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Abstract: Carnobacterium maltaromaticum is a species of lactic acid bacteria found in dairy, meat, and
fish, with technological properties useful in food biopreservation and flavor development. In more
recent years, it has also proven to be a key element of biological time–temperature integrators for
tracking temperature variations experienced by perishable foods along the cold-chain. A dynamic
model for the growth of C. maltaromaticum CNCM I-3298 and production of four metabolites (formic
acid, acetic acid, lactic acid, and ethanol) from trehalose in batch culture was developed using the
reaction scheme formalism. The dependence of the specific growth and production rates as well
as the product inhibition parameters on the operating conditions were described by the response
surface method. The parameters of the model were calibrated from eight experiments, covering a
broad spectrum of culture conditions (temperatures between 20 and 37 ◦C; pH between 6.0 and 9.5).
The model was validated against another set of eight independent experiments performed under
different conditions selected in the same range. The model correctly predicted the growth kinetics of
C. maltaromaticum CNCM I-3298 as well as the dynamics of the carbon source conversion, with a mean
relative error of 10% for biomass and 14% for trehalose and the metabolites. The paper illustrates that
the proposed model is a valuable tool for optimizing the culture of C. maltaromaticum CNCM I-3298
by determining operating conditions that favor the production of biomass or selected metabolites.
Model-based optimization may thus reduce the number of experiments and substantially speed up
the process development, with potential applications in food technology for producing starters and
improving the yield and productivity of the fermentation of sugars into metabolites of industrial
interest.

Keywords: Carnobacterium maltaromaticum; modeling; microbial growth; optimization; fermentation

1. Introduction

Carnobacterium maltaromaticum is a psychotropic species of lactic acid bacteria widely
found in food such as dairy products, fish, and meat. It is a Gram-positive, facultative
anaerobic bacterium, able to grow at alkaline pH (up to 9.6) [1,2].

In the food industry, C. maltaromaticum has potential applications related to health
protection and organoleptic properties. These include the biopreservation of food, by
inhibiting the growth of foodborne pathogens such as Listeria sp. in cold conditions, and
the development of flavor in ripened cheese varieties [2–4].

This lactic acid bacterium may also be used as a biological indicator in time–temperature
integrators (TTI): ‘smart-labels’ that monitor the time–temperature history of chilled prod-
ucts throughout the cold-chain [5,6]. Concentrates of the strain CNCM I-3298 have been
selected as inoculum for TopCryo® labels, the only biological TTI that has been taken to
market to date. A pH decline of the label medium, associated with bacterial growth and
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acid production, produces an irreversible color change from green to red as an indication
to the consumer about the spoilage of the food to which the TTI is attached [7].

In these applications, C. maltaromaticum concentrates produced by fermentation may
be used alone or in association with other microorganisms. Some experimental studies on
C. maltaromaticum fermentation under different culture conditions have been reported in
the literature [3,4,6–14]. The effect of temperature and pH on the acidifying activity was
evaluated and modelled by Girardeau et al. [7]. However, there is a lack of knowledge on
the characterization and optimization of Carnobacteria growth and production of various
metabolites such as acids or flavor compounds in a bioreactor.

Carnobacteria are considered to be homofermentative lactic acid bacteria that produce
lactic acid from glucose, with pyruvate as a central metabolic intermediate (via the Embden–
Meyerhof pathway) [15–17]. However, pyruvate may be alternatively converted to acetate,
ethanol, formate, and CO2 [16,18] under anaerobic conditions and substrate limitation [19],
arising for example at the end of fermentation [20]. The production of organic acids by
Carnobacteria is also strain-dependent [8,16,21]. A recent study reported that lactic, formic,
and acetic acids are key organic acids produced by C. maltaromaticum in a meat juice
medium [22], indicating that this microorganism has the enzymatic machinery to perform
mixed-acid fermentation (Figure 1).
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End products are shown in blue. ACK, acetate kinase; ADH, acetaldehyde dehydrogenase; LDH, 
lactate dehydrogenase; PFL, pyruvate formate lyase; PTA, phosphate acetyltransferase; PYK, 
pyruvate kinase; TreH, neutral trehalose. Adapted from [19–23]. 
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Figure 1. Mixed-acid fermentation pathway likely used by C. maltaromaticum to ferment trehalose.
End products are shown in blue. ACK, acetate kinase; ADH, acetaldehyde dehydrogenase; LDH, lac-
tate dehydrogenase; PFL, pyruvate formate lyase; PTA, phosphate acetyltransferase; PYK, pyruvate
kinase; TreH, neutral trehalose. Adapted from [19–23].



Foods 2021, 10, 1922 3 of 22

For optimization purposes, modeling has proven to be a powerful tool, enabling the
exploration of a wider range of operating conditions while minimizing cost, compared with
the experimental approach [24–29]. To our knowledge, the only dynamic model dealing
with C. maltaromaticum strains has been published by Ellouze et al. [6]. That research was
oriented towards a biological TTI setting associated with a sausage-like packaging instead
of a bioreactor and taking into account lactic acid as the single metabolite.

The aim of this study was thus to develop and validate a dynamic model predicting the
impact of fermentation conditions (temperature and pH) on the growth and bioconversion
fermentation dynamics of C. maltaromaticum CNCM I-3298 using trehalose as a carbon
source and considering the four main identified metabolites: formic acid, acetic acid, lactic
acid, and ethanol. This study was conducted as part of a research project on the production
and conservation of C. maltaromaticum concentrates. In that context, the growth of C.
maltaromaticum was tested in different sugars: glucose, maltose, mannitol, and trehalose,
with similar growth rates. Trehalose was chosen in this study because this molecule is
known for its ability to protect cells during bacterial stabilization processes (freeze-drying
in particular). Therefore, the residual trehalose (not consumed during fermentation) could
be used as cryoprotectant after production of bacterial concentrates.

