A Real Case Study of a Full-Scale Anaerobic Digestion Plant Powered by Olive By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Industrial-Scale Anaerobic Digestion Plant
- (a)
- three open tanks in reinforced concrete for the storage of the pulp and the pitted pomace mixed together with a hopper for automated biomass loading in cycles of present duration;
- (b)
- two plug-in digesters arranged in parallel, each with a capacity of 200 m3 and equipped with a rotary reel shaker/mixer; the biomass temperature control is carried out through the circulation of hot water both in jackets on the walls and into the duct made in each rotary reel;
- (c)
- a container, which houses the cogenerator, the heating system of digesters and external users, the gas treatment system, the control and management system, and the substrate pumping system; an underground covered concrete tank for the storage of the digestate.
2.2. Experimental Set-Up and Operation
- (a)
- (Test A) basically, pulp and pitted olive pomace;
- (b)
- (Test B) pulp pitted olive pomace and wheat bran shorts in the amount of 10% of the total powered biomass. The wheat bran was added to the first reactor immediately before the inlet.
2.3. Analytical Methods
2.3.1. pH
2.3.2. Total Solids and Total Volatile Solids
2.3.3. Total Polyphenols
2.3.4. Total Nitrogen
- -
- concentrated sulfuric acid;
- -
- copper sulphate + potassium sulphate (ratio 1:3): catalyst;
- -
- boric acid;
- -
- 0.1 N hydrochloric acid;
- -
- 30% sodium hydroxide;
- -
- Tashiro indicator (bromcresol green + methyl red).
2.3.5. Ammoniacal Nitrogen
- -
- 0.1 N hydrochloric acid;
- -
- 30% sodium hydroxide:
- -
- boric acid;
- -
- 30% sodium hydroxide;
- -
- Tashiro indicator (bromcresol green + methyl red).
2.3.6. Metals and Microelements (Cu, Fe, Na, Mn, Zn, K)
2.3.7. Ratio between Volatile Acid and Alkalinity (FOS/TAC)
- -
- first step titration between initial pH at pH 5.0 A = mL 0.1 N sulfuric acid;
- -
- second step titration from 5.0 to 4.4B = mL 0.1 N sulfuric acid.
2.4. Plant Performance Evaluation
- (a)
- feed rate, measured using an electromagnetic flowmeter, Endress+Hauser Proline Promag 55S (DN 150);
- (b)
- the average temperature inside the digesters, measured at the inlet (point 1) and the outlet (point 2) of each digester by means of chromo-constantan thermocouples;
- (c)
- percentage of methane, measured using an AWITE continuous analyser (AWIECO model), to which the biogas is sent before and after the desulfurization treatment at 4-h intervals;
- (d)
- engine cooling water temperature, measured by chromium-constant thermocouples positioned at the exhaust of the cooling system:
- (e)
- the energy produced (EP) and energy fed into the grid (ER), detected by the acquisition system installed by the GSE (energy services manager);
- (f)
- energy for self-consumption (EA), obtained from the difference EA = EP − ER.
2.5. Statistical Analysis
3. Results and Discussion
3.1. Impact of the Operating Conditions on Energy Performance and on Digestate Composition
- (a)
- the operating conditions and the main plant performance parameters in both test periods;
- (b)
- the chemical analyses on the evolving biomass;
- (c)
- the main energy performance parameters of the plant and the characteristics of digestate with particular reference to agronomic parameters.
