHaan, L.H.; Mulla, D.J.; Sheaffer, C.C.; Wyse, D.L. Reduced nitrate leaching in a perennial grain crop compared to maize in the Upper Midwest, USA. Agric. Ecosyst. Environ. 2019, 272, 63–73. [Google Scholar] [CrossRef]
- Rahardjo, C.P.; Gajadeera, C.S.; Simsek, S.; Annor, G.; Schoenfuss, T.C.; Marti, A.; Ismail, B.P. Chemical characterization, functionality, and baking quality of intermediate wheatgrass (Thinopyrum intermedium). J. Cereal Sci. 2018, 83, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Tyl, C.; Ismail, B.P. Compositional evaluation of perennial wheatgrass (Thinopyrum intermedium) breeding populations. Int. J. Food Sci. Technol. 2019, 54, 660–669. [Google Scholar] [CrossRef]
- Banjade, J.D.; Gajadeera, C.; Tyl, C.E.; Ismail, B.P.; Schoenfuss, T.C. Evaluation of dough conditioners and bran refinement on functional properties of intermediate wheatgrass (Thinopyrum intermedium). J. Cereal Sci. 2019, 86, 26–32. [Google Scholar] [CrossRef]
- Banjade, J.D.; Tyl, C.E.; Schoenfuss, T. Effect of dough conditioners and refinement on intermediate wheatgrass (Thinopyrum intermedium) bread. LWT Food Sci. Technol. 2019, 115, 108442. [Google Scholar] [CrossRef]
- Courtin, C.M.; Delcour, J.A. Arabinoxylans and Endoxylanases in Wheat Flour Bread-making. J. Cereal Sci. 2002, 35, 225–243. [Google Scholar] [CrossRef]
- Grossmann, I.; Döring, C.; Jekle, M.; Becker, T.; Koehler, P. Compositional Changes and Baking Performance of Rye Dough As Affected by Microbial Transglutaminase and Xylanase. J. Agric. Food Chem. 2016, 64, 5751–5758. [Google Scholar] [CrossRef]
- Filipčev, B.; Šimurina, O.; Bodroža-Solarov, M. Combined effect of xylanase, ascorbic and citric acid in regulating the quality of bread made from organically grown spelt cultivars. J. Food Qual. 2014, 37, 185–195. [Google Scholar] [CrossRef]
- Schendel, R.R.; Becker, A.; Tyl, C.E.; Bunzel, M. Isolation and characterization of feruloylated arabinoxylan oligosaccha-rides from the perennial cereal grain intermediate wheat grass (Thinopyrum intermedium). Carbohydr. Res. 2015, 407, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Gebruers, K.; Dornez, E.; Bedõ, Z.; Rakszegi, M.; Courtin, C.M.; Delcour, J.A. Variability in xylanase and xylanase inhibi-tion activities in different cereals in the HEALTHGRAIN diversity screen and contribution of environment and genotype to this variability in common wheat. J. Agric. Food Chem. 2010, 58, 9362–9371. [Google Scholar] [CrossRef]
- Tyl, C.; Bharathi, R.; Schoenfuss, T.; Annor, G.A. Tempering Improves Flour Properties of Refined Intermediate Wheatgrass (Thinopyrum intermedium). Foods 2019, 8, 337. [Google Scholar] [CrossRef] [Green Version]
- Schmiele, M.; Jaekel, L.Z.; Patricio, S.M.C.; Steel, C.J.; Chang, Y.K. Rheological properties of wheat flour and quality char-acteristics of pan bread as modified by partial additions of wheat bran or whole grain wheat flour. Int. J. Food Sci. Technol. 2012, 47, 2141–2150. [Google Scholar] [CrossRef]
- Packkia-Doss, P.P.; Chevallier, S.; Pare, A.; Le-Bail, A. Effect of supplementation of wheat bran on dough aeration and final bread volume. J. Food Eng. 2019, 252, 28–35. [Google Scholar] [CrossRef]
- Boita, E.R.; Oro, T.; Bressiani, J.; Santetti, G.S.; Bertolin, T.E.; Gutkoski, L.C. Rheological properties of wheat flour dough and pan bread with wheat bran. J. Cereal Sci. 2016, 71, 177–182. [Google Scholar] [CrossRef]
- Park, E.Y.; Fuerst, E.P.; Baik, B. Effect of bran hydration with enzymes on functional properties of flour–bran blends. Cereal Chem. J. 2018, 96, 273–282. [Google Scholar] [CrossRef]