The model development involved four major steps, presented in Section 3: derivation
of the main governing equations based on the known mixed-acid fermentation pathway,
mass balances, and kinetic rate expressions (Section 3.1); parameter identification for each
fermentation experiment (Section 3.2); construction of response surfaces of the calibrated
parameters as a function of temperature and pH (Section 3.3); and final validation of the
complete model. The resulting model is shown to be a useful tool in determining the
optimal conditions for producing bacterium concentrates in bioreactors and for assessing
the productivity of the bioconversion fermentation of sugars into metabolites of potential
industrial interest (Section 4.4).

2. Materials and Methods

Data used to calibrate and validate the model were partially reported in a previous
study, in which a modified central composite experimental design was carried out to study
the effect of operating conditions on the technological properties of C. maltaromaticum
CNCM I-3298 [7]. Sixteen lab-scale fermentations (hereafter named F01 to F16) were
performed using a wide range of regulated operating conditions (Figure 2): temperature
between 20 and 37 ◦C and pH between 6.0 and 9.5.
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Fermentation durations varied between 20 h and 45 h, and the initial conditions were:
for biomass (X0) 0.077 molC·L−1, trehalose (S0) between 0.091 mol·L−1 and 0.107 mol·L−1,
and medium volume (V0) 3.5 L.

The main fermentation settings and the kinetic measurements are reported below.

2.1. Fermentation
2.1.1. Culture Medium and Bacterial Strain

The fermentation medium was composed of the following ingredients for 1 kg of
final solution: 40 g of trehalose (Treha™; Tokyo Japan); 10 g of proteose peptone (Oxoid;
Waltham, MA, USA); 5 g of yeast extract (Humeau; La-Chapelle-sur-Erdre, France); 5 g
of Tween 80 (VWR; Leuven, Belgium); 0.41 g of MgSO4 (Merck; Darmstadt, Germany);
0.056 g MnSO4 (Merck; Darmstadt, Germany); and water to reach a total of 1 kg of solution.
All medium components were sterilized together at 121 ◦C for 20 min. Fermentations were
carried out on C. maltaromaticum CNCM I-3298 pre-cultures. Pre-cultures were prepared
by inoculating 10 mL of sterilized fermentation medium with 100 µL of C. maltaromaticum
CNCM I-3298 stock culture and were incubated for 13 to 16 h at 30 ◦C. An amount of 1 mL
of the resulting culture was transferred into 50 mL of fresh medium and then incubated
again for 11 h under the same conditions. The resulting culture was then used to inoculate
the bioreactor. Inoculation was performed at an initial concentration of approximately
107 CFU mL−1.

2.1.2. Bioreactor and Parameter Control

The bioreactor (Minifors, Infors HT, Bottmingen, Switzerland) had a total volume
of 5 L and was equipped with a heat mantle and a cryostat for temperature control. It
contained 3.5 L of fermentation medium, inoculated with an initial cell concentration of
approximately 107 CFU·mL−1. Initial pH was adjusted to the desired value with 5 M NaOH
or 0.01 M H2SO4 solutions. During fermentation, pH was controlled to the desired setpoint
for each investigated condition (Figure 2) by automatic addition of 5 M NaOH. Culture
homogenization was performed with an agitation device set at 150 rpm. Temperature was
set according to the investigated operating conditions mentioned above (Figure 2).

2.2. Kinetic Measurements
2.2.1. Cell Growth

Cell growth was monitored using an infrared probe (Excell210, CellD, Roquemaure,
France) continuously measuring absorbance at 880 nm and storing data every minute.
The absorbance data were calibrated in dry weight. Dry cell weight was determined by
filtering 10 mL of bacterial suspension (straight out of the bioreactor) through a 0.20 µm
polyethersulfone membrane (Supor®, PALL Biotech, Saint-Germain-en-Laye, France). The
filter was then dried for 24 h at 80 ◦C. Measurements were obtained in triplicate. Mass
concentrations were finally converted to molC L−1 (carbon-mol of biomass per liter),
assuming the simplified unit-carbon biomass formula CH1.8O0.5 [30].

2.2.2. Total Acid Production

Total acid production was determined according to the volume of NaOH solution
injected into the bioreactor to maintain a constant pH. The pH was regulated/controlled to
set values using the IRIS NT V5 software (Infors, AG, Bottmingen, Switzerland).

2.2.3. Substrate Consumption and Metabolite Production

Trehalose consumption and metabolite production were determined using high-
performance liquid chromatography (HPLC, Waters Associates, Millipore; Molsheim,
France). HPLC was performed on culture media samples of a few mL, aseptically retrieved
from the bioreactor at different times during fermentation and filtered through 0.22 µm
pores (Sartorius stedim, Biotech; Göttigen, Germany). Analyses were made using a cation
exchange column (Aminex Ion Exclusion HPX-87 300 × 7.8 mm, Bio-Rad, Richmond, VA,
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USA) at 35 ◦C. Mobile phase was 0.0005 M H2SO4, and flow rate was set at 0.6 mL·min−1

(LC-6A pump, Shimadzu, Courtaboeuf, France).
HPLC analysis showed that C. maltaromaticum CNCM I-3298 produced not only lactic

acid but also formic acid, acetic acid, and ethanol in variable proportions according to the
fermentation conditions.

3. Dynamic Model

The mathematical model was a set of ordinary differential equations implemented in
MATLAB R2018b (the MathWorks Inc. Natick, MA, USA). Model parameters and response
surface coefficients were identified by nonlinear regression analysis using the Statistic and
Machine Learning Toolbox of MATLAB.

3.1. Model Formulation

The dynamic model developed in this study combined biochemical knowledge about
the metabolism of the selected bacterium and mass balances of the main compounds: sub-
strate, biomass, and identified metabolites. Expressions of specific growth and metabolite
production rates included substrate limitation, product inhibition phenomena, and time
lags due to microbial metabolism adaptation [31]. The surface response method was used
to express the empiric dependence of some model parameters on operating conditions. The
model assumed the bioreactor was perfectly stirred and there were no differences between
individual cells. It was thus unsegregated and zero-dimensional, predicting average spatial
concentrations [32].

