Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus domestica Borkh.) Grown in Norway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Standards and Chemicals
2.3. Oil Extraction and Fatty Acid Methyl Esters Determination
2.4. Carotenoids and Tocopherol Analysis
2.4.1. Extraction Procedure
2.4.2. HPLC Analysis
2.4.3. Method Validation for Carotenoids and Tocopherols
2.5. Statistical Analysis
3. Results
3.1. Oil and Fatty Acids Determination
3.2. Determination of Carotenoids
3.3. Determination of Tocopherols
3.4. Principal Component Analysis (PCA)
4. Discussion
4.1. Oil and Fatty Acids
4.2. Carotenoids
4.3. Tocopherols
4.4. Principal Component Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Vasylieva, N.; James, H. Production and trade patterns in the world apple market. Innov. Mark. 2021, 17, 16–25. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Mutić, J.; Tešić, Ž.; Meland, M. Evaluation of fruit mineral contents of two apple cultivars grown in organic and integrated production systems. Acta Hortic. 2020, 1281, 59–66. [Google Scholar] [CrossRef]
- FaoStat. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 25 June 2021).
- Gerhauser, C. Cancer chemopreventive potential of apples, apple juice, and apple components. Planta Med. 2008, 74, 1608–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef]
- Statista. 2021. Available online: https://www.statista.com/statistics/423198/production-volume-of-apple-juice-eu/ (accessed on 21 June 2021).
- AICV (The European Cider & Fruit Wine Association). European Cider Trends 2020; The European Cider & Fruit Wine Association: Brussels, Belgium, 2020. [Google Scholar]
- Carson, K.J.; Collins, J.L.; Penfield, M.P. Unrefined, dried apple pomace as a potential food ingredient. J. Food Sci. 1994, 59, 1213–1215. [Google Scholar] [CrossRef]
- Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of Apple Pomace for Bioactive Molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar] [CrossRef]
- Attri, D.; Joshi, V.K. Optimization of apple pomace based medium and fermentation conditions for pigment production by Chromobacter species. J. Food Sci. Technol. 2006, 43, 484–487. [Google Scholar]
- Gullón, B.; Garrote, G.; Alonso, J.L.; Parajo, J.C. Production of L-lactic acid and oligomeric compounds from apple pomace by simultaneous saccharification and fermentation: A response surface methodology assessment. J. Agric. Food Chem. 2007, 55, 5580–5587. [Google Scholar] [CrossRef]
- Sharma, R.C.; Joshi, V.K. The Apple: Improvement, Production and Postharvest Management; Chadha, K.L., Awasthi, R.P., Eds.; Malhotra Publishing: New Delhi, India, 2001; pp. 428–483. [Google Scholar]
- Górnaś, P.; Rudzińska, M.; Segliņa, D. Lipophilic composition of eleven apple seed oils: A promising source of unconventional oil from industry by-products. Ind. Crop. Prod. 2014, 60, 86–91. [Google Scholar] [CrossRef]
- Górnaś, P. Unique variability of tocopherol composition in various seed oils recovered from by-products of apple industry: Rapid and simple determination of all four homologues (α, β, γ and δ) by RP-HPLC/FLD. Food Chem. 2015, 172, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Stanojević, M.; Trifković, J.; Fotirić Akšić, M.; Rakonjac, V.; Nikolić, D.; Šegan, S.; Milojković-Opsenica, D. Sugar Profile of Kernels as a Marker of Origin and Ripening Time of Peach (Prunus persicae L.). Plant. Foods Hum. Nutr. 2015, 70, 433–440. [Google Scholar] [CrossRef]
- Yu, X.; Voort, F.R.; Li, Z.; Yue, T. Proximate composition of the apple seed and characterization of its oil. Int. J. Food Eng. 2007, 3, 1556–3758. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Constitution of some chemical components of apple seed. Food Chem. 1998, 61, 29–33. [Google Scholar] [CrossRef]
- Arain, S.; Sherazi, S.T.H.; Bhanger, M.I.; Memon, N.; Mahesar, S.A.; Rajput, M.T. Prospects of fatty acid profile and bioactive composition from lipid seeds for the discrimination of apple varieties with the application of chemometrics. Grasas Aceites 2012, 63, 175–183. [Google Scholar]