3.2. Plant Performance
- (a)
- the first section, in which the acidogenic reactions prevail and there is a partial demolition of the polyphenols because the acidogenic microorganisms are not very sensitive to the inhibitors;
- (b)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AcH | Acetic acid |
BOD5 | Biochemical Oxygen Demand in 5 days |
CHP | Combined heat and power |
COD | Chemical Oxygen Demand |
CSTR | Continuous Stirred-Tank Reactor |
HRT | Hydraulic Retention Time |
LCFA | Long Chain Fatty Acids |
OLR | Organic Loading Rate |
OMSR | Olive Mill Solid Residue |
OMW | Olive Mill Waste |
OMWW | Olive Mill Waste Water |
ON | Organic nitrogen |
PM | Pig Manure |
SGP | Specific production of biogas |
SMP | Specific production of methane |
STF | Fixed residue |
TN | Total nitrogen |
TPC | Total Polyphenols Content |
TPOP | Two-Phase Process Pomace |
TS | Total solids |
TVS | Total volatile solids |
FOS | Volatile organic acids |
FOS/Alk | Ratio between volatile acids and alkalinity |
FOS/TAC | Ratio between volatile organic acids and total inorganic carbon |
VS | Volatile Solids |
References
- Tamborrino, A.; Perone, C.; Catalano, F.; Squeo, G.; Caponio, F.; Bianchi, B. Modelling energy consumption and energy-saving in high-quality olive oil decanter centrifuge: Numerical study and experimental validation. Energies 2019, 12, 2592. [Google Scholar] [CrossRef] [Green Version]
- Leone, A.; Romaniello, R.; Tamborrino, A. Mathematical modelling of the decanter for olive oil extraction. Acta Hortic. 2021, 1311, 411–416. [Google Scholar] [CrossRef]
- Caponio, F.; Squeo, G.; Brunetti, L.; Pasqualone, A.; Summo, C.; Paradiso, V.M.; Catalano, P.; Bianchi, B. Influence of the feed pipe position of an industrial scale two-phase decanter on extraction efficiency and chemical-sensory characteristics of virgin olive oil. J. Sci. Food Agric. 2018, 98, 4279–4286. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Romaniello, R.; Zagaria, R.; Tamborrino, A. Mathematical modelling of the performance parameters of a new decanter centrifuge generation. J. Food Eng. 2015, 166, 10–20. [Google Scholar] [CrossRef]
- Tamborrino, A. Olive paste malaxation. In The Extra-Virgin Olive Oil Handbook; Peri, C., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 127–137. [Google Scholar]
- Squeo, G.; Tamborrino, A.; Pasqualone, A.; Leone, A.; Paradiso, V.M.; Summo, C.; Caponio, F. Assessment of the inHobokenfluence of the decanter set-up during continuous processing of olives at different pigmentation index. Food Bioprocess Technol. 2017, 10, 592–602. [Google Scholar] [CrossRef]
- Leone, A.; Romaniello, R.; Tamborrino, A.; Catalano, P.; Peri, G. Identification of vibration frequency, acceleration, and duration for efficient olive harvesting using a trunk shaker. Trans. ASABE 2015, 58, 19–26. [Google Scholar]
- Ayr, U.; Tamborrino, A.; Catalano, P.; Bianchi, B.; Leone, A. 3D computational fluid dynamics simulation and experimental validation for prediction of heat transfer in a new malaxer machine. J. Food Eng. 2015, 154, 30–38. [Google Scholar] [CrossRef]
- Asses, N.; Ayed, L.; Bouallagui, H.; Sayadi, S.; Hamdi, M. Biodegradation of different molecular-mass polyphenols derived from olive mill wastewaters by Geotrichum candidum. Int. Biodeterior. Biodegrad. 2009, 63, 407–413. [Google Scholar] [CrossRef]
- Neffa, M.; Hanine, H.; Lekhlif, B.; Ouazzani, N.; Taourirte, M. Improvement of biological process using biocoagulation–flocculation pretreatment aid in olive mill wastewater detoxification. Desalin. Water Treat. 2013, 52, 2893–2902. [Google Scholar] [CrossRef]
- Gelegenis, J.; Georgakakis, D.; Angelidaki, I.; Christopoulou, N.; Goumenaki, M. Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure. Appl. Energy 2007, 84, 646–663. [Google Scholar] [CrossRef]
