Effect of Pulsed Electric Fields (PEF) on Extraction Yield and Stability of Oil Obtained from Dry Pecan Nuts (Carya illinoinensis (Wangenh. K. Koch))
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pecan Nuts
2.3. Pulsed Electric Fields Application
2.4. Oil Mechanical Extraction
Oil Extraction Yield
2.5. Kernels Analysis
2.5.1. Moisture
2.5.2. Oil Content
2.5.3. Microstructural Analysis
2.5.4. Lipoxygenase Activity
2.6. Oil Analysis
2.6.1. Acidity
2.6.2. Antioxidant Capacity
2.6.3. Oil Stability Index
2.6.4. Phytosterols Concentration
2.7. Cakes Analysis
2.8. Statistical Analysis
3. Results
3.1. Pecan Nut Kernels
3.1.1. Moisture and Oil Content
3.1.2. OEY, OEYTOTAL and Microstructure
3.2. Pecan Nut Oil Stability
3.3. Pecan Nut Cakes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Puértolas, E.; Koubaa, M.; Barba, F.J. An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: Energy and economic cost implications. Food Res. Int. 2016, 80, 19–26. [Google Scholar] [CrossRef]
- Guderjan, M.; Elez-Martínez, P.; Knorr, D. Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. Innov. Food Sci. Emerg. Technol. 2007, 8, 55–62. [Google Scholar] [CrossRef]
- Moradi, N.; Rahimi, M. Effect of simultaneous ultrasound/pulsed electric field pretreatments on the oil extraction from sunflower seeds. Sep. Sci. Technol. 2018, 53, 2088–2099. [Google Scholar] [CrossRef]
- Sarkis, J.R.; Boussetta, N.; Tessaro, I.C.; Marczak, L.D.F.; Vorobiev, E. Application of pulsed electric fields and high voltage electrical discharges for oil extraction from sesame seeds. J. Food Eng. 2015, 153, 20–27. [Google Scholar] [CrossRef]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Selvaggini, R.; Sordini, B.; Lorefice, A.; Daidone, L.; Pagano, M.; Tomasone, R.; Servili, M. Extra-virgin olive oil extracted using pulsed electric field technology: Cultivar impact on oil yield and quality. Front. Nutr. 2019, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Parrilla, E.; Urrea-López, R.; de la Rosa, L.A. Bioactive components and health effects of pecan nuts and their by-products: A review. J. Food Bioact. 2018, 1, 56–92. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Sabharanjak, S.M.; Zengin, G.; Mollica, A.; Szostak, A.; Simirgiotis, M.; Huminiecki, Ł.; Horbanczuk, O.K.; Nabavi, S.M.; Mocan, A. Pecan nuts: A review of reported bioactivities and health effects. Trends Food Sci. Technol. 2018, 71, 246–257. [Google Scholar] [CrossRef]
- Fernandes, G.D.; Gómez-Coca, R.B.; Pérez-Camino, M.d.C.; Moreda, W.; Barrera-Arellano, D. Chemical characterization of major and minor compounds of nut oils: Almond, hazelnut, and pecan nut. J. Chem. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Scapinello, J.; Magro, J.D.; Block, J.M.; Di Luccio, M.; Tres, M.V.; Oliveira, J.V. Fatty acid profile of pecan nut oils obtained from pressurized n-butane and cold pressing compared with commercial oils. J. Food Sci. Technol. 2017, 54, 3366–3369. [Google Scholar] [CrossRef]
- Alasalvar, C.; Shahidi, F. Tree Nuts: Composition, Phytochemicals, and Health Effects; CRC Press: Boca Raton, FL, USA, 2008; ISBN 9780849337352. [Google Scholar]
- Perren, R.; Escher, F.E. Impact of roasting on nut quality. In Improving the Safety and Quality of Nuts; Elsevier: Amsterdam, The Netherlands, 2013; pp. 173–197. ISBN 9780857092663. [Google Scholar]
- Nikiforidis, C.V. Structure and functions of oleosomes (oil bodies). Adv. Colloid Interface Sci. 2019, 274, 1–6. [Google Scholar] [CrossRef]
- Buranasompob, A.; Tang, J.; Powers, J.R.; Reyes, J.; Clark, S.; Swanson, B.G. Lipoxygenase activity in walnuts and almonds. LWT Food Sci. Technol. 2007, 40, 893–899. [Google Scholar] [CrossRef]
- Heldt, H.-W.; Piechulla, B.; Heldt, F. Plant Biochemistry, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780123849861. [Google Scholar]