- Luu, M. Effects of Bran Content, Thermal Treatment, and Storage on Flavor Development and Functionality in IntermeDiate Wheatgrass Flour. Master’s Thesis, University of Minnesota, Twin Cities, MN, USA, January 2020. [Google Scholar]
- Liu, Z.; Rochfort, S. A Simple Method for Simultaneous Quantification of Total Arabinoxylans and Fructans in Wheat Flour. J. Agric. Food Chem. 2014, 62, 8319–8324. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of Analysis, 11th ed.; Method 44-15.02 Moisture-Air-oven methods; Method 46-30.01 Crude Protein-Combustion Method Approved 30 October 1985; AACC International: St. Paul, MN, USA, 1999. [Google Scholar]
- Iametti, S.; Bonomi, F.; Pagani, M.A.; Zardi, M.; Cecchini, C.; D’Egidio, M.G. Properties of the Protein and Carbohydrate Fractions in Immature Wheat Kernels. J. Agric. Food Chem. 2006, 54, 10239–10244. [Google Scholar] [CrossRef]
- Quayson, E.T.; Marti, A.; Morris, C.F.; Marengo, M.; Bonomi, F.; Seetharaman, K.; Iametti, S. Structural consequences of the interaction of puroindolines with gluten proteins. Food Chem. 2018, 253, 255–261. [Google Scholar] [CrossRef]
- Janssen, F.; Wouters, A.; Pauly, A.; Delcour, J.A. Relating the composition and air/water interfacial properties of wheat, rye, barley, and oat dough liquor. Food Chem. 2018, 264, 126–134. [Google Scholar] [CrossRef]
- Tebben, L.; Shen, Y.; Li, Y. Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality. Trends Food Sci. Technol. 2018, 81, 10–24. [Google Scholar] [CrossRef]
- Bae, W.; Lee, S.H.; Yoo, S.-H.; Lee, S. Utilization of a maltotetraose-producing amylase as a whole wheat bread improver: Dough rheology and baking performance. J. Food Sci. 2014, 79, E1535–E1540. [Google Scholar] [CrossRef]
- Silva, C.B.D.; Almeida, E.L.; Chang, Y.K. Interaction between xylanase, glucose oxidase and ascorbic acid on the technological quality of whole wheat bread. Ciência Rural 2016, 46, 2249–2256. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Choi, I.; Park, C.S.; Baik, B.-K. Bran Hydration and Physical Treatments Improve the Bread-Baking Quality of Whole Grain Wheat Flour. Cereal Chem. J. 2015, 92, 557–564. [Google Scholar] [CrossRef]
- Leys, S.; De Bondt, Y.; Bosmans, G.; Courtin, C. Assessing the impact of xylanase activity on the water distribution in wheat dough: A 1H NMR study. Food Chem. 2020, 325, 126828. [Google Scholar] [CrossRef]
- Cao, W.; Falk, D.; Bock, J.E. Protein Structural Features in Winter Wheat: Benchmarking Diversity in Ontario Hard and Soft Winter Wheat. Cereal Chem. J. 2017, 94, 199–206. [Google Scholar] [CrossRef]
- Meeus, Y.; Janssen, F.; Wouters, A.; Delcour, J.A.; Moldenaers, P. Linear and Non-linear Rheology of Bread Doughs Made from Blends of Wheat (Triticum aestivum L.) and Rye (Secale cereale L.) Flour. Food Bioprocess Technol. 2019, 13, 159–171. [Google Scholar] [CrossRef]
- Jaekel, L.; Silva, C.; Steel, C.; Chang, Y. Influence of xylanase addition on the characteristics of loaf bread prepared with white flour or whole grain wheat flour. Food Sci. Technol. 2012, 32, 844–849. [Google Scholar] [CrossRef] [Green Version]
- Lucas, I.; Becker, T.; Jekle, M. Gluten Polymer Networks—A Microstructural Classification in Complex Systems. Polymers 2018, 10, 617. [Google Scholar] [CrossRef] [Green Version]
- Ribotta, P.D.; Pérez, G.T.; Añon, M.C.; León, A.E. Optimization of Additive Combination for Improved Soy–Wheat Bread Quality. Food Bioprocess Technol. 2010, 3, 395–405. [Google Scholar] [CrossRef]
- Dagdelen, A.F.; Gocmen, D. Effects of glucose oxidase, hemicellulase and ascorbic acid on dough and bread quality. J. Food Qual. 2007, 30, 1009–1022. [Google Scholar] [CrossRef]
- Ooms, N.; Delcour, J.A. How to impact gluten protein network formation during wheat flour dough making. Curr. Opin. Food Sci. 2019, 25, 88–97. [Google Scholar] [CrossRef]