- Yukui, R.; Wenya, W.; Rashid, F.; Qing, L. Fatty acids composition of apple and pear seed oils. Int. J. Food Prop. 2009, 12, 774–779. [Google Scholar] [CrossRef] [Green Version]
- Lei-Tian, H.; Zhan, P.; Li, K. Analysis of components and study on antioxidant and antimicrobial activities of oil in apple seeds. Int. J. Food Sci. Nutr. 2010, 61, 395–403. [Google Scholar]
- Walia, M.; Rawat, K.; Bhushan, S.; Padwad, Y.S.; Singh, B. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace. J. Sci. Food Agric. 2014, 94, 929–934. [Google Scholar] [CrossRef]
- Jaszczak-Wilke, E.; Polkowska, Z.; Koprowski, M.; Owsianik, K.; Mitchell, A.E.; Bałczewski, P. Amygdalin: Toxicity, Anticancer Activity and Analytical Procedures for Its Determination in Plant Seeds. Molecules 2021, 26, 2253. [Google Scholar] [CrossRef] [PubMed]
- Shalini, R.; Gupta, D.K. Utilization of pomace from apple processing industries: A review. Food Sci. Technol. 2010, 47, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Fritsche, S.; Wang, X.; Jung, C. Recent Advances in our Understanding of Tocopherol Biosynthesis in Plants: An Overview of Key Genes, Functions, and Breeding of Vitamin E Improved Crops. Antioxidants 2017, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Sattler, S.E.; Cahoon, E.B.; Coughlan, S.J.; DellaPenna, D. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant. Physiol. 2003, 132, 2184–2195. [Google Scholar] [CrossRef] [Green Version]
- Saldeen, K.; Saldeen, T. Importance of tocopherols beyond α-tocopherol: Evidence from animal and human studies. Nutr. Res. 2005, 25, 877–889. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids, Vol. 5. In Nutrition and Health; Birkhäuser Verlag: Basel, Switzerland, 2009; pp. 1–431. [Google Scholar]
- Norwegian Agriculture Agency. 2021. Available online: https://www.landbruksdirektoratet.no/nb (accessed on 25 June 2021).
- Fromm, M.; Bayha, S.; Carle, R.; Kammerer, D.R. Comparison of fatty acid profiles and contents of seed oils recovered from dessert and cider apples and further Rosaceous plants. Eur. Food Res. Technol. 2012, 234, 1033–1041. [Google Scholar] [CrossRef]
- ISO 12966-2:2017 Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 12966-4:2015 Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography; International Organization for Standardization: Geneva, Switzerland, 2015.
- Saini, R.K.; Keum, Y.-S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Rivera, S.; Canela, R. Influence of Sample Processing on the Analysis of Carotenoids in Maize. Molecules 2012, 17, 11255–11268. [Google Scholar] [CrossRef] [PubMed]
- Gebregziabher, B.S.; Zhang, S.; Qi, J.; Azam, M.; Ghosh, S.; Feng, Y.; Huai, Y.; Li, J.; Li, B.; Sun, J. Simultaneous Determination of Carotenoids and Chlorophylls by the HPLC-UV-VIS Method in Soybean Seeds. Agronomy 2021, 11, 758. [Google Scholar] [CrossRef]
- Cozzolino, D.; Power, A.; Chapman, J. Interpreting and Reporting Principal Component Analysis in Food Science Analysis and Beyond. Food Anal. Methods 2019, 12, 2469–2473. [Google Scholar] [CrossRef]
- Sarbu, C.; Nascu-Briciu, R.D.; Kot-Wasik, A.; Gorinstein, S.; Wasik, A.; Namiesnik, J. Classification and fingerprinting of kiwi and pomelo fruits by multivariate analysis of chromatographic and spectroscopic data. Food Chem. 2012, 130, 994–1002. [Google Scholar] [CrossRef]
- Butnariu, M. Methods of Analysis (Extraction, Separation, Identification and Quantification) of Carotenoids from Natural Products. J. Ecosys. Ecograph. 2016, 6, 193–211. [Google Scholar] [CrossRef]
- Matthäus, B.; Özcan, M.M. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils. Antioxidants 2015, 4, 124. [Google Scholar] [CrossRef]
- Bada, J.C.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of apple seed oil with Denomination of Origin from Asturias, Spain. Grasas Aceites 2014, 65, 27–34. [Google Scholar]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccinin, E.; Cariello, M.; De Santis, S.; Ducheix, S.; Sabbà, C.; Ntambi, J.M.; Moschetta, A. Role of Oleic Acid in the Gut-Liver Axis: From Diet to the Regulation of Its Synthesis via Stearoyl-CoA Desaturase 1 (SCD1). Nutrients 2019, 11, 2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howitt, C.A.; Pogson, B.J. Carotenoid accumulation and function in seeds and non-green tissues. Plant. Cell. Environ. 2006, 29, 435–445. [Google Scholar] [CrossRef]
