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Abstract: Tofu has a long history of use and is rich in high-quality plant protein; however, its produc-
tion process is relatively complicated. The tofu production process includes soybean pretreatment,
soaking, grinding, boiling, pulping, pressing, and packing. Every step in this process has an impact
on the soy protein and, ultimately, affects the quality of the tofu. Furthermore, soy protein gel is the
basis for the formation of soy curd. This review summarizes the series of changes in the composition
and structure of soy protein that occur during the processing of tofu (specifically, during the pressing,
preservation, and packaging steps) and the effects of soybean varieties, storage conditions, soybean
milk pretreatment, and coagulant types on the structure of soybean protein and the quality of tofu.
Finally, we highlight the advantages and limitations of current research and provide directions for
future research in tofu production. This review is aimed at providing a reference for research into
and improvement of the production of tofu.

Keywords: tofu; protein; structure; mechanism

1. Introduction

Tofu originated in the time of the Western Han dynasty and has been consumed
for more than two thousand years. Tofu is rich in soy protein and has high nutritional
value [1]. Processing of soy products can remove most of the anti-nutritional factors in
soy and significantly improve the digestibility of soy protein. Studies have shown that
the digestibility of whole ripe soybeans is only 65.3%; after processing it into soy milk
and tofu, the digestibility becomes 85% and 92–98%, respectively [2]. Furthermore, the
FDA authorized a “Soy Protein Health Claim” on 26 October 1999 stating that 25 g of soy
protein a day may reduce the risk of heart disease. In addition to protein, tofu contains
lipids, carbohydrates, crude fiber, isoflavones, minerals, and saponins, which can lower
cholesterol, alleviate the symptoms of cardiovascular and kidney diseases, and reduce the
incidence of cancer and tumors [3].

Several types of tofu are available in the market to meet the different needs of con-
sumers, each produced via a different complex process. Here, we review the changes
that occur in soybean protein in each step of tofu production (specifically, during soaking
and refining). The types, composition, and structure of soy protein and the effects of soy
varieties and storage conditions on soy protein are summarized. In addition, the effects of
pretreatment steps and coagulants on soy protein structure and tofu quality are introduced.
We also summarize the advantages and disadvantages of current research and provide
directions for future research into soy protein structural changes during tofu processing.
Overall, this review is expected to serve as a foundation for research into the curdling
mechanism of tofu and as a theoretical guide for the actual production process.
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2. Soy Protein

Soy is composed of approximately 40% proteins, 20% lipids, 25% carbohydrates,
and 5% crude fibers [2,4]. They are also rich sources of isoflavones, minerals, and other
components. The nutrient contents of soybean are shown in Figure 1.

Figure 1. Nutritional composition of soybean [5,6]; Protein Data Bank.

Soy protein can be classified according to its solubility, physiological function, and
centrifugal sedimentation speed. Based on solubility, soy protein is divided into glob-
ulin and albumin. Based on physiological functions, it is divided into storage protein
and biologically active protein. Based on centrifugal sedimentation speed, it is divided
into 2S, 7S, 11S, and 15S components (S refers to the sedimentation coefficient, where
1S = 10−13 s = 1 Svedberg), and each component is composed of protein molecules with
similar molecular weights [4]. The graded composition of soy protein is shown in Table 1.

The 7S conglycinin and 11S glycinin are the key components of tofu curd, accounting
for more than 70% of the total soy protein content [11]. 7S conglycinin is a trimer composed
of an α subunit, α′ subunit, and β subunit and accounts for approximately 30% of the soy
protein content [12]. 11S glycinin is a hexamer composed of acidic polypeptides (A) and
basic polypeptides (B) linked by disulfide bonds and accounts for approximately 40% of
the soy protein content. The composition and functions of 7S conglycinin and 11S glycinin
are shown in Table 2. Ren et al. [13] analyzed the interaction between protein subunits in
soy milk and proposed a model for protein subunit structure. The β subunit and the B
subunit form the hydrophobic core of the granule protein through electrostatic interaction,
in which the B subunit is covalently connected by disulfide bonds. Other hydrophilic
subunits, such as α, α’, and A subunits, are distributed around this hydrophobic core
through hydrophobic interactions and hydrogen bonds.

