Impact of Different Amaranth Particle Sizes Addition Level on Wheat Flour Dough Rheology and Bread Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Materials
2.2. Amaranth Flour Fractionation
2.3. Proximate Composition and Color Parameters of Amaranth Flours
2.4. Functional Properties of Amaranth Flours
2.5. Flour Samples’ Formulation
2.6. Proximate Composition and Color Parameters of Wheat-Amaranth Composite Flours
2.7. Dough and Bread Making Process
2.8. Dough Rheology and Texture Profile Analysis
2.9. Evaluation of Bread Physical Characteristics
2.10. Bread Crumb Texture
2.11. Statistical Analysis
3. Results
3.1. Chemical Composition, Functional Properties, and Color Parameters of Amaranth Flours
3.2. Physicochemical Properties of Wheat-Amaranth Composite Flours
3.3. Alveographic Parameters of Composite Flour Dough
3.4. Dough Texture Profile Analysis
3.5. Technological Properties and Color Analysis of Composite Flour Bread
3.6. Bread Texture Profile Analysis
3.7. The Relationship between the Proximate Composition of Wheat-Amaranth Flour, Dough Rheology, and Bread Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parenti, O.; Carini, E.; Marchini, M.; Tuccio, M.G.; Guerrini, L.; Zanoni, B. Wholewheat bread: Effect of gradual water addition during kneading on dough and bread properties. LWT 2021, 142, 111017. [Google Scholar] [CrossRef]
- Sarker, U.; Islam, T.; Rabbani, G.; Oba, S. Genotype variability in composition of antioxidant vitamins and minerals in vegetable amaranth. Genetics 2015, 47, 85–96. [Google Scholar] [CrossRef]
- Miranda, K.; Sanz-Ponce, N.; Haros, C.M. Evaluation of technological and nutritional quality of bread enriched with amaranth flour. LWT 2019, 114, 108418. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef] [PubMed]
- Venskutonis, P.R.; Kraujalis, P. Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef] [PubMed]
- Janssen, F.; Pauly, A.; Rombouts, I.; Jansens, K.; Deleu, L.; Delcour, J. Proteins of Amaranth (Amaranthus spp.), Buckwheat (Fagopyrum spp.), and Quinoa (Chenopodium spp.): A Food Science and Technology Perspective. Compr. Rev. Food Sci. Food Saf. 2017, 16, 39–58. [Google Scholar] [CrossRef]
- Mlakar, S.G.; Bavec, M.; Turinek, M.; Bavec, F. Rheological properties of dough made from grain amaranth-cereal composite flours based on wheat and spelt. Czech. J. Food Sci. 2009, 27, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Penella, J.; Wronkowska, M.; Soral-Smietana, M.; Haros, M. Effect of whole amaranth flour on bread properties and nutritive value. LWT 2013, 50, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Burisová, A.; Dodok, L.; Skovrankova, S.; Serulova, D. The influence of substitution of wheat flour by amaranth flour on fermentative gas production and quality of bread. Rostlinna Vyroba-UZPI 2001, 47, 276–279. [Google Scholar]
