A Predictive Strategy Based on Volatile Profile and Chemometric Analysis for Traceability and Authenticity of Sugarcane Honey on the Global Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards, Reagents, Materials and Software
2.2. Samples
2.3. Solid-Phase Microextraction Procedure
2.4. Gas Chromatography-Mass Spectrometry Analysis
2.5. Chemometric Analysis
3. Results and Discussion
3.1. Establishment of the Volatile Profile from Sugarcane-Based Syrups
3.1.1. Number of Identified Volatile Organic Compounds
3.1.2. Main Volatile Organic Compounds
3.1.3. Chemical Class Classification of Volatile Organic Compounds
3.2. Chemometric Analysis Based on the Volatile Profile of Sugarcane-Based Syrups
3.2.1. One-Way ANOVA Test
3.2.2. Principal Component Analysis and Partial Least Squares
3.2.3. Linear Discriminant Analysis
3.2.4. Partial Least Squares and Hierarchical Clustering Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soon, J.M.; Krzyzaniak, S.C.; Shuttlewood, Z.; Smith, M.; Jack, L. Food fraud vulnerability assessment tools used in food industry. Food Control 2019, 101, 225–232. [Google Scholar] [CrossRef]
- Fernández-Ferrín, P.; Bande, B.; Galán-Ladero, M.M.; Martín-Consuegra, D.; Díaz, E.; Castro-González, S. Geographical indication food products and ethnocentric tendencies: The importance of proximity, tradition, and ethnicity. J. Clean. Prod. 2019, 241, 118210. [Google Scholar] [CrossRef]
- Dias, C.; Mendes, L. Protected Designation of Origin (PDO), Protected Geographical Indication (PGI) and Traditional Speciality Guaranteed (TSG): A bibiliometric analysis. Food Res. Int. 2018, 103, 492–508. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, G.; Viganò, E. Global Challenges in Traditional Food Production and Consumption. In Case Studies in the Traditional Food Sector: A Volume in the Consumer Science and Strategic Marketing Series; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 25–46. ISBN 9780081012604. [Google Scholar]
- Silva, P.; Freitas, J.; Silva, C.L.; Perestrelo, R.; Nunes, F.M.; Câmara, J.S. Establishment of authenticity and typicality of sugarcane honey based on volatile profile and multivariate analysis. Food Control 2017, 73, 1176–1188. [Google Scholar] [CrossRef]
- Silva, P.; Silva, C.L.; Perestrelo, R.; Nunes, F.M.; Câmara, J.S. Fingerprint targeted compounds in authenticity of sugarcane honey—An approach based on chromatographic and statistical data. LWT 2018, 96, 82–89. [Google Scholar] [CrossRef]
- Ibáñez, C.; Valdés, A.; García-Cañas, V.; Simó, C.; Celebier, M.; Rocamora-Reverte, L.; Gómez-Martínez, Á.; Herrero, M.; Castro-Puyana, M.; Segura-Carretero, A.; et al. Global Foodomics strategy to investigate the health benefits of dietary constituents. J. Chromatogr. A 2012, 1248, 139–153. [Google Scholar] [CrossRef]
- Capozzi, F.; Bordoni, A. Foodomics: A new comprehensive approach to food and nutrition. Genes Nutr. 2013, 8, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Cifuentes, A. Food analysis and Foodomics. J. Chromatogr. A 2009, 1216. [Google Scholar] [CrossRef] [Green Version]