The functional properties of soy protein mainly include gelling, emulsification, and
foaming; of these, gelling is the basis for the formation of tofu. During tofu production, soy
protein undergoes dissociation or association reactions during the acid-base treatment and
heat treatment, which changes the ionic strength of the solution. Through these association–
dissociation reactions, 11S glycinin polymerizes to form dimers, oligomers, or multimers
or dissociates to form 7S and 3S components [14].
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Table 1. Composition, structure, and physiological functions of soy protein [5–10]; Protein Data Bank.

Component Ingredient Structure pH
Relative Molecular Mass

A B

2S
(15~22%)

Trasylol 4.5 8000~21,500 15,000~30,000

Cytochrome C 10.2~10.8 12,000

7S
(34~37%)

Hemagglutinin - 102,000 100,000~200,000

Lipoxygenase 5.7~6.4 102,000

β-amylase 5.0~6.5 61,700

β-Conglycinin 5.07~5.88 180,000~210,000

11S
(31~42%) Glycinin 5.28~5.78 350,000 350,000

15S
(9~10%) - - - 600,000 600,000

-: Not Available.
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Table 2. The composition and functions of 7S and 11S [15,16].

Protein Subunit Molecular Weight (kDa) Isoelectric Point

7S
β-Conglycinin

α 57~72 5.23
α’ 57~68 5.07
β 45~52 5.88

11S
Glycinin

A1aB1b 53.6 -
A2B1a 52.4 -
A1bB2 52.2 -

A5A4B3 61.2 -
A3B4 55.4 -
A1a - 5.78
A1b - 5.28
B1a - 5.46
B1b - 5.73
A2 - 5.46
A3 - 5.60
A4 - 5.29

-: Not Available.

3. Changes in Soy Protein during Tofu Processing

To obtain raw soy milk for tofu production, soybeans are soaked, pulped, and filtered.
For tofu production using the raw soy milk, the milk is first heated and then a coagulant is
added to form tofu curd. The curd is then pressed to obtain a tofu product. As shown in
Figure 2, the structure and content of soy protein undergo numerous changes throughout
the tofu production process. The quality of the final tofu product is affected by soybean
varieties, storage conditions, soaking, grinding, soymilk pretreatment, types of coagulants,
operating conditions, pressing, and packaging.

3.1. Influence of Soybean Varieties and Growing Conditions

The protein, the 11S/7S ratio, and the methionine and cysteine content in soybeans
have a significant impact on the hardness and the water-holding capacity of tofu [17].
Therefore, these indices are important indicators for screening soybeans [18].

Different soybean varieties differ in their soy protein subunit compositions, leading
to changes in their denaturation temperature and gel network structure [19–21]. Stanoje-
vic [22] and Cai et al. [23] assessed the effects of soybean varieties on the quality of tofu.
They found that soybeans with a low 11S/7S ratio formed a uniform spherical aggregated
gel, whereas the gel formed by beans with a higher 11S/7S ratio had higher macroscopic
phase separation, a coarser network structure, and larger pores [24].

The content of the 11SA4 subunit in soybean can affect the overall protein content and
seed size. Soybeans with lower 11SA4 content have higher protein content and smaller
seeds, and the gel structure of the obtained tofu is denser. Therefore, the protein content
in soybeans can be increased by removing the 11SA4 subunit through genetic breeding,
thereby improving the gel properties, hardness, and water-holding capacity of the tofu
produced [18].

The growth environment and growing period of soybean also affect the 7S and 11S
content and the composition of their subunits. The total protein content in soybeans is neg-
atively correlated with latitude (12–32 N◦) and rainfall in the growing season (61–956 mm)
and positively correlated with the daily average temperature in the growing period
(19.0–26.7 ◦C) [25]. Yang et al. [26] showed that soybeans from different growth envi-
ronments presented obvious differences in protein subunits, which in turn influenced the
yield, color, hardness and water loss of tofu. Poysa et al. [27] observed that the effects
of soybean genetic profile and growth year significantly affected soymilk and tofu yield,
solids levels, and pH and effected tofu color, hardness, and firmness more than the growth
environment. Moreover, the effects of the interaction of genotype with location and year
were minor relative to the effects of genotype and year individually.
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Figure 2. Changes of soybean protein during tofu processing [5,6]; Protein Data Bank.
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3.2. Influence of Storage Conditions

Generally, the newly harvested soybeans are unripe and have lower oil and protein
content than fully mature seeds, making processing difficult. After storage, soybeans
mature, resulting in improved tofu yield, color, hardness, and water loss. However,
extended storage can also lead to a decline in tofu quality.