- Ahmed, J.; Ptaszek, P.; Basu, S. Influence of fibers and particle size distribution on Food Rheology. In Advances in Food Rheology and Its Applications; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Coțovanu, I.; Stoenescu, G.; Mironeasa, S. Amaranth influence on wheat flour dough rheology: Optimal particle size and amount of flour replacement. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 336–373. [Google Scholar] [CrossRef]
- Coțovanu, I.; Batariuc, A.; Mironeasa, S. Characterization of Quinoa Seeds Milling Fractions and Their Effect on the Rheological Properties of Wheat Flour Dough. Appl. Sci. 2020, 10, 7225. [Google Scholar] [CrossRef]
- Coțovanu, I.; Mironeasa, S. Buckwheat Seeds: Impact of Milling Fractions and Addition Level on Wheat Bread Dough Rheology. Appl. Sci. 2021, 11, 1731. [Google Scholar] [CrossRef]
- Young, L. Applications of texture analysis to dough and bread. In Breadmaking; Elsevier: Amsterdam, The Netherlands, 2012; pp. 562–579. [Google Scholar]
- Dubois, M.; Dubat, A.; Launay, B. Alveo Consistograph Handbook; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Stauffer, C.E. Principles of Dough Formation. In Technology of Breadmaking; Springer: Berlin/Heidelberg, Germany, 2007; pp. 299–332. [Google Scholar]
- Sciarini, L.S.; Ribotta, P.D.; León, A.E.; Pérez, G.T. Effect of hydrocolloids on gluten-free batter properties and bread quality. Int. J. Food Sci. Technol. 2010, 45, 2306–2312. [Google Scholar] [CrossRef]
- Ikegwu, O.J.; Nwobasi, V.N.; Odoh, M.O.; Oledinma, N.U. Evaluation of the pasting and some functional properties of starch isolated from some improved cassava varieties in Nigeria. Afr. J. Biotechnol. 2009, 8, 2310–2315. [Google Scholar]
- Mironeasa, S.; Iuga, M.; Zaharia, D.; Mironeasa, C. Rheological Analysis of Wheat Flour Dough as Influenced by Grape Peels of Different Particle Sizes and Addition Levels. Food Bioproc. Technol. 2018, 12, 228–245. [Google Scholar] [CrossRef]
- Bordei, D. Quality Control. In Bakery Industry; Academica Publisher: Galati, Romania, 2007. [Google Scholar]
- Iuga, M.; Boestean, O.; Ghendov-Mosanu, A.; Mironeasa, S. Impact of Dairy Ingredients on Wheat Flour Dough Rheology and Bread Properties. Foods 2020, 9, 828. [Google Scholar] [CrossRef]
- Aguilar, E.G.; Albarracín, G.D.J.; Uñates, M.A.; Piola, H.D.; Camiña, J.M.; Escudero, N.L. Evaluation of the Nutritional Quality of the Grain Protein of New Amaranths Varieties. Plant. Foods Hum. Nutr. 2014, 70, 21–26. [Google Scholar] [CrossRef]
- Joshi, D.C.; Sood, S.; Hosahatti, R.; Kant, L.; Pattanayak, A.; Kumar, A.; Yadav, D.; Stetter, M.G. From zero to hero: The past, present and future of grain amaranth breeding. Theor. Appl. Genet. 2018, 131, 1807–1823. [Google Scholar] [CrossRef] [PubMed]
- Bressani, R.; Sánchez-Marroquín, A.; Morales, E. Chemical composition of grain amaranth cultivars and effects of processing on their nutritional quality. Food Rev. Int. 1992, 8, 23–49. [Google Scholar] [CrossRef]