- Cirlini, M.; Caligiani, A.; Palla, L.; Palla, G. HS-SPME/GC-MS and chemometrics for the classification of Balsamic Vinegars of Modena of different maturation and ageing. Food Chem. 2011, 124, 1678–1683. [Google Scholar] [CrossRef]
- Pizarro, C.; Rodríguez-Tecedor, S.; Pérez-del-Notario, N.; González-Sáiz, J.M. Recognition of volatile compounds as markers in geographical discrimination of Spanish extra virgin olive oils by chemometric analysis of non-specific chromatography volatile profiles. J. Chromatogr. A 2011, 1218, 518–523. [Google Scholar] [CrossRef]
- Cajka, T.; Hajslova, J.; Pudil, F.; Riddellova, K. Traceability of honey origin based on volatiles pattern processing by artificial neural networks. J. Chromatogr. A 2009, 1216, 1458–1462. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, C.; Câmara, J.S. Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules 2019, 24, 3028. [Google Scholar] [CrossRef] [Green Version]
- Badia-Melis, R.; Mishra, P.; Ruiz-García, L. Food traceability: New trends and recent advances. A review. Food Control 2015, 57, 393–401. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J.A.M.; Câmara, J.S. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci. Technol. 2019, 85, 163–176. [Google Scholar] [CrossRef]
- Medina, S.; Pereira, J.A.; Silva, P.; Perestrelo, R.; Câmara, J.S. Food fingerprints—A valuable tool to monitor food authenticity and safety. Food Chem. 2019, 278, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Freitas, J.; Nunes, F.M.; Câmara, J.S. Chemical Differentiation of Sugarcane Cultivars Based on Volatile Profile and Chemometric Analysis. J. Agric. Food Chem. 2021, 69, 3548–3558. [Google Scholar] [CrossRef] [PubMed]
- Edris, A.E.; Murkovic, M.; Siegmund, B. Application of headspace-solid-phase microextraction and HPLC for the analysis of the aroma volatile components of treacle and determination of its content of 5-hydroxymethylfurfural (HMF). Food Chem. 2007, 104, 1310–1314. [Google Scholar] [CrossRef]
- Quinn, B.P.; Bernier, U.R.; Geden, C.J.; Hogsette, J.A.; Carlson, D.A. Analysis of extracted and volatile components in blackstrap molasses feed as candidate house fly attractants. J. Chromatogr. A 2007, 1139, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Franitza, L.; Granvogl, M.; Schieberle, P. Influence of the Production Process on the Key Aroma Compounds of Rum: From Molasses to the Spirit. J. Agric. Food Chem. 2016, 64, 9041–9053. [Google Scholar] [CrossRef]
- Chen, E.; Song, H.; Li, Y.; Chen, H.; Wang, B.; Che, X.; Zhang, Y.; Zhao, S. Analysis of aroma components from sugarcane to non-centrifugal cane sugar using GC-O-MS. RSC Adv. 2020, 10, 32276–32289. [Google Scholar] [CrossRef]
- Abe, E.; Nakatani, Y.; Yamanishi, T.; Muraki, S. Studies on the" sugary flavor" of raw cane sugar. I. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 1978, 54, 542–547. [Google Scholar] [CrossRef] [Green Version]