- Catalano, F.; Perone, C.; Iannacci, V.; Leone, A.; Tamborrino, A.; Bianchi, B. Energetic analysis and optimal design of a CHP plant in a frozen food processing factory through a dynamical simulation model. Energy Convers. Manag. 2020, 225, 113444. [Google Scholar] [CrossRef]
- Camarillo, R.; Rincón, J. Effect of inhibitory compounds on the two-phase anaerobic digestion performance of diluted wastewaters from the alimentary industry. Chem. Eng. J. 2012, 193–194, 68–76. [Google Scholar] [CrossRef]
- Borja, R.; Banks, C.J.; Maestro-Durán, R.; Alba, J. The effects of the most important phenolic constituents of olive mill wastewater on batch anaerobic methanogenesis. Environ. Technol. 1996, 17, 167–174. [Google Scholar] [CrossRef]
- Marques, I.P.; Teixeira, A.; Rodrigues, L.; Dias, S.M.; Novais, J.M. Anaerobic co-treatment of olive mill and piggery effluents. Environ. Technol. 1997, 18, 265–274. [Google Scholar] [CrossRef]
- Marques, I.P.; Teixeira, A.; Rodrigues, L.; Martins Dias, S.; Novais, J.M. Anaerobic treatment of olive mill wastewater with digested piggery effluent. Water Environ. Res. 1998, 70, 1056–1061. [Google Scholar] [CrossRef]
- Dareioti, M.A.; Dokianakis, S.N.; Stamatelatou, K.; Zafiri, C.; Kornaros, M. Biogas production from anaerobic co-digestion of agroindustrial wastewaters under mesophilic conditions in a two-stage process. Desalination 2009, 248, 891–906. [Google Scholar] [CrossRef]
- Kougias, P.G.; Kotsopoulos, T.A.; Martzopoulos, G.G. Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure. Renew. Energy 2014, 69, 202–207. [Google Scholar] [CrossRef]
- Inan, H.; Dimoglo, A.; Şimşek, H.; Karpuzcu, M. Olive oil mill wastewater treatment by means of electro-coagulation. Sep. Purif. Technol. 2004, 36, 23–31. [Google Scholar] [CrossRef]
- Khoufi, S.; Feki, F.; Sayadi, S. Detoxification of olive mill wastewater by electrocoagulation and sedimentation processes. J. Hazard. Mater. 2007, 142, 58–67. [Google Scholar] [CrossRef]
- Orive, M.; Cebrian, M.; Zufía, J. Techno-economic anaerobic co-digestion feasibility study for twophase olive oil mill pomace and pig slurry. Renew. Energ. 2016, 97, 532–540. [Google Scholar] [CrossRef]
- Rincón, B.; Bujalance, L.F.; Fermoso, G.; Martín, A.; Borja, R. Biochemical methane potential of two-phase olive mill solid waste: Influence of thermal pretreatment on the process kinetics. Bioresour. Technol. 2013, 140, 249–255. [Google Scholar] [CrossRef]
- Oz, N.A.; Uzun, A.C. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater. Ultrason. Sonochem. 2015, 22, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Battista, F.; Fino, D.; Ruggeri, B. Polyphenols concentration’s effect on the biogas production by wastes derived from olive oil production. Chem. Eng. Trans. 2014, 38, 373–378. [Google Scholar]
- Lee, S.; Yang, K.; Hwang, S. Use of response surface analysis in selective bioconversion of starch wastewater to acetic acid using a mixed culture of anaerobes. Process Biochem. 2004, 39, 1131–1135. [Google Scholar] [CrossRef]
- Rincón, B.; Sanchez, E.; Raposo, F.; Borja, R.; Travieso, L.; Martìn, M.A.; Martìn, A. Effect of the organic loading rate on the performance of anaerobic acidogenic fermentation of two-phase olive mill solid residue. Process Biochem. 2007, 39, 425–435. [Google Scholar] [CrossRef]
- Rincón, B.; Borja, R.; Martín, M.A.; Martín, A. Evaluation of the methanogenic step of a two-stage anaerobic digestion process of acidified olive mill solid residue from a previous hydrolytic–acidogenic step. Waste Manag. 2009, 29, 2566–2573. [Google Scholar] [CrossRef] [Green Version]
- Fezzani, B.; Ben Cheikh, R. Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour. Technol. 2010, 101, 1628–1634. [Google Scholar] [CrossRef] [PubMed]
- IRSA-CNR. Metodi Analitici per i Fanghi. Quaderni Dell’Istituto di Ricerca Sulle Acque, N. 64. 1984. Available online: http://www.irsa.cnr.it/pdf/quad64.pdf (accessed on 18 August 2021).