- de la Rosa, A.B.; Fomsgaard, I.S.; Laursen, B.; Mortensen, A.G.; Olvera-Martínez, L.; Silva-Sánchez, C.; Mendoza-Herrera, A.; González-Castañeda, J.; Rodriguez, A.D.L. Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. J. Cereal Sci. 2009, 49, 117–121. [Google Scholar] [CrossRef]
- Kraujalis, P.; Venskutonis, P.R. Optimisation of supercritical carbon dioxide extraction of amaranth seeds by response surface methodology and characterization of extracts isolated from different plant cultivars. J. Supercrit. Fluids 2013, 73, 80–86. [Google Scholar] [CrossRef]
- Gamel, T.H.; Mesallam, A.S.; Damir, A.A.; Shekib, L.A.; Linssen, J.P. Characterization of amaranth seed oils. J. Food Lipids 2007, 14, 323–334. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Liu, R.; Hernandez, M.; Draves, J.; Marcone, M.F.; Tsao, R. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality. J. Agric. Food Chem. 2016, 64, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Chand, N.; Mihas, A.A. Celiac disease: Current concepts in diagnosis and treatment. J. Clin. Gastroenterol. 2006, 40, 3–14. [Google Scholar] [CrossRef]
- Coelho, L.M.; Silva, P.M.; Martins, J.T.; Pinheiro, A.C.; Vicente, A.A. Emerging opportunities in exploring the nutritional/functional value of amaranth. Food Funct. 2018, 9, 5499–5512. [Google Scholar] [CrossRef]
- Olawoye, B.; Gbadamosi, S.O. Influence of processing on the physiochemical, functional and pasting properties of Nigerian Amaranthus viridis seed flour: A multivariate analysis approach. SN Appl. Sci. 2020, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shevkani, K.; Singh, N.; Kaur, A.; Rana, J.C. Physicochemical, Pasting, and Functional Properties of Amaranth Seed Flours: Effects of Lipids Removal. J. Food Sci. 2014, 79, C1271–C1277. [Google Scholar] [CrossRef]
- Siwatch, M.; Yadav, R.; Yadav, B. Chemical, physicochemical, pasting and microstructural properties of amaranth (Amaranthus hypochondriacus) flour as affected by different processing treatments. Qual. Assur. Saf. Crop. Foods 2019, 11, 3–13. [Google Scholar] [CrossRef]
- Alarcón-García, M.; Perez-Alvarez, J.; López-Vargas, J.; Pagán-Moreno, M. Techno-Functional Properties of New Andean Ingredients: Maca (Lepidium meyenii) and Amaranth (Amaranthus caudatus). Proceedings 2020, 70. [Google Scholar] [CrossRef]
- Stallknecht, G.F.; Schulz-Schaeffer, J.R. Amaranth Rediscovered. New Crops; Wiley: New York, NY, USA, 1993; pp. 211–218. [Google Scholar]
- Alonso-Miravalles, L.; O’Mahony, J.A. Composition, Protein Profile and Rheological Properties of Pseudocereal-Based Protein-Rich Ingredients. Foods 2018, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.; Gallagher, E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Feillet, P.; Dexter, J.E. Quality Requirements of Durum Wheat for Semolina Milling and Pasta Production; UMR IATE Ingénierie des Agro-polymères et Technologies Émergentes: Montpellier, France, 1996. [Google Scholar]