- Asikin, Y.; Wada, K.; Imai, Y.; Kawamoto, Y.; Mizu, M.; Mutsuura, M.; Takahashi, M. Compositions, taste characteristics, volatile profiles, and antioxidant activities of sweet sorghum (Sorghum bicolor L.) and sugarcane (Saccharum officinarum L.) syrups. J. Food Meas. Charact. 2018, 12, 884–891. [Google Scholar] [CrossRef]
- Stasiak-Rózńska, L.; Płoska, J. Study on the use of microbial cellulose as a biocarrier for 1,3-dihydroxy-2-propanone and its potential application in industry. Polymers 2018, 10, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGorrin, R.J. The significance of volatile sulfur compounds in food flavors. In Proceedings of the ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; Volume 1068, pp. 3–31. [Google Scholar]
- Cao, X.L.; Hierlihy, T.; Popovic, S.; Dabeka, B. Headspace solid-phase microextraction with gas chromatography-mass spectrometry determination of naphthalene in the composite food samples from the 2011 canadian total diet study in ottawa. J. Food Prot. 2012, 75, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Cerny, C.; Herrmann, A. Chapter 9. Thermal Generation of Aroma-Active Volatiles in Food. In The Chemistry and Biology of Volatiles; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 231–252. [Google Scholar]
- Niederbacher, B.; Winkler, J.B.; Schnitzler, J.P. Volatile organic compounds as non-invasive markers for plant phenotyping. J. Exp. Bot. 2015, 66, 5403–5416. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.E.; Gertsch, J.; Appendino, G. Plant volatiles: Production, function and pharmacology. Nat. Prod. Rep. 2011, 28, 1359–1380. [Google Scholar] [CrossRef]
- Hammerbacher, A.; Coutinho, T.A.; Gershenzon, J. Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant Cell Environ. 2019, 42, 2827–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, J.P.; Ma, Z.Y.; Zhao, K.G.; Zhang, J.; Xiang, L.; Chen, L.Q. Transcriptomic and proteomic approaches to explore the differences in monoterpene and benzenoid biosynthesis between scented and unscented genotypes of wintersweet. Physiol. Plant. 2019, 166, 478–493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhong, Z.; Min, M.; Ding, K.; Xie, Q.; Ruan, R. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study. Bioresour. Technol. 2015, 189, 30–35. [Google Scholar] [CrossRef]
- Rahim, A.A.; Saad, B.; Osman, H.; Hashim, N.; Yahya, S.; Talib, K.M. Simultaneous determination of diethylene glycol, diethylene glycol monoethyl ether, coumarin and caffeine in food items by gas chromatography. Food Chem. 2011, 126, 1412–1416. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Giambanelli, E.; Rossetti, A.; Cane, A.; Mulinacci, N.; Melani, F. Authentication of the geographical origin of virgin olive oils from the main worldwide producing countries: A new combination of HS-SPME-GC-MS analysis of volatile compounds and chemometrics applied to 1217 samples. Food Control 2020, 112, 107156. [Google Scholar] [CrossRef]