- Shahidi, F.; Zhong, H.J. Methods for measuring lipid oxidation. In Baileyʹs Industrial Oil and Fat Products; Wiley: Hoboken, NJ, USA, 2020; pp. 1–27. ISBN 047167849X. [Google Scholar]
- Shahidi, F.; John, J.A. Oxidation and Protection of Nuts and Nut Oils; Woodhead Publishing Limited: Sawston, UK, 2010; Volume 1. [Google Scholar]
- Subroto, E.; Manurung, R.; Heeres, H.J.; Broekhuis, A.A. Optimization of mechanical oil extraction from Jatropha curcas L. kernel using response surface method. Ind. Crops Prod. 2015, 63, 294–302. [Google Scholar] [CrossRef]
- Rábago-Panduro, L.M.; Morales-de la Peña, M.; Martín-Belloso, O.; Welti-Chanes, J. Application of pulsed electric fields (PEF) on pecan nuts [Carya illinoinensis (Wangenh. K. Koch)]: Oil extraction yield and compositional characteristics of the oil and its by-product. Food Eng. Rev. 2021. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis; AOAC International: Rockville, MA, USA, 1996. [Google Scholar]
- Villarreal-Lozoya, J.E.; Lombardini, L.; Cisneros-Zevallos, L. Phytochemical constituents and antioxidant capacity of different pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. Food Chem. 2007, 102, 1241–1249. [Google Scholar] [CrossRef]
- Kendall, C.W.; Jenkins, D.J.; Parker, C.; Ellis, P.R.; Pacy, J.F.; Ren, Y.; Waldron, K.W. Role of cell walls in the bioaccessibility of lipids in almond seeds. Am. J. Clin. Nutr. 2018, 80, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Richardson, K.C.; Jarett, L.; Finke, E.H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain. Technol. 1960, 35, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, M.V.; Tsantili, E. Participation of phenylalanine ammonia-lyase (PAL) in increased phenolic compounds in fresh cold stressed walnut (Juglans regia L.) kernels. Postharvest Biol. Technol. 2015, 104, 17–25. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Tian, W.-L.; Mo, H.-Z.; Zhang, Y.-L.; Zhao, X.-Z. Effects of pulsed electric field processing on quality characteristics and microbial inactivation of soymilk. Food Bioprocess Technol. 2012, 6, 1907–1916. [Google Scholar] [CrossRef]
- Gardner, H.W. Analysis of lipoxygenase activity and products. Curr. Protoc. Food Anal. Chem. 2001. [Google Scholar] [CrossRef]
- Gao, P.; Liu, R.; Jin, Q.; Wang, X. Comparative study of chemical compositions and antioxidant capacities of oils obtained from two species of walnut: Juglans regia and Juglans sigillata. Food Chem. 2019, 279, 279–287. [Google Scholar] [CrossRef]
- Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J.; Motilva, M.J. Composition and organoleptic characteristics of oil from Arbequina olive (Olea europaea L.) trees under deficit irrigation. J. Sci. Food Agric. 2002, 82, 1755–1763. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Alvarez-Parrilla, E.; González-Aguilar, G.A.; Villa-Rodríguez, J.; Olivas-Orozco, G.I.; Molina Corral, J.; Gómez-García, M.D.C.; de la Rosa, L.A. Influence of growing location on the phytochemical content of pecan (Carya illinoinensis) oil. J. Food Res. 2013, 2, 143–152. [Google Scholar] [CrossRef]
- Nair, V.D.P.; Kanfer, I.; Hoogmartens, J. Determination of stigmasterol, β-sitosterol, and stigmastanol in oral dosage forms using high performance liquid chromatography with evaporative light scattering detection. J. Pharm. Biomed. Anal. 2006, 41, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Wakeling, L.T.; Mason, R.L.; DʹArcy, B.R.; Caffin, N.A.; Gowanlock, D. Microscopic structure of opalescent and nonopalescent pecans. J. Food Sci. 2003, 68, 2238–2242. [Google Scholar] [CrossRef]
- Phillips, K.M.; Ruggio, D.M.; Ashraf-Khorassani, M. Phytosterol composition of nuts and seeds commonly consumed in the United States. J. Agric. Food Chem. 2005, 53, 9436–9445. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 31 March 2020).