- Haros, C.M.; Schoenlechner, R. Pseudocereals: Chemistry and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Alvarez-Jubete, L.A.E.; Auty, M.; Arendt, E.K.; Gallagher, E. Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur. Food Res. Technol. 2010, 230, 437–445. [Google Scholar] [CrossRef]
- Kieffer, R. The role of gluten elasticity in the baking quality of wheat. In Future of Flour—A Compendium of Flour Improvement; Popper, L., Schäfer, W., Freund, W., Eds.; Verlag Agrimedia: Clenze, Germany, 2006; pp. 169–178. [Google Scholar]
- Kieffer, R.; Wieser, H.; Henderson, M.; Graveland, A. Correlations of the Breadmaking Performance of Wheat Flour with Rheological Measurements on a Micro-scale. J. Cereal Sci. 1998, 27, 53–60. [Google Scholar] [CrossRef]
- Mironeasa, S.; Mironeasa, C. Dough bread from refined wheat flour partially replaced by grape peels: Optimizing the rheological properties. J. Food Process. Eng. 2019, 42, 13207. [Google Scholar] [CrossRef]
- Callejo, M.; Bujeda, C.; Rodriguez, G.; Chaya, C. Alveoconsistograph evaluation of rheological properties of rye doughs. Span. J. Agric. Res. 2009, 7, 638. [Google Scholar] [CrossRef] [Green Version]
- Piga, A.; Conte, P.; Fois, S.; Catzeddu, P.; Del Caro, A.; Sanguinetti, A.; Fadda, C. Technological, Nutritional and Sensory Properties of an Innovative Gluten-Free Double-Layered Flat Bread Enriched with Amaranth Flour. Foods 2021, 10, 920. [Google Scholar] [CrossRef]
- Cappelli, A.; Cini, E.; Guerrini, L.; Masella, P.; Angeloni, G.; Parenti, A. Predictive models of the rheological properties and optimal water content in doughs: An application to ancient grain flours with different degrees of refining. J. Cereal Sci. 2018, 83, 229–235. [Google Scholar] [CrossRef]
- Oszvald, M.; Tamás, C.; Rakszegi, M.; Tömösközi, S.; Békés, F.; Tamás, L.; Rakszegi, M. Effects of incorporated amaranth albumins on the functional properties of wheat dough. J. Sci. Food Agric. 2009, 89, 882–889. [Google Scholar] [CrossRef]
- Ponte, J.G., Jr.; Dogan, I.S.; Kulp, K. Special food ingredients from cereals. In Handbook of Cereal Science and Technology, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2000; p. 771. [Google Scholar]
- Cappelli, A.; Oliva, N.; Cini, E. Stone milling versus roller milling: A systematic review of the effects on wheat flour quality, dough rheology, and bread characteristics. Trends Food Sci. Technol. 2020, 97, 147–155. [Google Scholar] [CrossRef]
- Guardianelli, L.M.; Salinas, M.V.; Puppo, M.C. Hydration and rheological properties of amaranth-wheat flour dough: Influence of germination of amaranth seeds. Food Hydrocoll. 2019, 97, 105242. [Google Scholar] [CrossRef]
- Siliveru, K.; Jange, C.; Kwek, J.W.; Ambrose, R. Granular bond number model to predict the flow of fine flour powders using particle properties. J. Food Eng. 2017, 208, 11–18. [Google Scholar] [CrossRef]
- Landillon, V.; Cassan, D.; Morel, M.-H.; Cuq, B. Flowability, cohesive, and granulation properties of wheat powders. J. Food Eng. 2008, 86, 178–193. [Google Scholar] [CrossRef]
