Safety Evaluation and Whole Genome Sequencing of Aspergillus japonicas PJ01 Reveal Its Potential to Degrade Citrus Segments in Juice Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strain
2.2. Preparation of Crude Enzyme Solution
2.3. Degradation of Citrus Segments
2.4. Safety Evaluation of Crude Enzyme Solution
2.4.1. Acute Oral Toxicity Test
2.4.2. Micronucleus Test of Bone Marrow Cells
2.4.3. Sperm Abnormality Test
2.4.4. Subchronic Toxicity Test
2.5. Whole Genome Sequencing, Assembly and Annotation
2.6. Statistical Analysis
3. Results
3.1. Effect of Crude Enzyme Solution on Degradation of Citrus Segments
3.2. Acute Oral Toxicity Test in Mice
3.3. Micronucleus Test of Mice Bone Marrow Cells
3.4. Sperm Deformity Test
3.5. Subchronic Toxicity Test
3.5.1. The Influence of Enzyme Solution on Body Weight and Food Utilization Rate in Rats
3.5.2. Effect of Enzyme Solution on Hematological Parameter Analysis of Rats
3.5.3. Effect of Enzyme Solution on Blood Biochemistry of Rats
3.5.4. Effects of Enzyme Solution on Organ Weight and Organ Body Ratio in Rats
3.6. Genome Features of A. Japonicas PJ01
3.7. COG Analysis
3.8. GO Database Annotation
3.9. KEGG-Pathway Annotation
3.10. Carbohydrate Active Enzymes (CAZyme) Database Annotated of Carbohydrate Active Enzyme Gene
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coll-Almela, L.; Saura-López, D.; Laencina-Sánchez, J.; Schols, H.A.; Voragen, A.G.; Ros-García, J.M. Characterisation of cell-wall polysaccharides from mandarin segment membranes. Food Chem. 2015, 175, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Hernandez, A.; Carrascal-Camacho, A.K.; Varón-García, A.; Brashears, M.M.; Sanchez-Plata, M.X. Effects of enzyme-aided peeling on the quality of local mandarin (Citrus reticulata B.) Segments. J. Food Process. Preserv. 2004, 28, 336–347. [Google Scholar] [CrossRef]
- Pagán, A.; Conde, J.; Pagán, J.; Ibarz, A. Lemon peel degradation modeling in the enzymatic peeling process. J. Food Process. Eng. 2011, 34, 383–397. [Google Scholar] [CrossRef]
- Woldesenbet, F.; Virk, A.P.; Gupta, N.; Sharma, P. Effect of microwave irradiation on xylanase production from wheat bran and biobleaching of eucalyptus kraft pulp. Appl. Biochem. Biotechnol. 2012, 167, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Van den Brink, J.; de Vries, R.P. Fungal enzyme sets for plant polysaccharide degradation. Appl. Microbiol. Biotechnol. 2011, 91, 1477–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garzon, C.D.; Habrylo, O.; Lemaire, A.; Guillaume, A.; Carré, Y.; Millet, C.; Fourtot-Brun, C.; Trezel, P.; le Blond, P.; Perrin, A.; et al. Characterization of a novel strain of Aspergillus aculeatinus: From rhamnogalacturonan type I pectin degradation to improvement of fruit juice filtration. Carbohydr. Polym. 2021, 262, 117943. [Google Scholar] [CrossRef] [PubMed]