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Enhancing hydroxycinnamic acids and flavan-3-ol contents by pulsed electric fields without affecting quality attributes of apple. Food Res. Int. 2019, 121, 433–440. [Google Scholar] [CrossRef]
- Tylewicz, U.; Aganovic, K.; Vannini, M.; Toepfl, S.; Bortolotti, V.; Dalla Rosa, M.; Oey, I.; Heinz, V. Effect of pulsed electric field treatment on water distribution of freeze-dried apple tissue evaluated with DSC and TD-NMR techniques. Innov. Food Sci. Emerg. Technol. 2016, 37, 352–358. [Google Scholar] [CrossRef]
- Costa-Singh, T.; Jorge, N. Characterization of Carya illinoiensis and Juglans regia oils obtained by different extraction systems. Acta Sci. Technol. 2015, 37, 279. [Google Scholar] [CrossRef] [Green Version]
- Polmann, G.; Badia, V.; Frena, M.; Teixeira, G.L.; Rigo, E.; Block, J.M.; Camino Feltes, M.M. Enzyme-assisted aqueous extraction combined with experimental designs allow the obtaining of a high-quality and yield pecan nut oil. LWT Food Sci. Technol. 2019, 113, 1–7. [Google Scholar] [CrossRef]
- Gutiérrez, L.-F.; Ratti, C.; Belkacemi, K. Effects of drying method on the extraction yields and quality of oils from quebec sea buckthorn (Hippophaë rhamnoides L.) seeds and pulp. Food Chem. 2008, 106, 896–904. [Google Scholar] [CrossRef]
- Jia, X.; Luo, H.; Xu, M.; Wang, G.; Xuan, J.; Guo, Z. Investigation of nut qualities of pecan cultivars grown in China. J. Plant Sci. 2019, 7, 117–124. [Google Scholar] [CrossRef]
- Santerre, C.R. Pecan Technology; Champman & Hall: London, UK, 1994; ISBN 9789401095945. [Google Scholar]
- Savoire, R.; Lanoisellé, J.L.; Vorobiev, E. Mechanical continuous oil expression from oilseeds: A review. Food Bioprocess Technol. 2013, 6, 1–16. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations SECTION 2. Codex Standards for Fats and Oils from Vegetable Sources. Available online: http://www.fao.org/3/y2774e/y2774e04.htm (accessed on 29 January 2020).
- Oro, T.; Bolini, H.M.A.; Barrera-Arellano, D.; Block, J.M. Physicochemical and sensory quality of crude brazilian pecan nut oil during storage. JAOCS J. Am. Oil Chem. Soc. 2009, 86, 971–976. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Özcan, M.M.; Ghafoor, K.; Babiker, E.E.; Hussain, S. Comparison of cold-pressing and soxhlet extraction systems for bioactive compounds, antioxidant properties, polyphenols, fatty acids and tocopherols in eight nut oils. J. Food Sci. Technol. 2018, 55, 3163–3173. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Pegg, R.B.; Carr, E.C.; Parrish, D.R.; Kellett, M.E.; Kerrihard, A.L. Chemical and nutritive characteristics of tree nut oils available in the U.S. market. Eur. J. Lipid Sci. Technol. 2017, 119, 1–15. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, S.; Ma, H.; Huang, N.; Ye, N. Differential responses of walnut cultivars to cold storage and their correlation with postharvest physiological parameters. Hortic. Environ. Biotechnol. 2019, 60, 345–356. [Google Scholar] [CrossRef]
- Uquiche, E.; Jeréz, M.; Ortíz, J. Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innov. Food Sci. Emerg. Technol. 2008, 9, 495–500. [Google Scholar] [CrossRef]