- Delcour, J.A.; Hoseney, R.C. Principles of Cereal Science and Technology. In Principles of Cereal Science and Technology; Scientific Societies: Manhattan, KS, USA, 2010. [Google Scholar]
- Ayo, J.A. The effect of amaranth grain flour on the quality of bread. Int. J. Food Prop. 2001, 4, 341–351. [Google Scholar] [CrossRef]
- D’Amico, S.; Schoenlechner, R.; Tömösköszi, S.; Langó, B. Proteins and Amino Acids of Kernels. Pseudocereals 2017, 94–118. [Google Scholar] [CrossRef]
- Rosell, C.M.; Cortez, G.; Repo-Carrasco-Valencia, R. Breadmaking Use of Andean Crops Quinoa, Kañiwa, Kiwicha, and Tarwi. Cereal Chem. J. 2009, 86, 386–392. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Espinoza, C.; Jacobsen, S.-E. Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Esteller, M.S.; Lannes, S.C. Production and characterization of sponge-dough bread using scalded rye. J. Text. Stud. 2008, 39, 56–67. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł; Walkowiak, K.; Masewicz, Ł.; Duda, A.; Poliszko, N.; Różańska, M.B.; Jeżowski, P.; Tomkowiak, A.; Mildner-Szkudlarz, S.; Baranowska, H.M. Wheat bread enriched with raspberry and strawberry oilcakes: Effects on proximate composition, texture and water properties. Eur. Food Res. Technol. 2019, 245, 2591–2600. [Google Scholar] [CrossRef] [Green Version]
- Kurek, M.A.; Krzemińska, A. Effect of modified atmosphere packaging on quality of bread with amaranth flour addition. Food Sci. Technol. Int. 2019, 26, 44–52. [Google Scholar] [CrossRef]
- Codină, G.G.; Mironeasa, S. Bread Quality and Alveograph Rheological Properties of Composite Flour Made from Flaxseed and 650 Type Wheat of Strong Quality for Bread Making. ETP Int. J. Food Eng. 2018, 4, 117–121. [Google Scholar] [CrossRef]
- Codină, G.G.; Arghire, C.; Rusu, M.; Oroian, M.A.; Todosi-Sănduleac, E. Influence of two varieties of flaxseed flour addition on wheat flour dough rheological properties. Annal. Univ. Dunarea Jos Galati. Fasc. VI Food Technol. 2017, 41, 115–126. [Google Scholar]
- Martínez-Anaya, M.A.; Jiménez, T. Physical properties of enzyme-supplemented doughs and relationship with bread quality parameters. Zeitschrift Lebensmitteluntersuchung Forschung A 1998, 206, 134–142. [Google Scholar] [CrossRef]
- Mironeasa, S.; Codină, G.G.; Mironeasa, C. Effect of Composite Flour Made from Tomato Seed and Wheat of 650 Type of a Strong Quality for Bread Making on Bread Quality and Alveograph Rheological Properties. ETP Int. J. Food Eng. 2018, 4, 22–26. [Google Scholar] [CrossRef]
Parameters | AI | Particle Size | ||
---|---|---|---|---|
AL | AM | AS | ||
Chemical Composition | ||||
Moisture (%) | 10.63 ± 0.04 a | 10.60 ± 0.04 a | 10.19 ± 0.04 b | 9.35 ± 0.04 c |
Protein (%) | 9.22 ± 0.04 d | 10.18 ± 0.43 c | 25.33 ± 0.18 b | 29.35 ± 0.00 a |
Lipids (%) | 7.95 ± 0.02 b | 7.48 ± 0.02 c | 8.09 ± 0.03 a | 7.11 ± 0.01 d |