The main factors affecting soybean storage include the relative humidity of the storage
environment, seed moisture content, storage temperature, and duration. Kong et al. [28]
found that long-term storage leads to a decrease in the water-holding capacity of soy
protein, thus increasing the yield and protein content of tofu. Saio et al. [29] showed that
the relative humidity of the soybean protein storage environment has a greater impact on
soybean protein components than the storage temperature.

In summary, different soybean varieties have different genes, protein composition,
and 11S/7S protein ratios. The growth environment affects the gene expression of soybeans,
which influences the composition and structure of their protein. Storage conditions, on
the other hand, cause physical, chemical, and biological changes in soy protein. Therefore,
both storage conditions and storage time influence the protein content of tofu.

3.3. Influence of Soaking and Refining

Soaking and refining are important steps in tofu processing. Soaking changes the
structural characteristics and crushing performance of soybeans, accelerating the extraction
of soybean protein and thereby increasing the protein content of tofu [30]. Conversely, the
limited swelling of soy protein doubles the absorption of water and increases soybean
volume. Refining can dissolve the protein in soybeans and disperse them evenly in water.
In the refining process, the extraction rate of soy protein is approximately 85% [2].

The soybean soaking process is affected by several factors, such as soybean particle
size and variety, soaking water quality, water temperature, pressure, and soaking method
and time. Therefore, choosing the right soaking conditions is crucial in the processing
of tofu. High-quality water and suitable temperature and soaking time lead to a higher
protein extraction rate and content in soymilk, increasing the gel strength and water-
holding capacity of tofu [31–33]. Yang et al. [30] and Pan et al. [34] showed that the optimal
soaking time decreases as the soaking temperature increases. However, as the temperature
rises from 30 ◦C to 40 ◦C, protein and carbohydrates leak significantly and the solid content
of the soaked soybean seeds decreases. Guo et al. [35] showed that the order of factors
affecting the yield of soy protein during the soaking process was soaking time > soaking
temperature > pH of the soaking solution. Furthermore, the optimal conditions of soaking
may also be affected by soybean varieties.

In conclusion, soaking and refining dissolve the protein, oil, and other substances in
soybeans from a solid to liquid phase. The treatment conditions of soaking and refining,
such as soaking water quality, soaking water temperature and time, refining temperature,
and the material-to-water ratio of refining, affect the dissolution of soy protein, oil, and
other components and change the content of each component in soymilk, affecting the
quality of tofu.

3.4. Pretreatments
3.4.1. Soybean Pretreatment

Okara is rich in dietary fiber, protein, fat, and isoflavones. However, the tofu pro-
duction process usually removes the okara in soymilk, causing nutrient loss. Therefore,
researchers have developed a preparation method that produces whole soybean curd while
retaining the okara. However, the dietary fiber, gel, and other impurities contained in
soybeans have an adverse effect on the texture and flavor of tofu.

Studies have shown that the protein and oil content of dehulled soybeans is higher
than whole soybeans [36]. The use of dehulled soybeans to produce tofu not only improves
product quality but also facilitates the extraction of soy protein. Moreover, the network
structure of whole bean curd is mostly irregular, discontinuous, large, and uneven. This
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is because some insoluble dietary fiber particles are embedded in the network structure,
which destroys the continuity of the soy protein gel network [37].

Tofu prepared from frozen soybeans showed a more orderly and denser network
structure compared to unfrozen soybeans, inducing an increase in some textural parame-
ters, such as hardness, springiness, gumminess, chewiness, and syneresis. Freezing also
enhanced tofu quality with a lower yield, lower fat, and higher protein content [38].

3.4.2. Soymilk Pretreatment

Denaturation of soy protein is a prerequisite for curd formation of tofu and is generally
applied in the form of heat in tofu processing technology [39]. Studies have found that
the hydrophobicity, emulsification, and gel strength of soy protein can be enhanced by
ultrasonic treatment of soy milk.