- IRSA-CNR. Metodi Analitici per le Acque. Manuali e Linee Guida N. 29. 2003. Available online: http://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/metodi-analitici-per-le-acque (accessed on 18 August 2021).
- AOAC. AOAC 973.48-1973, Nitrogen (Total) in Water—Kjeldahl Method; AOAC Official Method: Rockville, MD, USA, 1973. [Google Scholar]
- EPA—METHOD 6010b: Methods for Inductively Coupled Plasma-Atomic Emission Spectrometry. 1996. Available online: https://www.epa.gov/sites/default/files/documents/6010b.pdf (accessed on 18 August 2021).
- EPA—METHOD 3052: Methods for Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices. 1996. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/3052.pdf (accessed on 18 August 2021).
- Morosini, C.; Conti, F.; Torretta, V. Biochemical methane potential assays to test the biogas production from the anaerobic digestion of sewage sludge and other organic matrices. WIT Trans. Ecol. Environ. 2016, 205, 235–244. [Google Scholar]
- Bianchi, B.; Papajova, I.; Tamborrino, R.; Ventrella, D. Characterization of composting mixtures and compost of rabbit by-products to obtain a quality product and plant proposal for industrial production. Vet. Ital. 2015, 51, 51–61. [Google Scholar] [PubMed]
- Nagao, N.; Tajima, N.; Kawai, M.; Niwa, C.; Kurosawa, N.; Matsuyama, T.; Yusoff, M.; Toda, T. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. Technol. 2012, 118, 210–218. [Google Scholar] [CrossRef]
- Parawira, W.; Kudita, I.; Nyandoroh, M.G.; Zvauya, R. A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process Biochem. 2005, 40, 593–599. [Google Scholar] [CrossRef]
Main Operating Conditions | Test (A) | Test (B) |
---|---|---|
HRT (days) | 40 | 40 |
Feeding flow rate (m3/d) | 7.99 ± 1.60 | 7.22 ± 0.98 |
OLR (kgTVS/m3 d−1) | 5.54 | 5.33 |
Temperature (°C) | 42.39 ± 0.26 | 42.23 ± 0.35 |
Biogas production (m3/h) | 50.96 ± 0.67 | 52.09 ± 0.92 |
SGP (m3biogas/kgtvs) | 1.10 | 1.17 |
Methane (%) | 59.95 ± 1.55 | 59.89 ± 3.17 |
Methane flow rate (m3/h) | 30.55 | 31.20 |
SMP (m3methane/kgTVS) | 0.66 | 0.70 |
Final digestate flow rate (m3/h) | 5.75 | 5.41 |
Chemical Parameters | Test (A) | |||
---|---|---|---|---|
A1 | A2 | A3 | A4 | |
pH | 4.59 | 7.66 | 7.88 | 7.76 |
TS (%) | 15.18 ± 1.26 a | 8.73 ± 0.67 b | 10 ± 0.89 b | 8.80 ± 0.58 b |
STF (%) | 1.31 ± 0.12 a | 1.48 ± 0.09 a | 1.43 ± 0.15 a | 1.5 ± 0.20 a |
TVS (%) | 13.87 ± 0.92 a | 7.25 ± 0.80 b | 8.57 ± 0.77 b | 7.3 ± 0.60 b |
TN (mg kg−1) | 2598 ± 78 c | 5052 ± 96 a | 4632 ± 84 b | 4781 ± 79 b |
ON (mg kg−1) | 2360 ± 45 d | 3488 ± 80 a | 2926 ± 78 c | 3069 ± 92 b |
N-NH3 (mg kg−1) | 289 ± 35 c | 1900 ± 87 b | 2032 ± 56 a | 2079 ± 63 a |
C/N | 30.9 | 8.3 | 10.7 | 8.8 |
TPC (mgagallic ac. kg−1) | 3040 ± 28 a | 1390 ± 41 c | 1150 ± 41 d | 1660 ± 23 b |