- Koehler, P. Concentrations of Low and High Molecular Weight Thiols in Wheat Dough As Affected by Different Concentrations of Ascorbic Acid. J. Agric. Food Chem. 2003, 51, 4948–4953. [Google Scholar] [CrossRef]
- Gioia, L.C.; Ganancio, J.R.; Steel, C.J. Food additives and processing aids used in breadmaking. In Food Additives; Karunaratne, D.N., Pamunuwa, G., Eds.; IntechOpen: Rijeka, Croatia, 2017; pp. 147–166. [Google Scholar] [CrossRef] [Green Version]
- Leys, S.; De Bondt, Y.; Schreurs, L.; Courtin, C.M. Sensitivity of the Bacillus subtilis Xyn A xylanase and its mutants to dif-ferent xylanase inhibitors determines their activity profile and functionality during bread making. J. Agric. Food Chem. 2019, 67, 11198–11209. [Google Scholar] [CrossRef]
- Hopkins, E.J.; Hucl, P.; Scanlon, M.G.; Nickerson, M.T. Effects of glucose oxidase and organic acids on the properties of a model low sodium dough prepared from Harvest and Pembina CWRS wheat. J. Cereal Sci. 2019, 89, 102802. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, M.A.; Serventi, L.; Brennan, C.S. Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food Chem. 2017, 234, 93–102. [Google Scholar] [CrossRef]
- Laurikainen, T.; Härkönen, H.; Autio, K.; Poutanen, K. Effects of enzymes in fibre-enriched baking. J. Sci. Food Agric. 1998, 76, 239–249. [Google Scholar] [CrossRef]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Edelmann, M.; Kariluoto, S.; Nurmi, T.; Fernandez-Orozco, R.; Andersson, A.A.M.; Åman, P.; Frasś, A.; et al. Effects of Genotype and Environment on the Content and Composition of Phytochemicals and Dietary Fiber Components in Rye in the HEALTHGRAIN Diversity Screen†. J. Agric. Food Chem. 2010, 58, 9372–9383. [Google Scholar] [CrossRef] [PubMed]
- Gebruers, K.; Dornez, E.; Boros, D.; Dynkowska, W.; Bedő, Z.; Rakszegi, M.; Delcour, J.; Courtin, C. Variation in the Content of Dietary Fiber and Components Thereof in Wheats in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9740–9749. [Google Scholar] [CrossRef] [PubMed]
- Slade, L.; Kweon, M.; Levine, H. Exploration of the functionality of sugars in cake-baking, and effects on cake quality. Crit. Rev. Food Sci. Nutr. 2021, 61, 283–311. [Google Scholar] [CrossRef]
- Santala, O.; Lehtinen, P.; Nordlund, E.; Suortti, T.; Poutanen, K. Impact of water content on the solubilisation of arabi-noxylan during xylanase treatment of wheat bran. J. Cereal Chem. 2011, 54, 187–194. [Google Scholar] [CrossRef]
- Mendis, M.; Ohm, J.-B.; Delcour, J.A.; Gebruers, K.; Meinhardt, S.; Simsek, S. Variability in arabinoxylan, xylanase activity, and xylanase inhibitor levels in hard spring wheat. Cereal Chem. 2013, 90, 240–248. [Google Scholar] [CrossRef]
- Tundo, S.; Paccanaro, M.C.; Elmaghraby, I.; Moscetti, I.; D’Ovidio, R.; Favaron, F.; Sella, L. The xylanase inhibitor TAXI-I increases plant resistance to Botrytis cinerea by inhibiting the BxXyn11a xylanase necrotizing activity. Plants 2020, 9, 601. [Google Scholar] [CrossRef]
- Dornez, E.; Gebruers, K.; Delcour, J.; Courtin, C.M. Grain-associated xylanases: Occurrence, variability, and implications for cereal processing. Trends Food Sci. Technol. 2009, 20, 495–510. [Google Scholar] [CrossRef]
- Gebruers, K.; Debyser, W.; Goesaert, H.; Proost, P.; van Damme, J.; Delcour, J.A. Triticum aestivum L. endoxylanase inhibi-tor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochem. J. 2001, 353, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Rouau, X.; Daviet, S.; Tahir, T.; Cherel, B.; Saulnier, L. Effect of the proteinaceous wheat xylanase inhibitior XIP-I on the per-formances of an Aspergillus niger xylanase in breadmaking. J. Sci. Food Agric. 2006, 86, 1604–1609. [Google Scholar] [CrossRef]