Seven state variables were considered: six volume concentrations (biomass [X], tre-
halose [S], formic acid [F], acetic acid [A], lactic acid [L], and ethanol [E], Figure 1) and the
culture medium volume (V). This latter variable varied continuously with the addition of
base (NaOH) for pH control but also changed in a discrete way due to periodic sampling
for biological and chemical analysis.

Mass balances for the considered metabolites resulted in the following set of differen-
tial equations:

d[X]
dt

= µX[X]−
Q
V
[X] (1)

d[F]
dt

= πF[X]−
Q
V
[F] (2)

d[A]

dt
= πA[X]−

Q
V
[A] (3)

d[L]
dt

= πL[X]−
Q
V
[L] (4)

d[E]
dt

= πE[X]−
Q
V
[E] (5)

d[AT]

dt
=

d[F]
dt

+
d[A]

dt
+

d[L]
dt

(6)

d[S]
dt

= −
(

µX
YX/S

+
πF

YF/S
+

πA

YA/S
+

πL

YL/S
+

πE

YE/S

)
[X]− Q

V
[S] (7)

dV
dt

= Q (8)

Here, µX is the specific growth rate (h−1); πF, πA, πL, and πE are the specific production
rates of four metabolites (h−1); and YX/S, YF/S, YA/S, YL/S, and YE/S are the yield of
biomass and metabolites with respect to the substrate (mol.mol−1). Q is the experimentally
measured rate of NaOH solution (L.h−1) added for pH control throughout fermentation.

In Equation (6), [AT] is the total acid concentration, defined as the sum of formic, acetic,
and lactic acid concentrations. These compounds are assumed to be mainly responsible for
the pH change of the liquid medium.
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Specific growth and production rates were defined using the Monod law to ac-
count for substrate limitation, modified with product inhibition and enzymatic activation
factors [33–35]:

µX = µmax,XIXEA
[S]

KSX + [S]
(9)

πm = πmax,mImEA
[S]

KSm + [S]
m = F, A, L, E (10)

In these equations, IX and Im are inhibition factors that depend on the inhibitor concen-
tration. They vary between 1 and 0. Inhibition increases with the inhibitor concentration,
and its effect on the specific rate is maximal when the corresponding factor is 0. In this
model, progressive inhibition factors of the following form were used [36,37]:

IX =
1

1 +
(

CI
KIX

)n (11)

Im =
1

1 +
(

CI
KIm

)p m = F, A, L, E (12)

KIX and KIm represent characteristic concentrations of the inhibitors (mol L−1) such
that the corresponding rates (µX and πm) are reduced by a factor of 2 compared with
the absence of inhibitor, n and p are shape factors, and CI is the concentration of the
inhibitor. Since all the metabolites were produced in similar proportions and no biochemical
knowledge about their relative inhibiting nature was available, CI was simply defined as
the sum of the four metabolite concentrations:

CI = [F] + [A] + [L] + [E] (13)

To illustrate the role of the shape factor n, Figure 3a depicts the evolution of IX with CI
for different n values and a lag-time of 5 h. A more or less sharp change in the inhibition
factor occurs around the characteristic inhibitor concentration, CI = KIX. The significance
of the shape factor p is similar.
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enzymatic activation factor EA as a function of t for different r values, and tlag = 5 h.
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The enzymatic adaptation factor EA is an empirical representation of the lag time, a
period of adaptation to the culture environment where the microorganism produces new
enzymatic machinery [38–40]. Based on the shape of experimental data, the following
equation was proposed:

EA =
1

1 + exp
(
−r
(

t− tlag

)) (14)

where tlag (h) is the lag time experimentally observed. Figure 3b shows that EA is an
increasing function of time, tending to 1 when t� tlag. In analogy with n, r is a shape
factor that describes the gradual transition from the lag phase to the active phase of growth.
A higher value of r implies a steeper change of EA around t = tlag.

To illustrate the features of the proposed model, a representation of the dimensionless
specific growth and production rates (µ/µmax and π/πmax) over time is depicted in Figure 4.
The dynamic behavior of both variables is similar given the similarity of Equations (1)–(5).
The specific rates achieve a maximum value in the active growth phase, and they are
zero when t� tlag and when the substrate is depleted. The shape of the curve is defined
by three factors: in the increasing region (0 to 10 h in Figure 4), the dominant effect is
enzyme activation EA (Equation (14)); in the slowly decreasing region (10 to 20 h), the rate
is controlled by inhibition (Equation (11) or (12)), whereas in the sharply decreasing region
(20 to 22 h) it is controlled by substrate limitation, corresponding to the Monod-like factor
in Equation (9) or (10).
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3.2. Model Parameter Identification

The system of kinetic equations for a single fermentation experiment included
24 parameters: five yield coefficients, five inhibition parameters, five growth/production
rates, five Monod-like saturation constants, three shape factors, and one lag time. Due
to a limited number of experimental data and to facilitate the identification procedure, a
single value was adopted for the inhibition parameter (KIm) and the Monod saturation
constant (KSm) of the four identified metabolites. Moreover, 10 parameters were fixed
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for all experiments: the shape factors, the yield coefficients, and the Monod saturation
constants (KSX and KSm). For each fermentation, lag time was determined by graphical
readout. This simplification of fixing parameters independent of operating conditions is
supported by two assumptions often used in the literature: (1) metabolite production yields
are constant and therefore independent of culture conditions [41] and (2) the saturation
constant of the Monod model depends only on the nature of the substrate [33,38], which
was the same in all experiments of this study.

The remaining group of seven parameters (µmax,X, πmax,F, πmax,A, πmax,L, πmax,E,
KIX, KIm) were identified for each fermentation of the experimental design by nonlin-
ear regression. Here, the Levenberg–Marquardt algorithm [42] was used to minimize
the sum of squares of the errors between experimental and predicted concentrations.
However, since the ranges and the number of measurements were slightly different
among the metabolites, the values compared in the least squares function were normal-
ized by dividing by their maximum value and were weighted by the relevant number of
experimental measurements.