FOS/Alk | - | 0.327 ± 0.003 a | - | 0.185 ± 0.001 b |
Chemical Parameters | Test (B) | |||
---|---|---|---|---|
B1 | B2 | B3 | B4 | |
pH | 4.77 | 7.68 | 7.53 | 7.85 |
TS (%) | 16.55 ± 1.10 a | 12.4 ± 1.15 b | 10.49 ± 0.41 c | 10.78 ± 0.77 bc |
STF (%) | 1.76 ± 0.28 a | 1.55 ± 0.30 a | 1.47 ± 0.31 a | 1.33 ± 0.32 a |
TVS (%) | 14.79 ± 0.77 a | 10.53 ± 0.31 b | 9.02 ± 0.64 c | 9.45 ± 0.59 bc |
TN (mg kg−1) | 2875 ± 45 d | 7432 ± 54 a | 6497 ± 98 b | 5749 ± 113 c |
ON (mg kg−1) | 2640 ± 87 | 4970 ± 53 | 4416 ± 76 | 2854 ± 87 |
N-NH3 (mg kg−1) | 286 ± 53 d | 2154 ± 77 a | 2527 ± 88 b | 3515 ± 63 c |
C/N | 29.7 | 7.8 | 8 | 9.5 |
TPC (mgagallic ac. kg−1) | 1840 ± 27 a | 1150 ± 23 d | 1260 ± 7 c | 1500 ± 23 b |
FOS/Alk | - | 0.375 ± 0.001 a | - | 0.215 ± 0.001 b |
Energy Performances | Test (A) | Test (B) |
---|---|---|
SGP (m3biogas/kgTVS) | 1.10 | 1.17 |
Methane (%) | 59.95 ± 1.55 | 59.89 ± 3.17 |
SMP (m3methane/kgTVS) | 0.66 | 0.70 |
Produced Energy (kWh) | 95.66 | 97.78 |
Energy fed into the electricity grid (kWh) | 85.50 | 86.33 |
Energy for self-consumption (kWh) | 10.16 | 11.45 |
Water cogeneration T max (°C) | 88.07 ± 2.30 | 87.46 ± 3.10 |
Parameters | Test (A) Sample A4 | Test (B) Sample B4 | Limit Value (D.L. 75/2012, D.M. 26 May 2015 |
---|---|---|---|
pH | 7.76 | 7.85 | 6–8.5 |
TVS (%) | 7.30 ± 0.60 | 9.45 ± 0.59 | / |
C/N | 8.8 | 9.5 | <25 |
Organic carbon (%) | 4.2 | 5.5 | 30 |
Total nitrogen (mg kg−1) | 4781 ± 79 | 5749 ± 113 | / |
Downloaded volume (m3/d) | 5.75 | 5.41 | / |
Reduction in volume (%) | 28 | 25 | / |
Cu (mg kg−1) | 75 ± 2 | 67 ± 2 | 230 |
Fe (mg kg−1) | 140 ± 3 | 141 ± 3 | / |
Na (mg kg−1) | 395 ± 11 | 384 ± 10 | |
Mn (mg kg−1) | 12.0 ± 0.5 | 9.7 ± 1.1 | / |
Zn (mg kg−1) | 25 ± 2 | 19 ± 1 | 500 |
K (mg kg−1) | 5100 ± 12 | 5850 ± 13 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamborrino, A.; Catalano, F.; Leone, A.; Bianchi, B. A Real Case Study of a Full-Scale Anaerobic Digestion Plant Powered by Olive By-Products. Foods 2021, 10, 1946. https://doi.org/10.3390/foods10081946
Tamborrino A, Catalano F, Leone A, Bianchi B. A Real Case Study of a Full-Scale Anaerobic Digestion Plant Powered by Olive By-Products. Foods. 2021; 10(8):1946. https://doi.org/10.3390/foods10081946
Chicago/Turabian StyleTamborrino, Antonia, Filippo Catalano, Alessandro Leone, and Biagio Bianchi. 2021. "A Real Case Study of a Full-Scale Anaerobic Digestion Plant Powered by Olive By-Products" Foods 10, no. 8: 1946. https://doi.org/10.3390/foods10081946
APA StyleTamborrino, A., Catalano, F., Leone, A., & Bianchi, B. (2021). A Real Case Study of a Full-Scale Anaerobic Digestion Plant Powered by Olive By-Products. Foods, 10(8), 1946. https://doi.org/10.3390/foods10081946