- Fernández-Marín, M.; Míguez, F.; Méndez-Fernández, L.; Agut, A.; Becerril, J.M.; García-Plazaola, J.I.; Kranner, I.; Colville, L. Seed Carotenoid and Tocochromanol Composition of Wild Fabaceae Species Is Shaped by Phylogeny and Ecological Factors. Front. Plant. Sci. 2017, 8, 1428–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Breemen, R.B.; Dong, L.; Pajkovic, N.D. Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int. J. Mass Spectrom. 2012, 312, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Mezzomo, N.; Ferreira, S.R.S. Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. J. Chem. 2016, 2016, 3164312. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Res. Int. 2014, 65, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Fromm, M.; Bayha, S.; Kammerer, D.R.; Carle, R. Identification and quantitation of carotenoids and tocopherols in seed oils recovered from different rosaceae species. J. Agric. Food Chem 2012, 60, 10733–10742. [Google Scholar] [CrossRef]
- Amariz, A.; de Lima, M.A.C.; Alves, R.E. Quality and antioxidant potential of byproducts from refining of fruit pulp. Food Sci. Technol. 2018, 38, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Madreira, R.; Suarez Valles, B. Characterization of apple seeds and their oils from the cider-making industry. Eur. Food Res. Technol. 2018, 10, 1821–1827. [Google Scholar] [CrossRef]
- Fernández-Marín, B.; Milla, R.; Martín-Robles, N.; Arc, E.; Kranner, I.; Becerril, J.M.; García-Plazaola, J.I. Side-effects of domestication: Cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant. Biol. 2014, 14, 1599–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Cultivar | Origin | Ripening Time | No. | Cultivar | Origin | Ripening Time |
---|---|---|---|---|---|---|---|
1 | Aroma | Sweden | October | 39 | Magelemer | Denmark | Sepember |
2 | Bananeple | Norway | September | 40 | Marta-Moster | Norway | Sepember |
3 | Beauty of Bath | UK | September | 41 | Norfolk Royal | UK | Sepember |
4 | Belle de Boskoop | The Netherlands | October | 42 | Oster | Norway | September |
5 | Bramley Seedling | UK | October | 43 | Paradiseple | Norway | August |
6 | Brureple | Norway | September | 44 | Prins | Norway | August |
7 | Charlamowsky | Russia | September | 45 | Quinte | Canada | August |
8 | Cox’s Orange | UK | October | 46 | Raud Granat | Norway | October |
9 | Cox’s Pomona | UK | October | 47 | Raud Gravenstein | Denmark | September |
10 | Early Red Bird | Canada | August | 48 | Raud Säfstaholm | Sweden | August |
11 | Elraud Pigeon | Denmark | November | 49 | Raud Sommerkavil | Norway | August |
12 | Elstar Boerekamp | The Netherlands | October | 50 | Ribston | UK | October |
13 | Franskar | Norway | August | 51 | Rondestveit | Norway | August |
14 | Fristeren | Norway | August | 52 | Rossvolleple | Norway | August |
15 | Fuhr | Norway | September | 53 | Rubinstep | Czech Republic | October |
16 | Furuholm | Norway | August | 54 | Signe Tillish | Denmark | September |
17 | Garborg | Norway | August | 55 | Silkepele | Germany | Sepember |
18 | Geneva Early | USA | August | 56 | Sitroneple | Norway | August |
19 | Grønt Laupsaeple | Norway | August | 57 | Stor Granat | Norway | Sepember |
20 | Gul Granat | Norway | September | 58 | Storesteinseple | Norway | Sepember |
21 | Gullspir | UK | August | 59 | Strutar | Norway | Sepember |
22 | Gyldenkoks Astrakan | Sweden | August | 60 | Summered | Canada | September |
23 | Haugeeple | Norway | September | 61 | Sureple Grøn | Norway | Sepember |
24 | Herrasaleple | Norway | September | 62 | Sysekavil | Norway | August |
25 | Hjartneseple | Norway | September | 63 | Sävstaholm | Sweden | August |
26 | Husmoreple | Germany | October | 64 | Tolleivseple | Norway | Sepember |