The quality of the model representation was quantified with two error indicators,
defined as follows:

Root mean square error:

RMSE =

[
1
N

N

∑
i=1

(
Cmodel,i − Cexp,i

)2
]1/2

(15)

Relative mean error (as a percentage):

RME =
1
N

N

∑
i=1

∣∣Cmodel,i − Cexp,i
∣∣

Cexp,max − Cexp,min
·100% (16)

where N is the number of available measurements, Cmodel and Cexp are respectively the val-
ues of the concentration variables calculated with the model and measured experimentally.

3.3. Response Surface Model for Parameter Dependence on Fermentation Conditions

Nonlinear regression was performed to model the relationship between the seven
parameters of the dynamic model specific to each experiment and the fermentation oper-
ating conditions—namely, temperature (T) and pH. The regression model had a similar
form for all parameters, the logarithm of the parameter being expressed as a second-order
polynomial with interaction:

log10 Pari = β0i + β1iT + β2ipH + β3iT
2 + β4ipH2 + β5iTpH (17)

The regression coefficients (β) for all parameters depending on operating conditions
(µmax,X, πmax,F, πmax,A, πmax,L, πmax,E, KIX, KIm) were simultaneously computed by least-
squares optimization based on all available concentration measurements. In this way,
the accuracy and standard errors of the coefficients were statistically acceptable, due
to a large number of degrees of freedom: several hundreds of concentration data were
used to estimate 42 coefficients. Initial guesses for these coefficients were obtained using
Equation (17), and parameter values were determined separately for each experiment.

In this procedure, two sets of data from the experimental design were defined as indi-
cated in Figure 2: eight calibration experiments, located in extreme positions of the experi-
mental domain, used simultaneously for coefficients (β) estimation, and eight validation
experiments, only used a posteriori to verify the accuracy of the complete dynamic model.

4. Results and Discussion
4.1. Model Parameter Identification

The values of the parameters that are independent of operating conditions, summa-
rized in Table 1, were determined from the experimental data of experiment F10. This run
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was placed in a central position in the composite experimental design (T = 30 ◦C, pH = 8)
(Figure 2). Monod saturation constants are usually difficult to determine from batch ex-
periments because the number of measurements is typically very low in the substrate
limitation zone. Saturation constants were thus fixed to a common value with a typical
order of magnitude [43]. As for yields, they were found to differ from the theoretical ones
defined through standard stoichiometric reactions of anabolism and catabolism. These
differences can be due to other reactions involving the carbon substrate, whose products
were not analytically measured and were not considered in the model.

Table 1. Model parameters independent of operating conditions, determined from the experimental
data of experiment F10 (T = 30 ◦C, pH = 8) with tlag = 10 h.

Parameter Constant Value

YX/S (molC.mol−1) 6.9
YF/S (mol.mol−1) 5.6
YA/S (mol.mol−1) 3.8
YL/S (mol.mol−1) 7.0
YE/S (mol.mol−1) 4.7

KSX (mol L−1) 0.001
KSm (mol L−1) 0.001

n 3
p 1

r (h−1) 0.8

After fixing the parameters in Table 1 for the whole set of experiments, the group of
seven adjustable parameters of the model (µmax,X, πmax,F, πmax,A, πmax,L, πmax,E, KIX, KIm)
were identified for each run by nonlinear regression.

The parameters obtained by this procedure are summarized in Table 2. Standard
errors were computed from the variance–covariance matrix of the nonlinear optimization
algorithm. These errors represented between 5% and 13% of the value of the identified
parameters, a reasonable uncertainty level for a biological model.

Table 2. Model parameters determined for each experiment by nonlinear regression.

Fermentation µmaxX
(h−1)

πmaxF
(h−1)

πmaxA
(h−1)

πmaxL
(h−1)

πmaxE
(h−1)

KIX
(Mol.L−1)

KIm
(Mol.L−1)

F01
Value 0.224 0.152 0.064 0.215 0.078 0.117 0.069

Standard error 0.003 0.003 0.003 0.005 0.001 0.004 0.003

F02
Value 0.096 0.122 0.064 0.053 0.064 0.143 0.142

Standard error 0.021 0.012 0.007 0.006 0.006 0.083 0.036

F03
Value 0.164 0.137 0.064 0.131 0.072 0.099 0.102

Standard error 0.012 0.009 0.004 0.009 0.005 0.006 0.013

F04
Value 0.078 0.063 0.031 0.072 0.034 0.144 0.092

Standard error 0.012 0.004 0.002 0.004 0.002 0.047 0.016

F05
Value 0.130 0.130 0.060 0.196 0.070 0.160 0.100

Standard error 0.005 0.002 0.002 0.004 0.001 0.004 0.004

F06
Value 0.094 0.129 0.063 0.159 0.063 0.163 0.092

Standard error 0.001 0.002 0.001 0.003 0.001 0.003 0.002

F07
Value 0.074 0.028 0.010 0.089 0.022 0.122 0.139

Standard error 0.002 0.001 0.001 0.004 0.002 0.005 0.004

F08
Value 0.060 0.055 0.024 0.126 0.048 0.149 0.060

Standard error 0.002 0.002 0.000 0.003 0.002 0.001 0.002

F09
Value 0.071 0.097 0.048 0.114 0.071 0.108 0.044

Standard error 0.009 0.007 0.004 0.010 0.006 0.021 0.007
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Table 2. Cont.