- Kharazmi, S.; Taheri-Kafrani, A.; Soozanipour, A.; Nasrollahzadeh, M.; Varma, R.S. Xylanase immobilization onto trichlorotriazine-functionalized polyethylene glycol grafted magnetic nanoparticles: A thermostable and robust nanobiocatalyst for fruit juice clarification. Int. J. Biol. Macromol. 2020, 163, 402–413. [Google Scholar] [CrossRef]
- Li, C.; Kumar, A.; Luo, X.; Shi, H.; Liu, Z.; Wu, G. Highly alkali-stable and cellulase-free xylanases from Fusarium sp. 21 and their application in clarification of orange juice. Int. J. Biol. Macromol. 2020, 155, 572–580. [Google Scholar] [CrossRef]
- Prakash, S.; Singhal, R.S.; Kulkarni, P.R. Enzymic peeling of Indian grapefruit (Citrus paradisi). J. Sci. Food Agric. 2001, 81, 1440–1442. [Google Scholar] [CrossRef]
- Sukumaran, R.K.; Christopher, M.; Kooloth-Valappil, P.; Sreeja-Raju, A.; Mathew, R.M.; Sankar, M.; Puthiyamadam, A.; Adarsh, V.-P.; Aswathi, A.; Rebinro, V.; et al. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. Bioresour. Technol. 2021, 329, 124746. [Google Scholar] [CrossRef]
- Gulsunoglu, Z.; Kilic-Akyilmaz, M.; Güler, F.K.; Raes, K. Production of multiple hydrolytic enzymes by black aspergilli isolated from date and grape. Tarım Bilim. Derg. 2019, 25, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-Y.; Zhao, S.; Lin, X.; Zhang, T.; Li, C.-X.; Luo, X.-M.; Feng, J.-X. Improvement of cellulase and xylanase production in Penicillium oxalicum under solid-state fermentation by flippase recombination enzyme/ recognition target-mediated genetic engineering of transcription repressors. Bioresour. Technol. 2021, 337, 125366. [Google Scholar] [CrossRef] [PubMed]
- Lambré, C.; Baviera, J.M.B.; Bolognesi, C.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; Mengelers, M.; Mortensen, A. Safety evaluation of the food enzyme triacylglycerol lipase from the genetically modified Aspergillus luchuensis strain FL100SC. EFSA J. 2021, 19, e06561. [Google Scholar] [CrossRef] [PubMed]
- Suen, G.; Weimer, P.J.; Stevenson, D.M.; Aylward, F.; Boyum, J.; Deneke, J.; Drinkwater, C.; Ivanova, N.; Mikhailova, N.; Chertkov, O.; et al. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS ONE 2011, 6, e18814. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Dubey, S.K. Cellulose degradation potential of Paenibacillus lautus strain Bhu3 and its whole genome sequence. Bioresour. Technol. 2018, 262, 124–131. [Google Scholar] [CrossRef]
- Li, P.-J.; Xia, J.-L.; Shan, Y.; Nie, Z.-Y.; Wang, F.-R. Effects of surfactants and microwave-assisted pretreatment of orange peel on extracellular enzymes production by Aspergillus japonicus PJ01. Appl. Biochem. Biotechnol. 2015, 176, 758–771. [Google Scholar] [CrossRef]
- Li, P.-J.; Xia, J.-L.; Shan, Y.; Nie, Z.-Y. Comparative study of multi-enzyme production from typical agro-industrial residues and ultrasound-assisted extraction of crude enzyme in fermentation with Aspergillus japonicus PJ01. Bioprocess Biosyst. Eng. 2015, 38, 2013–2022. [Google Scholar] [CrossRef]