Ash (%) | 1.05 ± 0.01 d | 1.61 ± 0.02 c | 3.53 ± 0.02 b | 4.45 ± 0.03 a |
Carbohydrates (%) | 71.13 ± 0.10 a | 70.11 ± 0.53 b | 52.85 ± 0.31 c | 49.73 ± 0.09 d |
Functional Properties | ||||
WAC (%) | 2.37 ± 0.05 c | 2.67 ± 0.03 b | 2.63 ± 0.14 b | 3.08 ± 0.09 a |
WRC (g/g) | 3.68 ± 0.05 b | 3.78 ± 0.05 b | 3.89 ± 0.14 b | 5.33 ± 0.49 a |
SC (mL/g) | 4.18 ± 0.10 d | 4.75 ± 0.01 c | 5.20 ± 0.01 b | 6.60 ± 0.02 a |
BD (g/mL) | 0.76 ± 0.04 a | 0.58 ± 0.18 ab | 0.38 ± 0.01 bc | 0.36 ± 0.00 c |
Color Parameters | ||||
L* | 77.43 ± 0.09 b | 77.72 ± 0.60 b | 77.01 ± 0.06 b | 79.13 ± 0.25 a |
a* | −2.25 ± 0.10 a | −2.32 ± 0.26 a | −2.73 ± 0.14 b | −2.98 ± 0.11 b |
b* | 26.07 ± 0.23 a | 26.50 ± 1.09 a | 25.93 ± 0.06 a | 26.03 ± 0.12 a |
Sample | Moisture (%) | Protein (%) | Lipids (%) | Ash (%) | Carbohydrates (%) | Color Parameters | ||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | ||||||
Control | 14.08 ± 0.12 e | 12.45 ± 0.21 a | 1.41 ± 0.01 a | 0.69 ± 0.05 a | 71.36 ± 0.02 e | 91.46 ± 0.15 e | −5.13 ± 0.04 a | 15.09 ± 0.07 a |
AL_5 | 13.83 ± 0.00 dz | 12.47 ± 0.01 bx | 1.70 ± 0.00 by | 0.70 ± 0.00 bx | 71.28 ± 0.02 dz | 91.16 ± 0.03 dy | −5.27 ± 0.02 bx | 14.54 ± 0.01 bx |
AL_10 | 13.66 ± 0.00 cz | 12.36 ± 0.03 cx | 2.01 ± 0.00 cy | 0.75 ± 0.00 cx | 71.22 ± 0.03 cz | 90.54 ± 0.30 cy | −4.91 ± 0.12 cx | 14.62 ± 0.11 cx |
AL_15 | 13.49 ± 0.00 bz | 12.23 ± 0.04 dx | 2.31 ± 0.00 dy | 0.79 ± 0.00 dx | 71.16 ± 0.05 bz | 89.99 ± 0.22 by | −4.87 ± 0.07 dx | 15.49 ± 0.09 dx |
AL_20 | 13.32 ± 0.01 az | 12.11 ± 0.06 ex | 2.61 ± 0.00 ey | 0.84 ± 0.00 ex | 71.10 ± 0.07 az | 89.32 ± 0.66 ay | −4.86 ± 0.00 ex | 15.53 ± 0.11 ex |
AM_5 | 13.81 ± 0.00 dy | 13.24 ± 0.01 by | 1.73 ± 0.00 bz | 0.79 ± 0.00 by | 70.42 ± 0.01 dy | 90.70 ± 0.04 dx | −4.91 ± 0.04 by | 14.32 ± 0.07 by |
AM_10 | 13.62 ± 0.00 cy | 13.87 ± 0.02 cy | 2.07 ± 0.00 cz | 0.94 ± 0.00 cy | 69.50 ± 0.02 cy | 90.12 ± 0.19 cx | −4.71 ± 0.15 cy | 14.83 ± 0.08 cy |
AM_15 | 13.42 ± 0.01 by | 14.51 ± 0.02 dy | 2.40 ± 0.00 dz | 1.08 ± 0.00 dy | 68.57 ± 0.03 by | 89.99 ± 0.22 bx | −4.59 ± 0.07 dy | 15.29 ± 0.09 dy |
AM_20 | 13.24 ± 0.01 ay | 15.14 ± 0.03 ey | 2.73 ± 0.00 ez | 1.22 ± 0.00 ey | 67.65 ± 0.04 ay | 88.68 ± 0.52 ax | −4.32 ± 0.08 ey | 15.34 ± 0.08 ey |
AS_5 | 13.77 ± 0.00 dx | 13.44 ± 0.00 bz | 1.69 ± 0.00 bx | 0.84 ± 0.00 bz | 70.27 ± 0.00 dx | 90.86 ± 0.26 dx | −4.88 ± 0.09 by | 15.24 ± 0.04 by |
AS_10 | 13.54 ± 0.01 cx | 14.28 ± 0.00 cz | 1.97 ± 0.00 cx | 1.03 ± 0.00 cz | 69.19 ± 0.01 cx | 90.46 ± 0.12 cx | −4.66 ± 0.02 cy | 15.15 ± 0.13 cy |
AS_15 | 13.30 ± 0.01 bx | 15.11 ± 0.02 dz | 2.26 ± 0.00 dx | 1.22 ± 0.00 dz | 68.11 ± 0.01 bx | 89.89 ± 0.19 bx | −4.54 ± 0.00 dy | 15.09 ± 0.96 dy |
AS_20 | 13.07 ± 0.01 ax | 15.95 ± 0.01 ez | 2.54 ± 0.00 ex | 1.41 ± 0.00 ez | 67.02 ± 0.02 ax | 88.10 ± 0.13 ax | −4.21 ± 0.02 ey | 15.09 ± 0.10 ey |
Two-way ANOVA p value | ||||||||
Factor I: level of AF addition | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | 0.001 |