- Marti, A.; Qiu, X.; Schoenfuss, T.C.; Seetharaman, K. Characteristics of Perennial Wheatgrass (Thinopyrum intermedium) and Refined Wheat Flour Blends: Impact on Rheological Properties. Cereal Chem. J. 2015, 92, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Jerkovic, A.; Kriegel, A.M.; Bradner, J.R.; Atwell, B.J.; Roberts, T.H.; Willows, R.D. Strategic distribution of protective pro-teins within bran layers of wheat protects the nutrient-rich endosperm. Plant Physiol. 2010, 152, 1459–1470. [Google Scholar] [CrossRef] [Green Version]
- Lambrecht, M.A.; Rombouts, I.; De Ketelaere, B.; Delcour, J.A. Prediction of heat-induced polymerization of different glob-ular food proteins in mixtures with wheat gluten. Food Chem. 2017, 221, 1158–1167. [Google Scholar] [CrossRef]
- Verheyen, C.; Albrecht, A.; Herrmann, J.; Strobl, M.; Jekle, M.; Becker, T. The contribution of glutathione to the destabiliz-ing effect of yeast on wheat dough. Food Chem. 2015, 173, 243–249. [Google Scholar] [CrossRef]
- Both, J.; Esteres, V.P.; Santetti, G.S.; Bressiani, J.; Oro, T.; Gómez, M.P.; Friedrich, M.T.; Gutkoski, L.C. Phenolic compounds and free sulfhydryl groups in whole grain wheat flour modified by xylanase. J. Sci. Food Agric. 2019, 99, 5392–5400. [Google Scholar] [CrossRef] [PubMed]
Treatment | Ratio of Flour to Bran | Pretreatment | Xylanase | Ascorbic Acid |
---|---|---|---|---|
C1 | 77.7:22.3 | − | − | − |
C2 | − | + | − | |
T1 | − | − | + | |
T2 | + | + | − | |
T3 | + | + | + |
Ingredient | Amount (g) |
---|---|
Flour | 90 |
Sugar | 5.40 |
Salt | 1.35 |
Yeast | 4.77 |
Shortening | 2.70 |
Water | 55.08 |
Treatment 1 | Cell Counts (Cells/cm2) | Average Cell Size (cm2) | Area Covered by Cells (%) |
---|---|---|---|
C1 | 60 ± 11 a | 0.011 ± 0.0052 c | 62.8 ± 1.8 b |
C2 | 58 ± 11 a | 0.012 ± 0.0010 c | 62.7 ± 1.5 b |
T1 | 59 ± 4 a | 0.011 ± 0.0025 c | 63.4 ± 1.3 b |
T2 | 25 ± 6 c | 0.028 ± 0.0028 a | 69.2 ± 2.9 a |
T3 | 40 ± 4 b | 0.017 ± 0.0028 b | 66.5 ± 1.6 a |
Treatment 1 | Stickiness (N) |
---|---|
C1 | 0.164 ± 0.029 |
C2 | 0.152 ± 0.075 |
T1 | 0.189 ± 0.020 |
T2 | 0.139 ± 0.056 |
T3 | 0.195 ± 0.064 |
Sample | Total AX (% of d.m.) 1 | A/X in Total AX 1 | Water-Extractable AX (% of d.m.) 1 | A/X in Water-Extractable AX 1 | Apparent Xylanase Activity (XU/g of d.m.) 1 | TAXI Activity (IU/g of d.m.) 1 |
---|---|---|---|---|---|---|
Refined flour | 3.73 ± 0.15 b | 0.569 ± 0.002 a | 0.94 ± 0.03 b | 1.004 ± 0.001 a | 0.46 ± 0.04 b | 193 ± 6 b |
Bran | 19.94 ± 0.67 a | 0.401 ± 0.038 b | 1.68 ± 0.17 a | 0.873 ± 0.015 b | 5.81 ± 0.36 a | 410 ± 2 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Bharathi, R.; Jungers, J.; Annor, G.A.; Tyl, C. Effect of Bran Pre-Treatment with Endoxylanase on the Characteristics of Intermediate Wheatgrass (Thinopyrum intermedium) Bread. Foods 2021, 10, 1464. https://doi.org/10.3390/foods10071464
Dai Y, Bharathi R, Jungers J, Annor GA, Tyl C. Effect of Bran Pre-Treatment with Endoxylanase on the Characteristics of Intermediate Wheatgrass (Thinopyrum intermedium) Bread. Foods. 2021; 10(7):1464. https://doi.org/10.3390/foods10071464
Chicago/Turabian StyleDai, Yaxi, Radhika Bharathi, Jacob Jungers, George Amponsah Annor, and Catrin Tyl. 2021. "Effect of Bran Pre-Treatment with Endoxylanase on the Characteristics of Intermediate Wheatgrass (Thinopyrum intermedium) Bread" Foods 10, no. 7: 1464. https://doi.org/10.3390/foods10071464
APA StyleDai, Y., Bharathi, R., Jungers, J., Annor, G. A., & Tyl, C. (2021). Effect of Bran Pre-Treatment with Endoxylanase on the Characteristics of Intermediate Wheatgrass (Thinopyrum intermedium) Bread. Foods, 10(7), 1464. https://doi.org/10.3390/foods10071464