- do Prado, A.C.P.; Manion, B.A.; Seetharaman, K.; Deschamps, F.C.; Barrera Arellano, D.; Block, J.M. Relationship between antioxidant properties and chemical composition of the oil and the shell of pecan nuts [Carya illinoinensis (Wangenh) C. Koch]. Ind. Crops Prod. 2013, 45, 64–73. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Bouali, I.; Tsafouros, A.; Ntanos, E.; Albouchi, A.; Boukhchina, S.; Roussos, P.A. Inter-cultivar and temporal variation of phenolic compounds, antioxidant activity and carbohydrate composition of pecan (Carya illlinoinensis) kernels grown in Tunisia. Hortic. Environ. Biotechnol. 2020, 61, 183–196. [Google Scholar] [CrossRef]
- Rábago-Panduro, L.M.; Martín-Belloso, O.; Welti-Chanes, J.; Morales-de la Peña, M. Changes in bioactive compounds content and antioxidant capacity of pecan nuts [Carya illinoinensis (Wangenh. K. Koch)] during storage. Rev. Mex. Ing. Química 2020, 19, 1439–1452. [Google Scholar] [CrossRef]
- Flores-Martínez, H.; León-Campos, C.; Estarrón-Espinosa, M.; Orozco-Ávila, I. Process optimization for the extraction of antioxidants from mexican oregano (Lippia graveolens HBK) by the response surface methodology (RSM) approach. Rev. Mex. Ing. Química 2016, 15, 773–785. [Google Scholar] [CrossRef]
Reference | W (kJ/kg) | ||||||
---|---|---|---|---|---|---|---|
0.8 | 7.8 | 15.0 | |||||
Control | PEF | Control | PEF | Control | PEF | ||
Acidity mg KOH/100 g | 21.4 ± 1.1 | 19.1 ± 0.9 | 19.9 ± 1.0 | 20.5 ± 0.1 | 21.8 ± 0.9 | 19.0 ± 0.9 | 21.7 ± 1.0 * |
AC mg Trolox EQ/100 g | 48.6 ± 0.8 | 45.7 ± 2.2 | 47.8 ± 1.3 | 49.0 ± 1.7 | 48.3 ± 2.8 | 48.2 ± 1.7 | 47.1 ± 1.2 |
Reference | W (kJ/kg) | |||
---|---|---|---|---|
0.8 | ||||
Control | PEF | |||
Phytosterols mg/kg | β-sitosterol Stigmasterol | 929.0 ± 89.3 | 858.2 ± 62.6 | 910.5 ± 132.2 |
501.5 ± 79.7 | 352.1 ± 17.8 | 324.4 ± 48.5 |
Reference | W (kJ/kg) | ||||||
---|---|---|---|---|---|---|---|
0.8 | 7.8 | 15.0 | |||||
Control | PEF | Control | PEF | Control | PEF | ||
Total phenolics mmol gallic acid EQ/100 g db | 20.0 ± 1.0 | 20.6 ± 1.8 | 16.3 ±1.0 * | 18.3 ± 2.1 | 17.9 ± 1.2 | 18.1 ± 0.7 | 16.5 ± 0.7 * |
Condensed tannins mmol catechin EQ/100 g db | 15.4 ± 1.0 | 17.4 ± 1.6 | 22.1 ± 2.1 * | 13.1 ± 1.3 | 14.5 ± 0.8 * | 13.3 ± 0.8 | 11.9 ± 1.0 * |
AC mmol Trolox EQ/100 g db | 14.7 ± 1.0 | 14.4 ± 1.7 | 17.9 ± 1.5 * | 18.5 ± 1.2 | 19.2 ± 0.6 | 16.3 ± 0.4 | 18.1 ± 1.3 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rábago-Panduro, L.M.; Morales-de la Peña, M.; Romero-Fabregat, M.P.; Martín-Belloso, O.; Welti-Chanes, J. Effect of Pulsed Electric Fields (PEF) on Extraction Yield and Stability of Oil Obtained from Dry Pecan Nuts (Carya illinoinensis (Wangenh. K. Koch)). Foods 2021, 10, 1541. https://doi.org/10.3390/foods10071541
Rábago-Panduro LM, Morales-de la Peña M, Romero-Fabregat MP, Martín-Belloso O, Welti-Chanes J. Effect of Pulsed Electric Fields (PEF) on Extraction Yield and Stability of Oil Obtained from Dry Pecan Nuts (Carya illinoinensis (Wangenh. K. Koch)). Foods. 2021; 10(7):1541. https://doi.org/10.3390/foods10071541
Chicago/Turabian StyleRábago-Panduro, Lourdes Melisa, Mariana Morales-de la Peña, María Paz Romero-Fabregat, Olga Martín-Belloso, and Jorge Welti-Chanes. 2021. "Effect of Pulsed Electric Fields (PEF) on Extraction Yield and Stability of Oil Obtained from Dry Pecan Nuts (Carya illinoinensis (Wangenh. K. Koch))" Foods 10, no. 7: 1541. https://doi.org/10.3390/foods10071541
APA StyleRábago-Panduro, L. M., Morales-de la Peña, M., Romero-Fabregat, M. P., Martín-Belloso, O., & Welti-Chanes, J. (2021). Effect of Pulsed Electric Fields (PEF) on Extraction Yield and Stability of Oil Obtained from Dry Pecan Nuts (Carya illinoinensis (Wangenh. K. Koch)). Foods, 10(7), 1541. https://doi.org/10.3390/foods10071541