Factor II: type of PS | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | 0.004 |
Factor I x Factor II | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | 0.001 |
Type of Sample | P (mm H2O) | L (mm) | G | W (10−4 J) | P/L |
---|---|---|---|---|---|
Control | 86.00 ± 0.50 b | 94.00 ± 3.00 e | 21.55 ± 0.35 e | 253.00 ± 4.00 d | 0.92 ± 0.35 a |
AL_5 | 88.00 ± 1.00 ax | 53.50 ± 0.50 dx | 16.30 ± 0.10 dx | 174.00 ± 2.00 cxy | 1.64 ± 0.03 bx |
AL_10 | 91.50 ± 0.50 cx | 47.00 ± 2.00 cx | 15.25 ± 0.35 cx | 162.50 ± 3.50 cxy | 1.95 ± 0.09 cx |
AL_15 | 94.00 ± 1.00 cx | 43.50 ± 0.50 bx | 14.70 ± 0.10 bx | 155.00 ± 0.00 bxy | 2.16 ± 0.05 dx |
AL_20 | 99.50 ± 0.50 dx | 31.50 ± 0.50 ax | 12.50 ± 0.10 ax | 130.5 ± 0.50 axy | 3.16 ± 0.07 ex |
AM_5 | 95.50 ± 0.50 ay | 61.00 ± 1.00 dx | 17.35 ± 0.15 dx | 198.50 ± 0.50 cy | 1.56 ± 0.03 bxy |
AM_10 | 104.00 ± 0.00 cy | 49.00 ± 1.00 cx | 15.55 ± 0.15 cx | 182.00 ± 2.00 cy | 2.12 ± 0.04 cxy |
AM_15 | 83.50 ± 0.50 cy | 43.50 ± 0.50 bx | 14.70 ± 0.10 bx | 129.50 ± 1.50 by | 1.93 ± 0.01 dxy |
AM_20 | 106.00 ± 1.00 dy | 28.00 ± 1.00 ax | 11.45 ± 0.55 ax | 117.50 ± 5.50 ay | 3.79 ± 0.17 exy |
AS_5 | 53.00 ± 0.00 ay | 97.50 ± 0.50 dy | 21.95 ± 0.05 dy | 147.50 ± 3.50 cx | 0.54 ± 0.00 by |
AS_10 | 95.50 ± 0.50 cy | 50.00 ± 0.50 cy | 15.80 ± 0.10 cy | 167.50 ± 3.50 cx | 1.89 ± 0.01 cy |
AS_15 | 111.00 ± 1.50 cy | 29.50 ± 0.50 by | 12.10 ± 0.10 by | 137.00 ± 4.00 bx | 3.78 ± 0.01 dy |
AS_20 | 116.00 ± 1.00 dy | 32.50 ± 1.50 ay | 12.70 ± 0.30 ay | 155.50 ± 3.50 ax | 3.57 ± 0.19 ey |
Two-way ANOVA p value | |||||
Factor I | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Factor II | p < 0.001 | p < 0.001 | p < 0.001 | 0.001 | p < 0.001 |
Factor I x Factor II | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Sample | Loaf Volume (cm3) | Specific Volume (g/cm3) | Porosity (%) | Elasticity (%) |
---|---|---|---|---|
Control | 376.96 ± 0.98 e | 2.30 ± 0.06 c | 64.44 ± 0.31 b | 91.72 ± 0.07 b |
AL_5 | 382.13 ± 0.64 dy | 2.53 ± 0.05 dy | 68.83 ± 0.11 dx | 96.10 ± 0.95 dy |
AL_10 | 338.82 ± 1.51 cy | 2.27 ± 0.01 cy | 67.29 ± 0.00 cx | 95.55 ± 0.95 cy |
AL_15 | 326.45 ± 1.01 by | 2.14 ± 0.01 by | 66.01 ± 0.82 cx | 93.15 ± 0.51 by |
AL_20 | 301.20 ± 1.04 ay | 2.07 ± 0.02 ay | 52.24 ± 0.96 ax | 89.39 ± 0.33 ay |
AM_5 | 380.89 ± 0.51 dz | 2.47 ± 0.00 dyz | 69.74 ± 1.13 dz | 94.36 ± 0.90 dx |
AM_10 | 363.25 ± 0.56 cz | 2.36 ± 0.01 cyz | 68.73 ± 0.10 cz | 94.22 ± 0.94 cx |
AM_15 | 326.80 ± 1.58 bz | 2.14 ± 0.01 byz | 66.95 ± 0.12 cz | 91.33 ± 0.30 bx |
AM_20 | 307.96 ± 1.26 az | 2.11 ± 0.01 ayz | 64.43 ± 0.32 az | 86.99 ± 0.57 ax |
AS_5 | 354.68 ± 1.37 dx | 2.24 ± 0.03 dx | 66.56 ± 0.43 dxy | 96.27 ± 0.34 dx |
AS_10 | 340.45 ± 2.04 cx | 2.17 ± 0.01 cx | 64.30 ± 0.15 cxy | 93.05 ± 0.27 cx |
AS_15 | 310.94 ± 3.33 bx | 2.15 ± 0.01 bx | 65.60 ± 0.48 cxy | 90.10 ± 0.10 bx |
AS_20 | 267.02 ± 1.09 ax | 1.83 ± 0.05 ax | 58.86 ± 0.12 axy | 86.68 ± 0.02 ax |
Two-way ANOVA p value | ||||