- Long, H.; Qiu, X.; Cao, L.; Liu, G.; Rao, Z.; Han, R. Toxicological safety evaluation of the cultivated Chinese cordyceps. J. Ethnopharmacol. 2021, 268, 113600. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, G.G.; della Torre, A.; Braga, L.E.D.O.; Bachiega, P.; Tinti, S.V.; de Carvalho, J.E.; Dionísio, A.P.; Ruiz, A.L.T.G. Yellow-colored extract from cashew byproduct—Nonclinical safety assessment. Regul. Toxicol. Pharmacol. 2020, 115, 104699. [Google Scholar] [CrossRef]
- Dodda, S.; Alluri, V.K.; Golakoti, T.; Sengupta, K. Acute, subacute, and genotoxicity assessments of a proprietary blend of garcinia mangostana fruit rind and cinnamomum tamala leaf extracts (Cindura(R)). J. Toxicol. 2020, 2020, 1435891. [Google Scholar] [CrossRef] [PubMed]
- Olatunji-Ojo, A.M.; Alimba, C.G.; Adenipekun, C.O.; Bakare, A.A. Experimental simulation of somatic and germ cell genotoxicity in male Mus musculus fed extracts of lead contaminated Pleurotus ostreatus (white rot fungi). Environ. Sci. Pollut. Res. 2020, 27, 19754–19763. [Google Scholar] [CrossRef] [PubMed]
- Yigit, S.; Hallaj, N.S.; Sugarman, J.L.; Chong, L.C.; Roman, S.E.; Abu-Taleb, L.M.; Goodman, R.E.; Johnson, P.E.; Behrens, A.M. Toxicological assessment and food allergy of silk fibroin derived from Bombyx mori cocoons. Food Chem. Toxicol. 2021, 151, 112117. [Google Scholar] [CrossRef] [PubMed]
- Neave, M.J.; Michell, C.T.; Apprill, A.; Voolstra, C.R. Whole-Genome Sequences of Three Symbiotic Endozoicomonas Strains. Genome Announc. 2014, 2, e00802-14. [Google Scholar] [CrossRef] [Green Version]
- Liew, K.J.; Teo, S.C.; Shamsir, M.S.; Sani, R.; Chong, C.S.; Chan, K.-G.; Goh, K.M. Complete genome sequence of Rhodothermaceae bacterium RA with cellulolytic and xylanolytic activities. 3 Biotech 2018, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Dong, S.; Lou, T.; Wang, S. Complete genome sequence unveiled cellulose degradation enzymes and secondary metabolic potentials in Streptomyces sp. CC0208. J. Basic Microbiol. 2019, 59, 267–276. [Google Scholar] [CrossRef]
- Selim, M.; Salem, S.; Mohamed, A.; El-Gamal, M.; Awad, M.; Fouda, A. Biological treatment of real textile effluent using Aspergillus flavus and Fusarium oxysporium and their consortium along with the evaluation of their phytotoxicity. J. Fungi 2021, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Castrillo, M.L.; Horianski, M.A.; Jerke, G. Aislamiento de cepas de Aspergillus sección Nigri en la yerba mate comercializada en Posadas (Misiones, Argentina) y evaluación de su potencial ocratoxigénico. Rev. Argent. Microbiol. 2013, 45, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Okado, N.; Sugi, M.; Ueda, M.; Mizuhashi, F.; Lynch, B.S.; Vo, T.D.; Roberts, A.S. Safety evaluation of AMP deaminase from Aspergillus oryzae. Food Chem. Toxicol. 2015, 86, 342–350. [Google Scholar] [CrossRef]