(1) Heat Treatment

Raw soymilk is relatively stable because the natural soybean protein molecule has
a hydrophobic group inside and a hydrophilic group on the surface of the molecule. As
the raw soymilk is heated, the energy in the system increases, the thermal motion of
protein molecules intensifies, and the vibration frequency of certain groups in the molecule
increases. This change leads to the breaking of the secondary bonds that hold the protein
molecular structure, while the spatial structure also changes [40]. During the thermal
denaturation of soy protein, hydrophobic groups such as sulfhydryl groups, disulfide
bonds, and hydrophobic amino acid side chains are exposed, and the hydrophobicity of
the surface of soy protein increases, which intensifies the protein molecule aggregation.

Soybean protein aggregates during soybean milk heat treatment. At 80 ◦C, the solubil-
ity of 11S globulin decreases, and the α-helical structure of the protein gradually transforms
into β-sheet and random coil structures. After heat treatment at 90 ◦C and 100 ◦C, the
solubility of protein increases slightly, and the α-helix and β-sheet structures change to
β-turn and random coil structures, which plays an important role in the formation of
aggregates [41,42]. In the formation of thermal aggregates and network structures, β-sheets
have a greater effect than α-helixes [43]. The decrease in β-sheet content exposes the hy-
drophobic area of the protein [44]. Guo et al. [40] showed that 7S produced soluble limited
aggregations, while 11S formed insoluble aggregations. After heating, 7S terminated the
assembly of 11S and restored the solubility of 11S. The three-dimensional network structure
of agglomerates prepared by heated soybean protein shows low sedimentation and a high
curdling rate, suitable water-holding capacity, low hardness, and high elasticity.

Currently, tofu is prepared with soymilk at approximately 100 ◦C. Nevertheless, as
the heat denaturation temperature of 11S protein (85~95 ◦C) is estimated to be 20 ◦C higher
than the heat denaturation temperature of 7S protein [45], such a heating method denatures
both proteins almost simultaneously. Studies have shown that the two-step heating method
(i.e., first denaturing 7S protein, then 11S protein) is conducive to the effective denaturation
of soy protein and the formation of curd, maximizing the use of the two-storage protein
gel characteristics to obtain the best quality curd [46].

During the heating process, in addition to the structural changes of the protein itself,
the oil in the soymilk also has a certain impact. Peng et al. [47] described this process in
detail. Between 65–75 ◦C, oil molecules, 7S, and 11S are released into soluble components
from the storage protein–oil body complex. At 75–95 ◦C, the oil enters the floating compo-
nents on the surface of the soymilk. The β and B subunits then aggregate to form protein
particles, while the α, α’, and A subunits remain in the soluble fraction.

Heating induces protein aggregation and protein–polysaccharide interaction, leading
to the modification of protein particle size distribution, viscosity, surface hydrophobicity,
and solubility [48] and altering the structure of soybean protein. Moreover, soy protein
has hydrophobic interactions with flavor substances, such as aldehydes and ketones. In
addition to the aggregation of subunits, the conformation of the polypeptide chain also
varies during thermal denaturation. The exposed hydrophobic areas on the surface of
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the heat-denatured protein particles provide active binding sites for flavor molecules and
affect the sensory quality of soymilk [49].

(2) Ultrasound Pretreatment

Ultrasound is a phenomenon of cavitation that exceeds the threshold of human
hearing. The cavitation effect of ultrasound can change the structure of protein molecules.
After ultrasonic treatment, the polypeptide chain inside the protein molecule is partially
expanded, the protein structure becomes more stretched, the hydrophobic group is exposed,
the surface activity enhances, and the emulsification increases [50].

Liu et al. [51] found that the 11S globulin aggregates were broken into small uniform
particles after ultrasonic treatment, which narrowed the distribution and increased the
surface charge density. Proteins can be completely distributed in the oil–water interface by
appropriate ultrasound and heat treatment, thus reducing surface tension. As the sonication
time extends, the emulsification of soy protein tends to be stable after its peak [52]. In
this regard, Chen et al. [53] and Karki et al. [54] suggested that with a sonication time
extension the protein structure becomes loose, the polar part shifts to water, and the non-
polar part shifts to lipids. The emulsion becomes evenly dispersed and the emulsification
performance is improved. However, if it is processed for a long time, the insoluble protein
content increases and the emulsification decreases.