- Ongo, E.A.; Montevecchi, G.; Antonelli, A.; Sberveglieri, V.; Sevilla, F. Metabolomics fingerprint of Philippine coffee by SPME-GC-MS for geographical and varietal classification. Food Res. Int. 2020, 134, 109227. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Silva, C.L.; Silva, P.; Medina, S.; Pereira, R.; Câmara, J.S. Untargeted fingerprinting of cider volatiles from different geographical regions by HS-SPME/GC-MS. Microchem. J. 2019, 148, 643–651. [Google Scholar] [CrossRef]
Volatile Organic Compounds | Abbreviations | ANOVA | LDA | PLS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F 1 | W 2 | F 3 | CDF 4 | Loading Value | VIP 5 | |||||||
1 | 2 | 3 | 1 | 2 | 3 | Importance | Power (× 100) | |||||
2,4,6-Trihydroxypyrimidine | THDXYPYMNE | 180.09 | 4.62 × 10−2 | 130.62 | −70.540 | −8.258 | 14.822 | −0.107 | −0.339 | −0.167 | 2 | 22.49 |
1,4-Pentadiene | PT14DIENE | 49.98 | 2.70 × 10−1 | 17.12 | 26.030 | −39.002 | 1.486 | −0.063 | −0.420 | 0.200 | 17 | 15.85 |
Pentane | PTANE | 48.69 | 1.96 × 10−1 | 25.97 | −34.120 | 12.658 | −10.012 | 0.187 | 0.035 | 0.091 | 16 | 15.91 |
4-Pyridinol | PYRDINOL | 45.77 | 1.73 × 10−1 | 30.19 | −162.900 | 51.083 | −51.729 | 0.181 | 0.065 | −0.015 | 5 | 21.08 |
4-Cyclopentene-1,3-dione | CPT4E13DONE | 42.70 | 5.21 × 10−1 | 5.82 | −4.580 | −17.467 | 10.460 | 0.188 | −0.016 | 0.007 | 20 | 15.15 |
Ethanol | ETOL | 38.57 | 2.63 × 10−1 | 17.70 | −15.990 | −9.449 | −3.794 | 0.167 | 0.007 | 0.188 | 13 | 16.76 |
2,5-Furandicarboxaldehyde | FUR25DIAL | 30.06 | 3.12 × 10−1 | 13.95 | 71.890 | −55.246 | −11.369 | 0.179 | −0.069 | 0.049 | 10 | 17.99 |
5-Methyl-2(3H)-Furanone | M5FURONE | 29.65 | 1.88 × 10−1 | 27.32 | −9.110 | −61.784 | 18.575 | 0.197 | −0.085 | 0.005 | 25 | 12.42 |
2-(2-Furanylmethyl)-5-Methyl-Furan | FURYLMFUR | 28.08 | 1.36 × 10−1 | 40.21 | 88.730 | −8.719 | 24.338 | −0.008 | 0.187 | 0.392 | 4 | 22.12 |
2-Methyl-Benzofuran | M2BNZFUR | 27.39 | 6.90 × 10−2 | 85.49 | −185.440 | 48.514 | −37.864 | 0.179 | −0.041 | −0.087 | 8 | 18.11 |
2,2’-Methylenebis 5-Methyl-Furan | MNEB5MFUR | 24.37 | 1.02 × 10−1 | 55.62 | 105.390 | 46.353 | 2.323 | 0.189 | −0.029 | 0.012 | 9 | 18.10 |
Oxypurinol | OXYPUROL | 23.80 | 2.85 × 10−1 | 15.90 | 29.440 | −11.140 | −8.239 | 0.188 | −0.126 | 0.032 | 18 | 15.48 |
2-Cyclohexenol | CHEX2E1OL | 23.74 | 1.88 × 10−1 | 27.37 | 122.070 | −26.365 | 46.694 | 0.197 | 0.023 | 0.067 | 19 | 15.46 |
2-Methyl-Dihydro-2(3H)-Furanone | MDH2FURONE | 23.37 | 5.09 × 10−1 | 118.02 | 87.910 | −10.980 | 6.705 | −0.041 | −0.436 | 0.141 | 12 | 17.01 |
5-Acetoxymethyl-2-Furfural B | ACTYMFURALB | 22.74 | 3.75 × 10−2 | 162.39 | −220.540 | 45.621 | −33.535 | −0.043 | −0.443 | 0.068 | 11 | 17.51 |
Furfural Acetone | FURALTONE | 22.71 | 1.14 × 10−1 | 49.18 | −279.810 | 36.381 | −44.076 | 0.198 | −0.013 | −0.001 | 21 | 14.86 |
3-Methyl-2,4(3H,5H)-Furandione | M3FURDIONE | 22.67 | 6.43 × 10−2 | 92.12 | 287.950 | −18.438 | 49.078 | 0.190 | −0.022 | 0.027 | 6 | 19.74 |
3-Methoxy-1,2-Benzenediol | M3BNZDIOL | 22.36 | 6.43 × 10−2 | 92.12 | −206.700 | 126.409 | −33.892 | 0.203 | −0.072 | −0.031 | 32 | 9.20 |