Fermentation µmaxX
(h−1)

πmaxF
(h−1)

πmaxA
(h−1)

πmaxL
(h−1)

πmaxE
(h−1)

KIX
(Mol.L−1)

KIm
(Mol.L−1)

F10
Value 0.220 0.230 0.100 0.300 0.120 0.193 0.091

Standard error 0.051 0.013 0.007 0.022 0.007 0.044 0.015

F11
Value 0.121 0.127 0.060 0.116 0.066 0.179 0.133

Standard error 0.004 0.007 0.004 0.005 0.003 0.006 0.003

F12
Value 0.132 0.155 0.082 0.076 0.086 0.043 0.059

Standard error 0.010 0.026 0.003 0.002 0.006 0.002 0.007

F13
Value 0.147 0.162 0.077 0.219 0.092 0.164 0.106

Standard error 0.006 0.006 0.002 0.008 0.004 0.009 0.003

F14
Value 0.047 0.045 0.020 0.112 0.032 0.140 0.130

Standard error 0.005 0.004 0.001 0.006 0.003 0.016 0.007

F15
Value 0.160 0.180 0.080 0.330 0.110 0.260 0.170

Standard error 0.056 0.013 0.008 0.030 0.010 0.022 0.010

F16
Value 0.110 0.110 0.050 0.200 0.070 0.320 0.280

Standard error 0.003 0.004 0.002 0.007 0.003 0.051 0.104

For the whole set of experiments, the prediction errors are reported in Appendix A Table A1.
Except for some runs for variables S, F, and A, all RME were lower than 15%. Additionally,
the average RMSE and RME values for each concentration were of the same order of
magnitude as the experimental variability, here defined as the biological repeatability for
run F01, for which three independent replicates were performed. These results validate the
formulation and accuracy of the proposed model under the operating conditions included
in the experimental design.

In the specific case of reference run F10, a comparison between the model simulation
(using the corresponding parameters from Table 2) and experimental data is illustrated in
Figure 5.
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Figure 5. Evolution of concentrations over time for experiment F10 (T = 30 ◦C, pH = 8). Comparison between model
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the biological standard deviation, calculated from three independent repetitions of the run F01.
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Three growth phases are apparent in Figure 5: a lag phase (phase 1, between 0
and 10 h); a phase of active growth, substrate consumption, and metabolite production
(phase 2, between 10 h and 21 h); and a final phase where concentrations do not change
over time, owing to the depletion of the carbon source or growth inhibition by metabolites
(phase 3, after 21 h). Regarding culture volume evolution, as already mentioned, the
discrete variations at regular intervals were due to sampling for analysis of the culture
medium and the gradual increase was due to NaOH addition for pH control. One can
also observe that the four metabolites were produced simultaneously, with no gap for the
growth dynamics. The metabolites were thus primary end products generated during
a single trophophase [44]. This justifies the choice of a global inhibitor concentration
(Equation (13)), which included four correlated concentrations.

In consideration of the visual fit from Figure 5, the model representation is reasonably
satisfactory. The most pronounced discrepancy between the model and experimental
data appears for lactic acid, for which the model predicted a lower concentration before
substrate depletion. This is related to a slightly underestimated yield factor YL/S.

4.2. Response Surface Model for Parameter Dependence on Fermentation Conditions

Model parameters were expressed as a function of temperature and pH, according to
the surface model (Equation (17)). The values of the β regression coefficients were adjusted
globally using the whole set of calibration data.

The resulting response surfaces for the seven model parameters are plotted in Figure 6.
For the five kinetic parameters, (i.e., the maximum specific growth and production rates),
the response surfaces have the same convex shape, with a well-defined maximum value at
intermediate T and pH conditions. These maxima likely indicate the optimal temperatures
and pH for cellular growth, as well as the enzymatic activity catalyzing each of the reactions,
leading to the production of the different metabolites (Figure 1).

Concerning the inhibition concentrations, the response surface for KIm has a concave
shape with a local minimum, whereas that of KIX resembles a saddle surface. For this
latter case, the surface shape indicates that for every pH there is a T where KIX is minimal,
and for every T there is a pH where KIX is maximal. Both KIm and KIX represent the
combined effect of several inhibiting metabolites (Equations (11)–(13)) with potentially
different inhibition mechanisms.
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For completeness, the final values of the regression coefficients of Equation (17) for the
seven adjustable parameters of the dynamic model are reported in Appendix A Table A2.
All coefficients in Equation (17) for each model parameter were significantly different from
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zero at a 0.05 level. A comparison between the parameter values determined for each
experiment (Section 4.1) and the parameter values computed with Equation (17) (from
globally adjusted β coefficients) is depicted in Appendix A Figure A1. The goodness of
the fit was assessed through the coefficient of determination, R2. This coefficient is higher
than 0.89 for six out of seven model parameters, which is a high threshold for biological
data. In the case of KIm, only 66% of the variance of this parameter was explained by
variables T and pH. The remaining 34% could be associated with inherent experimental
variability and factors not included in the model, for instance transient variability of the
inhibition and kinetics parameters and actual dependence of the fixed parameters (Table 1)
with T and pH [45]. From a more general point of view, differences from experimental data
could be due to features that were not represented by the mathematical model, such as
population segregation, internal pH variability, and concentration gradients in the culture
medium [46,47].

4.3. Model Validation

The ability of the dynamic model including the parameters calculated from operating
conditions (Equation (17)) to predict data of independent experiments was assessed with a
set of validation experiments.

A comparison between the average RMSE values obtained in Section 4.1 (determined
for each experiment) and Section 4.2 (calculated from operating conditions) for calibration
and validation sets is depicted in Figure 7. In most cases, RMSE values were higher than
the corresponding experimental variabilities, indicating that more complex models could
capture additional phenomena not included in the present model, such as dependence of
yields, saturation constants, or lag time (Table 1) on operating conditions. As one might
expect, RMSE was generally lower for the calibration experiments than for the validation
experiments, not used for parameter determination. However, the relative difference
remained small (less than 30%), indicating a satisfactory ability of the developed model to
predict time evolution of the considered biomass, substrate, and metabolites under new
conditions within the explored experimental range.
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Figure 7. Comparison between experimental variability and average RMSE values for concentrations computed using
parameters determined for each experiment (Table 2) and the response surface models (Table A2 and Equation (17)).

It also appears in Figure 7 that average RMSE values with parameters given by the
response surface model (Table A3) are about 50% higher than with parameters determined
separately for each experiment (Table A1), for both calibration and validation sets. This
result could be expected since in the global calibration step, data from eight independent
experiments were combined as a whole for the least squares estimation, with a detrimental
effect on the individual representation of each experiment. However, results with the pa-
rameters calculated from operating conditions are the most useful in engineering purposes
since they enable a quick prediction of growth and metabolites production dynamics, based
on the selected combination of temperature and pH.
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In light of this quantitative analysis, the prediction accuracy of the empirical dynamic
model coupled to the regression model may be considered satisfactory within the operating
domain covered in this study.