Different ultrasound powers have different effects on proteins. Liu et al. [55] found
that low-power ultrasound treatment weakens the ability of soy protein gel formation, and
high-power ultrasound delays the formation of the gel. However, under the treatment
of medium-power ultrasound (200–600 W), the hydrophobic interaction and hydrogen
bonding positions during the formation of the thermal gel increase, forming a stronger gel
with a denser three-dimensional network structure. This improves the gel properties of soy
protein. Li et al. [56] found that with the increase of ultrasound power, the particle size
of soy protein gradually increased, reaching the highest value at 300 W. However, if the
ultrasonic power continued to be enhanced, the particle size of soybean protein decreased,
hydrophobic groups were exposed, and the emulsification and stability of soybean protein
were improved.

Hu et al. [57] found that with ultrasonic treatment under 400 W, the calcium ion-
induced soy protein formed a compact and uniform three-dimensional gel structure, which
improved its water-holding capacity and gel strength. Zhang et al. [58] showed that high-
intensity ultrasound can open the spatial structure of soy protein isolate, exposing the site
of action of transglutaminase, thus enhancing the strength of the gel formation induced.
Therefore, the modification of soy protein by ultrasound can be applied to tofu processing.

3.5. Coagulants

A key step in tofu production is the addition of a coagulant to make the soybean
protein form a gel network structure that is macroscopically reflected in the formation
of tofu coagulation. This process is mainly influenced by the type of coagulant and
processing conditions. During the coagulation process, the protein–protein and protein–
water interactions cause soy protein to aggregate and form a honeycomb-like gel [59].
Currently, typical coagulants include salt, acid, and enzyme and composite coagulants.
They have different coagulation mechanisms and interfere with the quality of tofu.

3.5.1. Salt Coagulants

Salt coagulants are the most traditional and widely used in tofu production; mainly
include magnesium chloride, calcium chloride, magnesium sulfate, calcium sulfate, calcium
acetate, and so on. Regarding the curdling mechanism of salt-based coagulants to make
tofu, researchers believe that the gelatinization process of tofu can be divided into two
steps [60]: (1) the heat denaturation process of protein and (2) a hydrophobic condensation
process promoted by metal ions.

There are three main theories for the mechanism of salt coagulants: (1) ion bridge
theory [61], (2) salting-out theory [62], and (3) isoelectric point theory [63]. In recent years,
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researchers have also proposed a new explanation based on the ion bridge theory, which
states that the formation of protein particles varies in the presence of specific metal ions [64].
These four explanations, however, have their limitations.

In order to explore the solidification mechanism of salt coagulants, researchers have
studied the contributions of various interaction forces in the solidification process.
Lee et al. [61] used optical and scanning electron microscopy to observe the microstructure
of soy protein aggregates during heat treatment and spotting. They found that the isoelec-
tric point precipitation and calcium ion aggregation did not change the globular structure
of soy protein, but heating could change the protein structure. Zhou et al. [65] studied
the changes in the texture characteristics of the gel by adding different types of additives,
including NaCl, thiothreitol, sodium dodecyl sulfate, and urea, during the preparation of
the marinated tofu gel. Their results showed that electrostatic interactions, disulfide bonds,
hydrophobic interactions, and hydrogen bonds have important effects on the formation of
tofu gel. Liu et al. [66] analyzed freeze-dried tofu samples using chemical methods and
studied the influence of intermolecular forces in the curding process of different coagulants
on this basis. They highlighted that hydrophobic interaction and disulfide bonds play
a dominant role in the formation of soybean gel. Yang et al. [67] studied the changes in
the secondary structure and moisture state of the protein during the formation of tofu
gel and concluded that electrostatic interaction and hydrophobic interaction mainly affect
the aggregation of protein molecular chains; moreover, hydrogen bonds and disulfide
bonds mainly affect the connection of molecular chains. Jin et al. [68] showed that as the
solidification temperature increases, the proportions of ionic and hydrogen bonds decrease
significantly, while the proportions of hydrophobic interactions and disulfide bonds in-
crease. In summary, hydrogen and disulfide bonds and electrostatic and hydrophobic
interactions play a certain role in the curdling process of tofu, but there are still some
controversies about their specific mode of action.

The type and concentration of salt coagulants play a decisive role in the properties
of tofu curd. Lu et al. [63] found that a variety of calcium salts (calcium chloride, calcium
lactate, calcium acetate, calcium gluconate, etc.) can induce gelation of soy protein; thus, it
precipitated when the pH of soymilk was 6. Liu et al. [69] found that as the concentration of
coagulant increased, the gel strength of tofu increased, while the water retention decreased.