27 | Høyneseple | Norway | October | 65 | Tokheimseple | Norway | August |
28 | Håkonseple | Norway | October | 66 | Tormodseple | Norway | Sepember |
29 | Ingrid Marie | Denmark | October | 67 | Transparente Blanche | Baltic countries | August |
30 | Kaupanger | Norway | October | 68 | Tveiteple | Norway | September |
31 | Kavill | Norway | August | 69 | Ulgenes | Norway | Sepember |
32 | Knuteple | Norway | August | 70 | Vanleg Torstein | Norway | October |
33 | Kviteple | Norway | August | 71 | Vintergul | Norway | Sepember |
34 | Langballeeple | Norway | August | 72 | Vinterrosenstrips | Norway | August |
35 | Laxton Exquisite | UK | September | 73 | Worchester Pearmain | UK | September |
36 | Leiknes | Norge | September | 74 | Ølands Kungseple | Sweden | August |
37 | Lord Lambourne | UK | September | 75 | Øskhaug | Norway | September |
38 | Løeeple | Norway | September |
No. | Compound | RT (min) | Regression Equation | R2 | LOD | LOQ | Recovery (%) | CV (%) |
---|---|---|---|---|---|---|---|---|
1 | Lutein | 13.071 | y = 1.235x − 0.074 | 0.994 | 0.054 | 0.178 | 94.2–103.8 | 3.45 |
2 | Zeaxanthin | 13.296 | y = 1.012x + 0.033 | 0.997 | 0.062 | 0.205 | 95.8–102.4 | 4.15 |
3 | β-cryptoxanthin | 14.325 | y = 1.007x − 1.065 | 0.999 | 0.025 | 0.083 | 92.3–106.9 | 4.33 |
4 | Canthaxanthin | 15.124 | y = 1.154x − 1.234 | 0.994 | 0.068 | 0.224 | 93.5–107.4 | 4.57 |
5 | Astaxanthin | 15.652 | y = 1.058x − 0.863 | 0.992 | 0.076 | 0.251 | 95.8–107.6 | 4.18 |
6 | Apocarotenal | 16.153 | y = 1.023x + 0.694 | 0.991 | 0.055 | 0.182 | 93.1–105.9 | 3.22 |
7 | Physalien | 19.919 | y = 1.195x − 0.324 | 0.995 | 0.036 | 0.119 | 92.8–104.3 | 2.98 |
8 | β-carotene | 22.769 | y = 1.102x − 0.753 | 0.997 | 0.029 | 0.096 | 91.7–109.3 | 3.74 |
9 | Lycopene | 30.032 | y = 1.198x − 0.127 | 0.999 | 0.041 | 0.133 | 96.1–103.2 | 4.86 |
No. | Tocopherol | RT1 (min) | Regression Equation | R2 | LOD | LOQ | Recovery (%) | CV (%) |
---|---|---|---|---|---|---|---|---|
1 | δ | 27.042 | y = 1.114x + 0.127 | 0.998 | 0.032 | 0.106 | 96.4–101.7 | 2.94 |
2 | γ | 83.326 | y = 1.076x + 0.247 | 0.999 | 0.025 | 0.083 | 97.7–103.3 | 3.23 |
3 | β | 104.03 | y = 1.012x +0.541 | 0.997 | 0.021 | 0.069 | 98.5–101.9 | 3.54 |
4 | α | 11.01 | y = 1.337x +0.287 | 0.998 | 0.026 | 0.086 | 97.5–104.2 | 2.38 |
μg/g DW | Lut | Zea | Cry | Ast | Apo | Can | Phy | β–Car | Lyc |
---|---|---|---|---|---|---|---|---|---|
Min | 0.046 | 0.007 | 0.001 | 0.005 | 0.004 | 0.001 | 0.004 | 1.375 | 0.079 |
Max | 0.936 | 0.109 | 0.025 | 0.062 | 0.024 | 0.029 | 0.151 | 25.800 | 5.370 |
Median | 0.127 | 0.014 | 0.007 | 0.012 | 0.009 | 0.004 | 0.048 | 7.300 | 0.384 |
St. dev. | 0.136 | 0.018 | 0.004 | 0.010 | 0.004 | 0.004 | 0.031 | 4.438 | 0.924 |
μg/g DW | δ-Tocopherol | γ-Tocopherol | β-Tocopherol | α-Tocopherol |
---|---|---|---|---|
Min | 0.001 | 0.069 | 0.002 | 0.022 |
Max | 0.010 | 0.540 | 0.022 | 1.331 |
Median | 0.003 | 0.238 | 0.009 | 0.528 |
St. dev. | 0.002 | 0.100 | 0.005 | 0.238 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akšić, M.F.; Lazarević, K.; Šegan, S.; Natić, M.; Tosti, T.; Ćirić, I.; Meland, M. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus domestica Borkh.) Grown in Norway. Foods 2021, 10, 1956. https://doi.org/10.3390/foods10081956
Akšić MF, Lazarević K, Šegan S, Natić M, Tosti T, Ćirić I, Meland M. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus domestica Borkh.) Grown in Norway. Foods. 2021; 10(8):1956. https://doi.org/10.3390/foods10081956
Chicago/Turabian StyleAkšić, Milica Fotirić, Kristina Lazarević, Sandra Šegan, Maja Natić, Tomislav Tosti, Ivanka Ćirić, and Mekjell Meland. 2021. "Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus domestica Borkh.) Grown in Norway" Foods 10, no. 8: 1956. https://doi.org/10.3390/foods10081956
APA StyleAkšić, M. F., Lazarević, K., Šegan, S., Natić, M., Tosti, T., Ćirić, I., & Meland, M. (2021). Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Seeds from Apple Cultivars (Malus domestica Borkh.) Grown in Norway. Foods, 10(8), 1956. https://doi.org/10.3390/foods10081956