4.4. Model-Based Optimization of Fermentation Operating Conditions for Industrial Use

Optimal conditions for growth and metabolite production of C. maltaromaticum calcu-
lated using the developed model are summarized in Table 3. Two optimization criteria were
considered: final concentrations and final productivities calculated for a 99.9% substrate
consumption.

For a detailed representation of the evolution of final concentrations and productivities
for biomass and metabolites with temperature and pH, the reader is referred to Appendix A
Figures A2 and A3. As a general trend, the highest productivities were obtained around
35 ◦C and pH 7.5, although the exact optimal conditions depended on the considered
metabolite (Table 3). No general trend was readily apparent for the maximization of the
final concentrations.

Table 3. Optimal conditions for growth and production of metabolites according to the developed model. In bold: targeted
metabolite for each set of operating conditions. Final concentrations and productivities calculated with initial conditions:
[X]0 = 80 mmol L−1, [S]0 = 100 mmol L−1, [F, A, L, E]0 = 0.

A. Target T (◦C) pH
Final Concentrations (mmol L−1) Final Productivities (mmol L−1.h−1)

X F A L E AT X F A L E AT

Biomass Bconc.↑ 20.0 7.8 227 129 56 177 73 363 6.56 3.73 1.61 5.11 2.09 10.46
Formic acid Fconc.↑ 28.0 9.5 133 176 89 123 94 387 1.68 2.20 1.12 1.54 1.18 4.86
Acetic acid Aconc.↑ 28.0 9.5 133 176 89 123 94 387 1.68 2.20 1.12 1.54 1.18 4.86
Lactic acid Lconc.↑ 37.0 6.0 180 95 42 296 72 433 1.68 2.20 1.12 1.54 1.18 4.86

Ethanol Econc.↑ 37.0 9.5 118 147 77 128 139 352 2.35 2.90 1.54 2.54 2.76 6.98
Ethanol Econc.↓ 27.0 7.6 217 143 62 166 68 372 6.93 4.57 1.98 5.31 2.16 11.86

Total acids ATconc.↑ 37.0 6.0 180 95 42 296 72 433 3.33 1.76 0.77 5.48 1.33 8.01
Total acids ATconc.↓ 37.0 9.5 118 147 77 128 139 352 2.35 2.90 1.54 2.54 2.76 6.98

Biomass Bprod.↑ 33.5 7.5 199 139 64 178 73 382 7.49 5.25 2.41 6.71 2.77 14.38
Formic acid Fprod.↑ 34.5 8.0 178 148 71 163 82 381 6.77 5.61 2.70 6.18 3.12 14.48
Acetic acid Aprod.↑ 35.0 8.1 172 148 72 161 85 381 6.49 5.58 2.71 6.06 3.21 14.35
Lactic acid Lprod.↑ 37.0 7.1 188 123 58 215 78 395 6.60 4.31 2.04 7.54 2.73 13.89

Ethanol Eprod.↑ 37.0 8.3 158 144 73 162 97 378 5.57 5.08 2.56 5.70 3.43 13.34
Ethanol Eprod.↓ 28.0 6.0 175 108 41 278 78 427 2.14 1.32 0.50 3.38 0.95 5.20

Total acids ATprod.↑ 35.5 7.7 184 139 67 177 81 384 7.16 5.41 2.59 6.90 3.13 14.90
Total acids ATprod.↓ 25.0 9.5 146 173 88 126 87 386 1.71 2.03 1.03 1.48 1.02 4.53

↑maximization, ↓minimization, conc.: final concentration, prod.: batch-average productivity.

These data can be useful in optimizing industrial processes involving the growth
of C. maltaromaticum cells in a trehalose-based substrate. A first application consists
of producing C. maltaromaticum concentrates, regardless of metabolite production. In
this case two conditions of cultivation appear advisable: 20 ◦C and pH 7.8 to maximize
concentration (227 mmolC·L−1) or 33.5 ◦C and pH 7.5 in order to maximize productivity
(7.49 mmolC·L−1·h−1) and thus the biomass production per unit of time, at the expense of
a 12% reduction of the final biomass concentration (199 mmolC·L−1).
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A second application deals with the development and parametrization of time–
temperature integrators (TTI), labels in which a pH decline, associated with acids synthesis,
entails an irreversible color change from green to red. Modulating the acidifying activity
of C. maltaromaticum thus allows a reliable shelf-life estimation of different food products.
Long shelf-lives can be tracked using TTI composed of concentrates exhibiting low acidi-
fying activities (minimal production of total acids), while short shelf-lives can be tracked
using concentrates exhibiting high acidifying activities. In the scenario of maximizing
acidifying activity, the production of total acids must be favored, and thus fermentation
should be carried out under two possible conditions: 37.0 ◦C and pH 6.0 to maximize their
final concentration (433 mmol·L−1) or 35.5 ◦C and pH 7.7 to maximize their productivity
(14.90 mmol·L−1·h−1). Under these conditions, the biomass production decreases respec-
tively by 20% and 4% with respect to its optimal values. If the objective is, on the contrary,
to minimize acidifying activity, two conditions can be envisaged to favor the lowest pro-
duction of total acids: 37.0 ◦C and pH 9.5 for a final concentration of 352 mmol L−1 or
25.0 ◦C and pH 9.5 for a final productivity of 4.53 mmol·L−1·h−1. Under these conditions,
the mean biomass production would decrease respectively by 48% and 77% with respect to
the maximal values.

Data from Table 3 show that the conditions to minimize the total acids concentration
(37.0 ◦C and pH 9.5) coincide with those to maximize the ethanol concentration (the non-
acidifying metabolite, 139 mmol L−1) and lead to a lactic acid concentration close to its
minimal value (128 mmol L−1 versus the minimum around 120 mmol L−1). Conversely,
when the production of total acids is maximized, the lactic acid concentration is also
maximal (296 mmol L−1) and that of ethanol is close to its minimum (72 mmol L−1 versus
68 mmol L−1).