The type of ions affects the coagulation characteristics of tofu, and the influence of anions
is greater than that of cations. Other than soy protein, lipids are also the main components of
soymilk. With the addition of the coagulant, the lipid particles incorporate into the protein
gel network and disperse in the gel network. Based on previous research, Peng et al. [47]
proposed a specific model that combines soy protein, lipids, and small molecules.

3.5.2. Acid Coagulant

Acid coagulants are another important type of tofu coagulants. Acid coagulants
include glucolactone (GDL), physalis, lactic acid, acetic acid, succinic acid, citric acid, malic
acid, and tartaric acid; of these, GDL is the most widely used. Acid coagulants can provide
hydrogen ions that reduce the pH value of soymilk to the isoelectric point of soy protein,
thus promoting the isoelectric precipitation of protein.

At a certain temperature, GDL slowly hydrolyzes the gluconic acid and releases
protons, which is a suitably gradual process for forming a continuous soy protein network
structure through hydrophobic and electrostatic interactions [70]. Excessive gel rate can
result in gel with an uneven structure and low strength [71]. Kaoru et al. [60] showed that
the gelation process of GDL is similar to that of salt-based coagulants, and its gelation
curve conforms to first-order reaction kinetics. However, the coagulation rate induced by
GDL is lower than that of salt-based coagulants [60]. Due to the difference in isoelectric
point, there are more protons recombined in 7S than 11S. The addition of GDL promotes
aggregation through hydrophobic interactions, thereby inducing gelation, whereas the
interaction between charges may be secondary.
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During the tofu production process, yellow water containing certain nutrients is pro-
duced. Under suitable conditions, the yellow water can be fermented to obtain physalis.
Using physalis as a coagulant can save costs and reduce pollution. Liu et al. [72] showed
that the physalis coagulant produces a large amount of hydrogen ions. The ions re-
duce the negative charge of protein molecules, increase the content of free sulfhydryl
groups, and gradually reduce the surface hydrophobicity, thus inducing the formation of
protein aggregates.

3.5.3. Enzyme Coagulant

Coagulant enzymes, widely present in animal and plant tissues and microorgan-
isms, have great development potential as bean curd coagulants. At present, the most
studied enzyme coagulants include transglutaminase (TGase), pepsin, acalase, papain,
and bromelain.

From the 1980s to the beginning of this century, researchers tried to use natural
proteases derived from plants and animals as a tofu coagulant. Fuke et al. [73] confirmed
the role of bromelain in the aggregation and gelation of heated soymilk by measuring
sulfhydryl content and hydrophobicity. Luan et al. [74,75] studied 13 different proteases
and found that alcalase, papain, and bromelain have a strong soymilk solidifying ability.

TGase is a type of enzyme that catalyzes the acyl transfer reaction between the γ-
hydroxylamine group (acyl donor) of peptide glutamine residues and a variety of primary
amines (acyl acceptor). This process is mainly realized in three ways: introduction of
amines, intermolecular and intramolecular cross-linking, and deamination. Yang et al. [76]
believed that the effect of TGase in improving the strength of tofu is mainly related to 7S
and 11S protein. In this process, the α’ and α subunits in 7S and the A3 peptide chain in
11S have the greatest influence on the action of TGase, followed by the β subunit in 7S and
the A peptide chain in 11S. They analyzed the amino acid content of these subunits and
peptide chains and concluded that the activity of TGase is closely related to the lysine in
soy protein.

3.5.4. New Coagulants

(1) Emulsion Coagulant

Magnesium chloride has high solubility and can be used in a rapid and intense tofu
gelation process. The coagulation rate of tofu curd influences the characteristics of the
curd. Overly quick coagulation results in coagulation with poor water retention and coarse
particles. As a slow-release platform, emulsion coagulant can achieve controlled release
of coagulant, solving the above problems [77,78]. The main components of emulsion
coagulant include a brine-based water phase, a natural fat-based oil phase, emulsifier,
and protein. The current emulsion coagulants can be divided into two types: water-in-oil
(W/O) and water-in-oil-in-water (W/O/W).

Li et al. [79,80] studied the preparation methods of W/O and W/O/W emulsion
coagulants and their influence on the characteristics of tofu curd and found that the
emulsion coagulant can improve the spatial structure of tofu gel. Compared with the
traditional marinated tofu, the tofu gel network prepared by the emulsion coagulant is
finer, and its water content and water-holding capacity are improved. Zhu et al. [81] used
a differential calorimetry scanner and low-field nuclear magnetic resonance to study the
change of water in the W/O tofu gel process and found that tofu prepared using this
coagulant had higher free water content than did traditional marinated tofu.