Factor I | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Factor II | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Factor I x Factor II | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Sample | Crumb Color | Crust Color | ||||
---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |
Control | 72.3 ±0.27 d | −4.48 ± 0.03 a | 19.02 ± 0.23 a | 67.69 ± 0.45 c | 0.78 ± 0.22 a | 31.60 ± 0.87 a |
AL_5 | 70.10 ± 0.49 bx | −3.47 ± 0.16 bx | 20.48 ± 0.85 bx | 70.56 ± 1.09 cz | 1.81 ± 1.31 bx | 31.55 ± 2.09 bx |
AL_10 | 68.40 ± 0.83 cx | −2.90 ± 0.31 bx | 20.56 ± 0.66 bx | 63.54 ± 0.24 bz | 1.69 ± 0.55 bx | 32.41 ± 0.57 cx |
AL_15 | 66.38 ± 0.53 abx | −2.67 ± 0.15 cx | 20.99 ± 0.26 bcx | 63.22 ± 0.68 az | 1.90 ± 0.53 cx | 33.02 ± 0.57 dx |
AL_20 | 65.05 ± 0.33 ax | −2.64 ± 0.05 cx | 23.82 ± 0.45 cx | 62.80 ± 0.65 az | 3.10 ± 0.34 dx | 35.62 ± 0.77 ex |
AM_5 | 68.03 ± 0.85 by | −3.89 ± 0.18 bx | 19.37 ± 0.56 bx | 70.83 ± 0.64 cy | 6.27 ± 0.73 by | 31.59 ± 0.80 bz |
AM_10 | 66.37 ± 0.40 cy | −3.26 ± 0.39 bx | 21.42 ± 0.59 bx | 62.67 ± 0.25 by | 6.31 ± 0.24 by | 35.84 ± 2.57 cz |
AM_15 | 66.14 ± 1.58 aby | −2.87 ± 0.27 cx | 22.21 ± 1.21 bcx | 61.79 ± 1.88 ay | 6.71 ± 0.74 cy | 36.51 ± 0.73 dz |
AM_20 | 64.63 ± 0.59 ay | −2.67 ± 0.16 cx | 23.82 ± 0.45 cx | 61.91 ± 1.35 ay | 6.90 ± 0.94 dy | 37.65 ± 1.02 ez |
AS_5 | 67.46 ± 0.52 bx | −2.60 ± 0.27 by | 23.01 ± 0.37 by | 60.00 ± 4.50 cx | 6.76 ± 0.74 bz | 33.47 ± 0.99 by |
AS_10 | 66.19 ± 2.02 cx | −2.58 ± 0.17 by | 23.60 ± 0.18 by | 59.39 ± 2.51 bx | 7.21 ± 2.05 bz | 34.59 ± 0.72 cy |
AS_15 | 65.02 ± 0.09 abx | −1.93 ± 0.19 cy | 24.36 ± 0.51 bcy | 57.21 ± 2.27 ax | 7.45 ± 1.67 cz | 36.59 ± 1.08 dy |
AS_20 | 63.78 ± 0.86 ax | −1.28 ± 0.12 cy | 25.00 ± 0.16 cy | 55.47 ± 1.90 ax | 8.36 ± 0.67 dz | 35.00 ± 0.74 ey |
Two-way ANOVA p value | ||||||
Factor I | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Factor II | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Factor I x Factor II | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | 0.001 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coțovanu, I.; Mironeasa, S. Impact of Different Amaranth Particle Sizes Addition Level on Wheat Flour Dough Rheology and Bread Features. Foods 2021, 10, 1539. https://doi.org/10.3390/foods10071539
Coțovanu I, Mironeasa S. Impact of Different Amaranth Particle Sizes Addition Level on Wheat Flour Dough Rheology and Bread Features. Foods. 2021; 10(7):1539. https://doi.org/10.3390/foods10071539
Chicago/Turabian StyleCoțovanu, Ionica, and Silvia Mironeasa. 2021. "Impact of Different Amaranth Particle Sizes Addition Level on Wheat Flour Dough Rheology and Bread Features" Foods 10, no. 7: 1539. https://doi.org/10.3390/foods10071539
APA StyleCoțovanu, I., & Mironeasa, S. (2021). Impact of Different Amaranth Particle Sizes Addition Level on Wheat Flour Dough Rheology and Bread Features. Foods, 10(7), 1539. https://doi.org/10.3390/foods10071539