Furthermore, it should be noted that the condition 27 ◦C and pH 7.6 leads both to a
good biomass productivity (6.93 mmol·L−1·h−1 versus the maximum 7.49 mmol·L−1·h−1)
and a low total acids concentration (372 mmol L−1 versus the minimum 352 mmol L−1).
Cultivation under this condition turns out be advantageous to ally a high biomass produc-
tion and a relatively low total acidification.

5. Conclusions

The dynamic model developed in this study is able to predict with satisfactory ac-
curacy the growth of C. maltaromaticum CNCM I-3298 (average error of 10%) as well as
the conversion of trehalose into four primary metabolites (average error of 14%) under a
wide range of conditions of temperature and pH. The interpolation capability of the model
was verified with a set of eight independent validation experiments, for which the average
relative error was 13%.

This model constitutes a useful tool for optimizing C. maltaromaticum cultures. Based
on two easily controllable parameters, pH and temperature, it could be implemented
in industrial applications of food technology to define optimal growth and metabolite
production conditions with various objectives, such as the maximization of biomass for
production of bacterium concentrates or the maximization or minimization of the acidifying
activity. A typical operating condition for this bacterium could be, for instance, 30.0 ◦C
and pH 7.0. If the goal is to produce bacterium concentrates, to maximize final biomass
concentration, our results suggest that a quite different condition should be selected
(20.0 ◦C and pH 7.8), while for maximum biomass productivity, 33.5 ◦C and pH 7.5 is most
appropriate. Such results are quite difficult to anticipate from the qualitative knowledge
of the bacterium alone, and a large number of time-consuming experiments would be
required to locate these optimal conditions experimentally without constructing a dynamic
model of the process.

The effort of developing the model is especially cost effective when a variety of
scenarios are explored. If the goal is to develop time–temperature integrators (TTI) to track
the cold-chain of food products, a set of labels with specific shelf-lives has to be designed
for various target products. The range of desired shelf-lives can be as large as 1 to 30 days,
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requiring very different TTI designs. In a traditional approach, for each desired shelf-life
duration, a range of factors such as the initial bacterium concentration and the buffer
properties of the medium have to be explored in a series of relatively time-consuming
experiments. In such an environment, temperature varies in an arbitrary but known way,
and pH depends on the produced acids. The presented dynamic model can be extended
to predict the moment when a specific amount of acids is produced, corresponding to
the pH-induced color change of the TTI label and hence to the desired shelf-life. Model-
based design of the TTI labels is expected to be faster and more accurate than a trial and
error procedure.

On a more fundamental level, further work is required to incorporate the effect
of other culture parameters, such as aeration, nutrient concentrations, or the use of a
different carbon source, which may modify growth kinetics and metabolite production.
Additionally, it would be relevant to deepen the understanding of inhibition mechanisms
of the metabolites to give more biological significance to the associated parameters in
the model.
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Nomenclature

A Acetic acid
E Ethanol
F Formic acid
L Lactic acid
S Carbon substrate (trehalose)
X Biomass
EA Enzymatic activation factor
C (mol·L−1) Concentration (in the calculation of errors and the definition of the

inhibition factors)
[i] (mol·L−1) Concentration of species i (substrate, metabolite, biomass) in the culture

medium (in the system of differential equations)
Im Production inhibition factor of metabolite m
IX Biomass growth inhibition factor
KIm (mol·L−1) Concentration for 50% production rate inhibition of metabolite m
KIX (molC·L−1) Concentration for 50% growth rate inhibition of biomass
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KSm (mol·L−1) Concentration of production rate saturation of metabolite m
KSX (molC·L−1) Concentration of biomass growth rate saturation
molC Carbon-mol of biomass
n Shape factor of the growth inhibition function
p Shape factor of the production inhibition function
pH Potential of hydrogen
Q (L·h−1) Rate of base addition for pH control
R Shape factor of the enzymatic activation function
T (K) Temperature
TTI Time–temperature indicator
RMSE Root-mean square error
RME Relative mean error
SE Standard error
t (h) Time
tlag (h) Lag time
V (L) Culture medium volume
Yi/S (mol·mol−1) Yield of product i on substrate S
YX/S (molC·mol−1) Biomass yield on substrate S
µX (h−1) Specific growth rate
µmax,X (h−1) Maximal specific growth rate
πm (h−1) Specific production rate of metabolite m
πmax,m (h−1) Maximum specific production rate of metabolite m

Appendix A.

Appendix A.1. Model Parameter Identification

Table A1. Residual modelling error with model parameters determined for each experiment and summarized in Table 2.

RMSE (Mol L−1) RME (%)

X S F A L E A
Total X S F A L E A Total

F01 0.008 0.006 0.010 0.007 0.022 0.007 0.033 4 4 7 13 6 10 7
F02 0.005 0.007 0.006 0.003 0.004 0.003 0.005 4 16 8 8 8 7 3
F03 0.005 0.006 0.003 0.001 0.003 0.001 0.006 4 9 3 2 3 2 1
F04 0.006 0.006 0.003 0.001 0.005 0.002 0.005 7 13 5 5 6 6 3
F05 0.008 0.005 0.014 0.007 0.027 0.007 0.034 4 4 9 11 10 9 8
F06 0.006 0.004 0.012 0.005 0.024 0.006 0.012 5 2 7 7 8 8 3
F07 0.006 0.007 0.011 0.006 0.009 0.006 0.007 4 5 14 33 4 11 2
F08 0.006 0.007 0.011 0.005 0.030 0.004 0.003 4 5 17 23 8 7 1
F09 0.004 0.005 0.002 0.001 0.002 0.002 0.003 7 17 6 7 5 6 2
F10 0.005 0.009 0.006 0.004 0.028 0.004 0.026 3 7 4 7 9 5 6
F11 0.003 0.018 0.009 0.005 0.011 0.006 0.032 3 27 9 10 9 11 6
F12 0.005 0.013 0.002 0.001 0.003 0.001 0.004 13 61 3 4 8 2 2
F13 0.002 0.006 0.012 0.005 0.024 0.005 0.007 2 4 7 6 6 5 2
F14 0.003 0.003 0.009 0.005 0.012 0.006 0.015 4 3 16 20 5 12 4
F15 0.009 0.005 0.009 0.006 0.023 0.005 0.011 5 4 7 13 8 8 2
F16 0.003 0.001 0.001 0.001 0.008 0.001 0.014 2 1 2 4 6 2 3

Mean 0.005 0.007 0.008 0.004 0.015 0.004 0.014 5 11 8 11 7 7 4

Response surface model for parameter dependence on fermentation conditions.
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Table A2. Response surface coefficients fitted to experimental data by multiple regression.