(2) Complex Coagulants

Common coagulants such as gypsum, brine, and GDL present disadvantages com-
pared to other coagulants. The coagulation speed using a small amount of gypsum is slow,
whereas tofu products made with a large amount of gypsum contain residues and a bitter
taste. Tofu made with bittern has poor water-holding capacity, resulting in short shelf life.
Lactone tofu is soft, and not suitable for frying [82–84]. Obtaining a complex coagulant
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that can overcome the shortcomings of a single coagulant and ensure the quality and taste
of tofu has become a major research focus in the field.

Different coagulants have different abilities to induce the coagulation of soy protein,
and the ratio of complex coagulants also influences the aggregation state and gel properties
of the protein. Wang et al. [85] used magnesium sulfate and calcium sulfate as a complex
coagulant to induce gelation of the soybean protein emulsion. The results showed that
different concentrations of magnesium ions changed the hardness and strength of the gel
due to different aggregation forces. At low concentration, magnesium ions were conducive
to the formation of dense protein aggregates and promoted the uniformity and deformation
resistance of the gel; when the concentration of magnesium ions increased, the synergistic
effect of calcium and magnesium ions promoted the coarsening of the protein gel structure,
and the emulsification performance was significantly improved.

Ramy et al. [86] added nano fish bones to the citric acid-induced soymilk curdling sys-
tem, which significantly enhanced the compactness and uniformity of the three-dimensional
gel network. The combination of citric acid and salt coagulants increases the hardness of
tofu, probably due to the increase of ionic bonds caused by the addition of salt ions. Salt
can change the structures of water and polar groups and provide electric charge, affect-
ing the electrostatic and hydrophobic interactions [87]. The complex coagulant formed
by TGase and lactic acid bacteria can induce the formation of a denser gel network [88].
Shi et al. [89] used a composite coagulant of TGase and GDL to prepare tofu, resulting in
enhanced water content, water-holding capacity, and microstructure density under certain
operating conditions.

3.5.5. Additives

(1) Carbohydrates

Adding carbohydrates and other additives to the coagulant can significantly im-
prove the performance of tofu curd. The interaction between polysaccharides and protein
polymers has been shown to effectively improve the properties of the curd [90]. Com-
mon carbohydrate additives include chitosan, guar gum, carrageenan, acacia gum, and
konjac gum.

Li et al. [90] compared the tofu made with a compound coagulant (magnesium chlo-
ride and guar gum) with traditional tofu (gypsum and marinated tofu) and found that
the addition of guar gum affected the gel structure and texture characteristics of tofu.
Researchers speculated that the higher viscosity of guar gum increases soymilk viscosity,
resulting in a slower coagulation rate. In addition, they compared the performance of
carrageenan, guar gum, and acacia gum mixed with magnesium chloride to make tofu [91].
The texture data show that the addition of guar gum significantly reduced the hardness
and protein content of tofu, and carrageenan increased the hardness of the curd, while the
protein content remained unchanged.

Cao [92] showed that salt coagulants and polysaccharides have a synergistic promotive
effect on soy protein curd formation, which significantly improves the texture properties of
tofu. Zhao et al. [93] added konjac gum, gellan gum, and Kotlan gum to the calcium sulfate-
induced soy protein isolate gel system and found that the addition of polysaccharides
enhanced the gel structure, accelerated gelation, improved the microstructure of the gel,
and lowered the starting temperature of gelation. Chitosan as a coagulant lowers tofu’s ash
content and improves its protein content [94], and in the production process of pressurized
lactone tofu, improves its water holding capacity [95]. Jun et al. [96] used acetic acid-treated
crab shell extract as a coagulant, and the texture of tofu produced was comparable to that
of commercially available tofu.