- Teresa, P.M.; Amorós, A.; Botella, M.A.; Serrano, M.; Romojaro, F. Study of albedo and carpelar membrane degradation for further application in enzymatic peeling of citrus fruits. J. Sci. Food Agric. 2005, 85, 86–90. [Google Scholar] [CrossRef]
- Pretel, M.T.; Botella, M.Á.; Amorós, A.; Serrano, M.; Egea, M.I.; Romojaro, F. Obtaining fruit segments from a traditional orange variety (Citrus sinensis (L.) Osbeck cv. Sangrina) by enzymatic peeling. Eur. Food Res. Technol. 2007, 225, 783–788. [Google Scholar] [CrossRef]
- Choi, H.J.; Shin, D.; Shin, M.; Yun, B.; Kang, M.; Yang, H.-J.; Jeong, D.-Y.; Kim, Y.; Oh, S. Comparative genomic and functional evaluations of Bacillus subtilis newly isolated from Korean traditional fermented foods. Foods 2020, 9, 1805. [Google Scholar] [CrossRef] [PubMed]
- Tamaru, Y.; Miyake, H.; Kuroda, K.; Nakanishi, A.; Matsushima, C.; Doi, R.H.; Ueda, M. Comparison of the mesophilic cellulosome-producing Clostridium cellulovorans genome with other cellulosome-related clostridial genomes. Microb. Biotechnol. 2011, 4, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choure, K.; Parsai, S.; Kotoky, R.; Srivastava, A.; Tilwari, A.; Rai, P.K.; Sharma, A.; Pandey, P. Comparative metagenomic analysis of two alkaline hot springs of Madhya Pradesh, India and Deciphering the extremophiles for industrial enzymes. Front. Genet. 2021, 12, 643423. [Google Scholar] [CrossRef]
- Links, M.; Dumonceaux, T.; McCarthy, E.; Hemmingsen, S.; Topp, E.; Town, J. CaptureSeq: Hybridization-based enrichment of cpn60 gene fragments reveals the community structures of synthetic and natural microbial ecosystems. Microorganisms 2021, 9, 816. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dong, L.; Zhao, C.; Zhu, Y. Metagenomic insights into the changes in microbial community and antimicrobial resistance genes associated with different salt content of red pepper (Capsicum annuum L.) sauce. Food Microbiol. 2020, 85, 103295. [Google Scholar] [CrossRef]
- Li, M.M.; White, R.R.; Guan, L.L.; Harthan, L.; Hanigan, M.D. Metatranscriptomic analyses reveal ruminal pH regulates fiber degradation and fermentation by shifting the microbial community and gene expression of carbohydrate-active enzymes. Anim. Microbiome 2021, 3, 103295. [Google Scholar] [CrossRef]
- Liao, Z.; Holtzapple, M.; Yan, Y.; Wang, H.; Li, J.; Zhao, B. Insights into xylan degradation and haloalkaline adaptation through whole-genome analysis of Alkalitalea saponilacus, an anaerobic haloalkaliphilic bacterium capable of secreting novel halostable xylanase. Genes 2018, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-J.; Lin, W.; Singh, R.P.; Xu, Q.; Chen, Z.; Yuan, Y.; Zou, P.; Li, Y.; Zhang, C. Genomic, transcriptomic and enzymatic insight into lignocellulolytic system of a plant pathogen Dickeya sp. WS52 to digest sweet pepper and tomato stalk. Biomolecules 2019, 9, 753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.F.; Hong, J.; Hu, J.; Saddler, J.N.; Fang, X.; Zhang, Z.; Shen, S. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzym. Microb. Technol. 2015, 79–80, 42–48. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Bao, C.; Dong, B.; Cao, Y. Characterization of a novel GH10 xylanase with a carbohydrate binding module from Aspergillus sulphureus and its synergistic hydrolysis activity with cellulase. Int. J. Biol. Macromol. 2021, 182, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Valle-Pérez, A.U.; Flores-Cosío, G.; Amaya-Delgado, L. Bioconversion of agave bagasse to produce cellulases and xylanases by Penicillium citrinum and Aspergillus fumigatus in solid-state fermentation. Waste Biomass Valorization 2021, 1–13. [Google Scholar] [CrossRef]
- Wang, M.; Miao, J.; Wang, X.; Li, T.; Zhu, H.; Liu, D.; Shen, Q. Genomic and transcriptome analyses of a thermophilic bacterium Geobacillus stearothermophilus B5 isolated from compost reveal its enzymatic basis for lignocellulose degradation. Microorganisms 2020, 8, 1357. [Google Scholar] [CrossRef] [PubMed]
Gender | Group | PCE (n) | Micronucleus Number (n) | Micronucleus Rate (‰) | Nce Number (n) | PCE/NCE |
---|---|---|---|---|---|---|
♀ | C | 5000 | 6 | 1.20 ± 0.84 | 883 | 1.133 ± 0.017 |
♀ | L | 5000 | 7 | 1.40 ± 1.14 | 890 | 1.124 ± 0.016 |
♀ | M | 5000 | 7 | 1.40 ± 1.14 | 885 | 1.130 ± 0.010 |
♀ | H | 5000 | 5 | 1.20 ± 0.84 | 892 | 1.121 ± 0.024 |
♀ | P | 5000 | 150 | 30.00 ± 3.39 ** | 954 | 1.048 ± 0.012 ** |
♂ | C | 5000 | 6 | 1.20 ± 0.84 | 883 | 1.133 ± 0.018 |
♂ | L | 5000 | 7 | 1.40 ± 1.14 | 889 | 1.125 ± 0.015 |
♂ | M | 5000 | 6 | 1.20 ± 0.84 | 888 | 1.127 ± 0.023 |
♂ | H | 5000 | 6 | 1.20 ± 1.10 | 879 | 1.138 ± 0.019 |
♂ | P | 5000 | 146 | 29.20 ± 1.92 ** | 944 | 1.059 ± 0.011 ** |
Group | Observed | Total Number of Deformities (n) | Deformity Rate (%) |
---|---|---|---|
Sperms (n) | |||
Control group | 5000 | 135 | 2.72 ± 0.29 |
Low group | 5000 | 133 | 2.66 ± 0.11 |
Medium group | 5000 | 129 | 2.58 ± 0.15 |
High group | 5000 | 135 | 2.70 ± 0.34 |
Positive group | 5000 | 431 | 8.62 ± 0.83 ** |
Gender | Test Index | ||
---|---|---|---|
(Unit) | Control Group | Enzyme Group | |
♀ | WBC (109/L) | 7.01 ± 1.73 | 6.53 ± 2.78 |
♀ | Neu (%) | 5.50 ± 2.91 | 7.76 ± 2.68 |
♀ | Lym (%) | 93.70 ± 3.38 | 91.34 ± 3.15 |
♀ | Mon | 0.46 ± 0.71 | 0.42 ± 0.44 |
♀ | Eos (%) | 0.24 ± 0.23 | 0.36 ± 0.18 |
♀ | Bas (%) | 0.10 ± 0.00 | 0.12 ± 0.04 |
♀ | RBC (1012/L) | 7.12 ± 0.41 | 7.11 ± 0.10 |
♀ | HGB (g/L) | 149.80 ± 4.09 | 151.40 ± 2.41 |
♀ | HCT (%) | 41.74 ± 1.25 | 42.02 ± 0.91 |
♀ | PLT (109/L) | 658.20 ± 46.33 | 690.60 ± 36.56 |
♂ | WBC (109/L) | 9.53 ± 2.47 | 10.41 ± 1.59 |
♂ | Neu (%) | 10.26 ± 2.09 | 9.46 ± 2.36 |
♂ | Lym (%) | 86.44 ± 3.73 | 88.72 ± 3.21 |
♂ | Mon (%) | 2.60 ± 1.51 | 1.54 ± 1.67 |
♂ | Eos (%) | 0.60 ± 0.46 | 0.18 ± 0.08 * |
♂ | Bas (%) | 0.10 ± 0.00 | 0.10 ± 0.00 |
♂ | RBC (1012/L) | 7.05 ± 0.24 | 7.04 ± 0.14 |
♂ | HGB (g/L) | 148.40 ± 6.39 | 153.20 ± 1.10 |