Variable Coefficient µmaxX (h−1) πmaxF (h−1) πmaxA (h−1) πmaxL (h−1) πmaxE (h−1) KIX (Mol L−1) KIm (Mol L−1)

Constant
Value (β0) −1.38 × 101 −1.64 × 101 −1.74 × 101 −1.21 × 101 −1.12 × 101 −8.61 × 10−1 1.19 × 101

Standard error 0.05 × 101 0.07 × 101 0.09 × 101 0.09 × 101 0.07 × 101 0.05 × 10−1 0.03 × 101

T
Value (β1) 2.63 × 10−1 2.66 × 10−1 2.71 × 10−1 1.82 × 10−1 1.27 × 10−1 −1.87 × 10−1 −5.80 × 10−1

Standard error 0.13 × 10−1 0.26 × 10−1 0.28 × 10−1 0.23 × 10−1 0.14 × 10−1 0.05 × 10−1 0.17 × 10−1

pH Value (β2) 2.42 × 100 2.89 × 100 3.01 × 100 2.27 × 100 2.02 × 100 6.65 × 10−1 −1.27 × 100

Standard error 0.11 × 100 0.14 × 100 0.19 × 100 0.16 × 100 0.13 × 100 0.45 × 10−1 0.16 × 100

T2 Value (β3) −4.26 × 10−3 −3.45 × 10−3 −3.26 × 10−3 −2.05 × 10−3 −1.92 × 10−3 3.97 × 10−3 7.95 × 10−3

Standard error 0.13 × 10−3 0.32 × 10−3 0.33 × 10−3 0.81 × 10−3 0.22 × 10−3 0.09 × 10−3 0.32 × 10−3

pH2 Value (β4) −1.46 × 10−1 −1.63 × 10−1 −1.66 × 10−1 −1.34 × 10−1 −1.22 × 10−1 −4.03 × 10−2 4.35 × 10−2

Standard error 0.06 × 10−1 0.10 × 10−1 0.12 × 10−1 0.10 × 10−1 0.09 × 10−1 0.31 × 10−2 0.55 × 10−2

T·pH Value (β5) −3.53 × 10−3 −7.58 × 10−3 −9.17 × 10−3 −7.22 × 10−3 −4.68 × 10−3 −3.54 × 10−3 1.86 × 10−2

Standard error 0.11 × 10−3 0.97 × 10−3 1.17 × 10−3 0.91 × 10−3 0.05 × 10−3 0.06 × 10−3 0.01 × 10−2
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Appendix A.2. Model Validation

Error indicators RMSE and RME for calibration and validation sets are summarized in
Appendix A Table A3. The RME values varied from 1% to 53%, with an average of 15% for
calibration set and 13% for validation set. Likewise, the average RME was lower than 15%
for most of experiments, except for runs F12 (17%), F15 (18%), F09 (20%), and F16 (34%).
Considering both calibration and validation sets, the average RME was 10% for biomass
and 14% for substrate and metabolites.

Table A3. Quality of fit of the model with parameters computed with the response surface models.

Fermentation
RMSE (Mol L−1) RME (%)

X S F A L E At X S F A L E At

Calibration

F01 0.010 0.010 0.021 0.010 0.041 0.014 0.033 5 6 14 20 10 18 7
F03 0.021 0.009 0.008 0.005 0.008 0.003 0.012 15 14 7 9 7 5 4
F04 0.005 0.010 0.009 0.006 0.007 0.005 0.015 5 26 18 23 9 17 9
F07 0.012 0.009 0.010 0.006 0.015 0.006 0.009 9 8 13 31 5 10 3
F12 0.003 0.011 0.008 0.005 0.003 0.004 0.009 8 53 13 16 8 11 6
F13 0.010 0.007 0.006 0.003 0.036 0.003 0.011 7 5 4 4 8 4 2
F14 0.015 0.002 0.013 0.007 0.004 0.009 0.012 20 2 23 28 2 16 3
F16 0.011 0.023 0.033 0.014 0.064 0.018 0.085 9 33 50 45 48 38 18

Mean 0.011 0.010 0.014 0.007 0.022 0.008 0.023 10 18 18 22 12 15 7

Validation

F02 0.005 0.003 0.017 0.009 0.008 0.009 0.007 5 8 20 22 15 21 4
F05 0.011 0.008 0.007 0.006 0.045 0.005 0.016 7 7 4 8 13 8 4
F06 0.008 0.009 0.013 0.005 0.044 0.007 0.032 6 5 7 6 11 9 6
F08 0.009 0.010 0.012 0.006 0.026 0.008 0.003 7 8 19 25 8 14 1
F09 0.011 0.006 0.005 0.004 0.018 0.004 0.009 19 22 15 24 35 15 7
F10 0.021 0.014 0.025 0.011 0.063 0.014 0.044 11 10 17 18 20 20 10
F11 0.018 0.013 0.007 0.003 0.017 0.004 0.050 16 20 7 6 12 8 9
F15 0.028 0.023 0.026 0.010 0.047 0.014 0.036 15 20 22 21 17 21 7

Mean 0.014 0.011 0.014 0.007 0.033 0.008 0.025 11 13 14 16 16 15 6

Model-based optimization of fermentation conditions.
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