(2) Phytic Acid

Phytic acid or phytate added to soymilk has a significant effect on the texture character-
istics of tofu curd. Schaefer et al. [97] studied the relationship between the content of various
components in soybeans and the properties of tofu. They concluded that phytic acid can
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preferentially combine with calcium coagulants, thereby changing the yield, composition,
texture, and microstructure of tofu curd. Saio et al. [98] found that when the amount of
calcium salt added was in a certain range, as the phytic acid content in soymilk increased,
the effect of calcium ions on protein coagulation decreased and tofu gel formation became
increasingly difficult. Therefore, tofu made from soymilk with high phytic acid content has
a high yield but low gel hardness. Ishiguro et al. [99] performed curdling experiments and
measured the phytic acid content of 27 types of soybeans. The results showed that tofu with
a higher phytic acid content and prepared at a general coagulant range had a softer texture.
In conclusion, the higher the phytic acid content during the curding process, the lower the
hardness of the tofu and the higher the viscosity and fracture stress.

3.6. Compression, Preservation, and Packaging

Compression is the process of stabilizing the tofu gel network structure. The pressing
operation applies pressure to the formed curd, expelling the excess yellow water and
reducing the syneresis of the tofu during the storage process. During the pressing process,
the ratio of the β-sheet structure of soy protein increases, the disordered structure decreases,
and the gel system gradually stabilizes [72]. The amount of pressure and the pressing time
affect the structure of tofu. The moisture around the soy protein gel network cannot be
completely released under low pressure, which leads to uneven shaping of tofu and easy
syneresis. Under high pressure, the gel structure of tofu is greatly damaged, resulting
in excessive loss of yellow water. Studies have shown that the water retention of tofu
is negatively correlated with the loss of yellow water [100], and a certain amount of
soluble protein and other nutrients are also dissolved in yellow water. Therefore, once the
amount of yellow water decreases during the pressing process, the water retention and
nutritional value of tofu also decrease [101]. Tofu is preserved by adding preservatives to
increase product shelf life [102]. Tofu preservation requires a comprehensive preservation
technology. Freezing can achieve the effect of freshness, and the freezing temperature and
time greatly influence the texture of tofu. Freezing treatment converts the water in the
tofu into ice crystals, expands the mesh inside the original tofu tissue, and improves the
texture characteristics of the tofu. However, a very low temperature makes the ice crystals
in the protein gel network too dense, and the pores become smaller after thawing, which
can decrease the texture quality of tofu [103]. Kobayashi et al. [104] found that the ice
recrystallization and dehydration of frozen tofu with a shelf life of 0–7 days causes changes
in the balance of hydrophilic and hydrophobic zones. This change induces the formation
of new protein interactions, resulting in a firmer tofu texture.

Tofu packaging is the last step in tofu processing. The choice of packaging materials
affects the water retention and shelf life of tofu. Tofu is rich in water and protein, which
can deteriorate rapidly. Appropriate packaging can prevent the growth of microorganisms
and slow down protein deterioration and water loss, thereby extending the shelf life of
tofu [105].

4. Conclusions

The production of tofu includes a series of processes, such as soybean screening,
soaking, grinding, filtering, boiling, coagulating, pressing, preserving, and packaging. The
composition, structure, and content of soy protein are constantly changing during the
production process. The gelation properties of soy protein are the basis for the preparation
of tofu.

Different soybean varieties have different genotypes, protein composition, 11S/7S
protein ratio, etc. The growth environment and storage conditions of soybeans also have a
significant impact on the composition and structure of the protein. Soybeans become raw
soymilk after soaking and grinding, and soy protein is dissolved from the solid phase to the
liquid phase to form an emulsion. In the boiling process, the soymilk protein is denatured
and the hydrophobic groups are exposed. By adding a coagulant to soymilk, a curd network
structure with protein as the backbone is formed, and the pressing process stabilizes the
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curd network structure. The subsequent preservation and packaging operations further
affect the structure of the curd.

The soymilk system is complex and changeable. Tofu products are mature and diverse.
The research in this field covers a wide area, but it is not easy to go deep. The composition
structure and spatial configuration of soy protein have not yet been fully resolved. At
present, analyses of the interaction between the components and the curdling process are
based on model predictions rather than actual observations. Most of the established models
require adjustments because there are still contradictions between different models.

We suggest that further clarifying the curd formation mechanism using different
coagulants and analyzing the changes at a molecular level can contribute greatly toward
improving tofu quality. In addition, the specific changes that occur during the interaction
and assembly of soy protein, oil, phytic acid, and other components in the curd are also an
important research direction. The application of molecular simulation technology in the
analysis of the composition and structural changes of soybean protein and other important
components should be the focus of future research.
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