♂ | HCT (%) | 41.00 ± 1.85 | 42.18 ± 0.57 |
♂ | PLT (109/L) | 686.60 ± 63.10 | 676.00 ± 27.86 |
Gender | Test Index | ||
---|---|---|---|
(Unit) | Control Group | Enzyme Group | |
♀ | ALB (g/L) | 36.40 ± 7.23 | 35.20 ± 4.60 |
♀ | ALT (U/L) | 40.60 ± 9.45 | 34.60 ± 9.63 |
♀ | AST (U/L) | 66.20 ± 15.29 | 70.00 ± 25.66 |
♀ | BUN (mmol/L) | 8.90 ± 1.21 | 8.63 ± 0.87 |
♀ | CHO (mmol/L) | 1.93 ± 0.40 | 2.14 ± 0.45 |
♀ | Cr (umol/L) | 88.20 ± 8.14 | 83.80 ± 8.53 |
♀ | GLU (mmol/L) | 8.29 ± 0.36 | 7.36 ± 1.85 |
♀ | TG (mmol/L) | 0.65 ± 0.19 | 0.49 ± 0.10 |
♀ | TP (g/L) | 67.00 ± 6.71 | 71.40 ± 7.47 |
♂ | ALB (g/L) | 31.00 ± 3.00 | 31.20 ± 1.64 |
♂ | ALT (U/L) | 39.40 ± 10.41 | 42.20 ± 13.41 |
♂ | AST (U/L) | 65.80 ± 16.41 | 69.60 ± 15.61 |
♂ | BUN (mmol/L) | 9.35 ± 1.15 | 9.66 ± 1.55 |
♂ | CHO (mmol/L) | 1.77 ± 0.16 | 1.98 ± 0.10 |
♂ | Cr (umol/L) | 70.80 ± 11.45 | 70.40 ± 15.31 |
♂ | GLU (mmol/L) | 7.99 ± 1.50 | 8.12 ± 0.69 |
♂ | TG (mmol/L) | 0.69 ± 0.18 | 0.84 ± 0.11 |
♂ | TP (g/L) | 56.40 ± 10.55 | 69.80 ± 15.06 |
Attributes | Characteristic |
---|---|
Genome size (bp) | 36204647 |
G+C content (%) | 51.37% |
GC content in gene region (%) | 54.84% |
GC content in intergenetic region (%) | 46.28% |
Protein-coding genes (CDS) | 10070 |
Gene total len (bp) | 21519089 |
Gene/genome (%) | 59.44% |
Intergenetic region len (bp) | 14685558 |
Intergenetic len/genome (%) | 40.56% |
tRNA genes | 351 |
5S rRNA | 43 |
5.8S rRNA | 26 |
18S rRNA | 0 |
28S rRNA | 24 |
Genes assigned to NR | 10070 |
Genes assigned to Swiss-Prot | 6891 |
Genes assigned to Pfam | 7392 |
Genes assigned to COG | 8489 |
Genes assigned to GO | 5955 |
Genes assigned to KEGG | 3303 |
Genes assigned to CAZy | 601 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Gao, Z.; Wang, J.; Wang, C.; Li, G.; Fu, F.; Guo, J.; Shan, Y. Safety Evaluation and Whole Genome Sequencing of Aspergillus japonicas PJ01 Reveal Its Potential to Degrade Citrus Segments in Juice Processing. Foods 2021, 10, 1736. https://doi.org/10.3390/foods10081736
Qian Y, Gao Z, Wang J, Wang C, Li G, Fu F, Guo J, Shan Y. Safety Evaluation and Whole Genome Sequencing of Aspergillus japonicas PJ01 Reveal Its Potential to Degrade Citrus Segments in Juice Processing. Foods. 2021; 10(8):1736. https://doi.org/10.3390/foods10081736
Chicago/Turabian StyleQian, Yujiao, Zhipeng Gao, Jieyi Wang, Chen Wang, Gaoyang Li, Fuhua Fu, Jiajing Guo, and Yang Shan. 2021. "Safety Evaluation and Whole Genome Sequencing of Aspergillus japonicas PJ01 Reveal Its Potential to Degrade Citrus Segments in Juice Processing" Foods 10, no. 8: 1736. https://doi.org/10.3390/foods10081736
APA StyleQian, Y., Gao, Z., Wang, J., Wang, C., Li, G., Fu, F., Guo, J., & Shan, Y. (2021). Safety Evaluation and Whole Genome Sequencing of Aspergillus japonicas PJ01 Reveal Its Potential to Degrade Citrus Segments in Juice Processing. Foods, 10(8), 1736. https://doi.org/10.3390/foods10081736