Furfuryl Acetate | FURYLACTE | 20.88 | Removed from analysis. | |||||||||
2-Furanpropionic Acid | FURPPIONIC | 19.07 | 6.24 × 10−2 | 95.17 | 303.870 | −13.701 | 39.789 | −0.079 | −0.128 | −0.415 | 1 | 23.54 |
3-Methyl-Pyridazine | M3PYRDZNE | 17.95 | 1.32 × 10−1 | 41.58 | 131.650 | −2.761 | −0.685 | 0.197 | 0.016 | 0.011 | 24 | 12.79 |
2-Methyl-Butanal | M2BTAL | 17.62 | 3.43 × 10−1 | 12.13 | 0.060 | −23.095 | 7.286 | 0.199 | −0.047 | −0.097 | 14 | 16.51 |
Cyclotene | CYTENE | 17.59 | 3.19 × 10−1 | 13.49 | −83.600 | −28.243 | 12.252 | 0.201 | −0.091 | 0.002 | 31 | 10.46 |
2-Acetylpyrrole | ACTLPYROLE | 17.38 | 9.14 × 10−2 | 62.99 | −90.260 | 55.198 | −30.992 | 0.188 | −0.146 | −0.003 | 27 | 11.84 |
Furfuryl Formate | FURYLFMTE | 17.23 | 6.55 × 10−1 | 3.33 | −17.910 | 7.134 | −37.968 | 0.185 | −0.001 | −0.129 | 15 | 16.08 |
2,3-Dihydro-1,1,4,6-Tetramethyl-1H-Indene | DHT1146MIDNE | 17.05 | 4.92 × 10−1 | 6.53 | 36.680 | 0.135 | 3.888 | 0.179 | 0.075 | 0.090 | 23 | 13.62 |
3-Methyl-Furfural | M3FURAL | 16.94 | 2.36 × 10−1 | 20.52 | 23.630 | −29.167 | 15.070 | 0.201 | 0.001 | −0.083 | 30 | 11.26 |
2-Ethyl-Hexanoic Acid | E2HXNOIC | 16.91 | 1.10 × 10−1 | 51.37 | 36.630 | −16.971 | 11.398 | 0.196 | −0.022 | −0.128 | 22 | 14.73 |
Maltol | MALTOL | 15.39 | 2.29 × 10−1 | 21.26 | 53.870 | 3.310 | 19.627 | −0.123 | −0.085 | −0.066 | 3 | 22.20 |
Tetrahydro-5-Methyl-2-Furanmethanol | TEHYMFUROL | 15.38 | 6.09 × 10−2 | 97.61 | −46.990 | 11.888 | 1.765 | 0.177 | −0.003 | −0.206 | 7 | 18.33 |
3,5-Xylenol | XYL35NOL | 15.25 | 7.90 × 10−2 | 73.85 | −137.460 | −96.967 | −1.898 | 0.201 | −0.088 | −0.018 | 29 | 11.29 |
2,3-Dihydro-1,1,5,6-Tetramethyl-1H-Indene | DHT1156MIDNE | 14.77 | 6.28 × 10−1 | 3.76 | −4.680 | 56.537 | −28.156 | 0.204 | −0.007 | −0.004 | 28 | 11.42 |
Decanal | DECAL | 14.47 | 3.55 × 10−2 | 172.01 | 125.780 | −31.467 | 30.132 | 0.195 | −0.030 | −0.020 | 26 | 11.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, P.; Freitas, J.; Nunes, F.M.; Câmara, J.S. A Predictive Strategy Based on Volatile Profile and Chemometric Analysis for Traceability and Authenticity of Sugarcane Honey on the Global Market. Foods 2021, 10, 1559. https://doi.org/10.3390/foods10071559
Silva P, Freitas J, Nunes FM, Câmara JS. A Predictive Strategy Based on Volatile Profile and Chemometric Analysis for Traceability and Authenticity of Sugarcane Honey on the Global Market. Foods. 2021; 10(7):1559. https://doi.org/10.3390/foods10071559
Chicago/Turabian StyleSilva, Pedro, Jorge Freitas, Fernando M. Nunes, and José S. Câmara. 2021. "A Predictive Strategy Based on Volatile Profile and Chemometric Analysis for Traceability and Authenticity of Sugarcane Honey on the Global Market" Foods 10, no. 7: 1559. https://doi.org/10.3390/foods10071559
APA StyleSilva, P., Freitas, J., Nunes, F. M., & Câmara, J. S. (2021). A Predictive Strategy Based on Volatile Profile and Chemometric Analysis for Traceability and Authenticity of Sugarcane Honey on the Global Market. Foods, 10(7), 1559. https://doi.org/10.3390/foods10071559