Objective Measurements Associated with the Preferred Eating Qualities of Fermented Salamis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Procurement
2.2. Consumer Discussion Group
2.3. Proximate Composition, pH and Water Activity
2.4. Colour
2.5. Texture Profile Analysis (TPA)
2.6. Fat Released
2.7. Fatty Acid Composition
2.8. Volatile Compounds
2.9. Kokumi Taste Receptor Response
2.9.1. Preparation of Aqueous Fraction
2.9.2. Cell Culture and Media
2.10. Statistical Analysis
3. Results and Discussion
3.1. Consumer Group Assessment
3.2. Product Physicochemical Attributes
3.3. Protein, Fat, Moisture and Water Activity
3.4. Measurements Related to Visual Perception
Instrumental Colour Measurement
3.5. Measurements Related to ‘Mouthfeel’ Sensations
3.5.1. Texture Profile Analysis (TPA)
3.5.2. Fat Release
3.6. Fatty Acid Composition
3.7. Measurements Related to Aroma Perception
Volatile Compounds
3.8. Measurements Related to Taste Perception
3.8.1. pH and Sourness
3.8.2. Saltiness, Sweetness and Spicy
3.8.3. Kokumi Taste Receptor Response
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rocchetti, G.; Rebecchi, A.; Dallolio, M.; Braceschi, G.; Domínguez, R.; Dallolio, G.; Trevisan, M.; Lorenzo, J.M.; Lucini, L. Changes in the chemical and sensory profile of ripened Italian salami following the addition of different microbial starters. Meat Sci. 2021, 180, 108584. [Google Scholar] [CrossRef] [PubMed]
- Kęska, P.; Stadnik, J.; Wójciak, K.M.; Neffe-Skocińska, K. Physico-chemical and proteolytic changes during cold storage of dry-cured pork loins with probiotic strains of LAB. Int. J. Food Sci. Technol. 2020, 55, 1069–1079. [Google Scholar] [CrossRef]
- Yang, J.; Bai, W.; Zeng, X.; Cui, C. Gamma glutamyl peptides: The food source, enzymatic synthesis, kokumi-active and the potential functional properties—A review. Trends Food Sci. Technol. 2019, 91, 339–346. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Verma, A.K.; Mehta, N.; Malav, O.P.; Kumar, D.; Sharma, N. Quality, functionality, and shelf life of fermented meat and meat products: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2844–2856. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Gao, X.; Ma, F.; Wu, X. Comparison of umami taste peptides in water-soluble extractions of Jinhua and Parma hams. LWT—Food Sci. Technol. 2015, 60, 1179–1186. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Suo, H.; Zhao, X.; Kan, J. Aroma and flavor characteristics of commercial Chinese traditional bacon from different geographical regions. J. Sens. Stud. 2019, 34, e12475. [Google Scholar] [CrossRef]
- Corcoran, K.; Bernués, A.; Manrique, E.C.; Pacchioli, T.; Baines, R.; Boutonnet, J.P. Current consumer attitudes towards lamb and beef in Europe. Options Méditerr. 2001, 46, 75–79. [Google Scholar]
- Zhou, G.; Zhang, W.; Xu, X. China’s meat industry revolution: Challenges and opportunities for the future. Meat Sci. 2012, 92, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Manzano, A.M.; Lu, D.; Hort, J.; Day, L. Chinese consumers’ preferences for fermented meat products. Food New Zeal. 2020, 36–39. [Google Scholar]
- Zhao, Y.; Hou, Q.; Zhuang, X.; Wang, Y.; Zhou, G.; Zhang, W. Effect of regenerated cellulose fiber on the physicochemical properties and sensory characteristics of fat-reduced emulsified sausage. LWT 2018, 97, 157–163. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Ohsu, T.; Amino, Y.; Nagasaki, H.; Yamanaka, T.; Takeshita, S.; Hatanaka, T.; Maruyama, Y.; Miyamura, N.; Eto, Y. Involvement of the calcium-sensing receptor in human taste perception. J. Biol. Chem. 2010, 285, 1016–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, M.; Terada, Y.; Motoyama, T.; Saito, T.; Ito, K. Sweet proteins lysozyme and thaumatin are protein-type agonists for the calcium-sensing receptor. Biochem. Biophys. Res. Commun. 2020, 521, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Li, W.; Li, H.K.; Chen, X.H.; Jiang, M.; Dong, M.S. Low-field nuclear magnetic resonance for online determination of water content during sausage fermentation. J. Food Eng. 2017, 212, 291–297. [Google Scholar] [CrossRef]
- Sucu, C.; Turp, G.Y. The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Sci. 2018, 140, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Girolami, A.; Napolitano, F.; Faraone, D.; Di Bello, G.; Braghieri, A. Image analysis with the computer vision system and the consumer test in evaluating the appearance of Lucanian dry sausage. Meat Sci. 2014, 96, 610–616. [Google Scholar] [CrossRef]
- Olivares, A.; Navarro, J.L.; Salvador, A.; Flores, M. Sensory acceptability of slow fermented sausages based on fat content and ripening time. Meat Sci. 2010, 86, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, B.A.; Bastianello Campagnol, P.C.; da Cruz, A.G.; Galvão, M.T.E.L.; Monteiro, R.A.; Wagner, R.; Pollonio, M.A.R. Check all that apply and free listing to describe the sensory characteristics of low sodium dry fermented sausages: Comparison with trained panel. Food Res. Int. 2015, 76, 725–734. [Google Scholar] [CrossRef]
- Dreher, J.; König, M.; Herrmann, K.; Terjung, N.; Gibis, M.; Weiss, J. Varying the amount of solid fat in animal fat mimetics for plant-based salami analogues influences texture, appearance and sensory characteristics. LWT 2021, 143, 111140. [Google Scholar] [CrossRef]
- Camacho, S.; Liu, K.; van der Linden, A.; Stieger, M.; van de Velde, F. Formation, Clearance and Mouthfeel Perception of Oral Coatings Formed by Emulsion-Filled Gels. J. Texture Stud. 2015, 46, 399–410. [Google Scholar] [CrossRef]
- Kindleysides, S.; Beck, K.L.; Walsh, D.C.I.; Henderson, L.; Jayasinghe, S.N.; Golding, M.; Breier, B.H. Fat Sensation: Fatty Acid Taste and Olfaction Sensitivity and the Link with Disinhibited Eating Behaviour. Nutrients 2017, 9, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Pedrouso, M.; Lorenzo, J.M.; Gullón, B.; Campagnol, P.C.B.; Franco, D. Novel strategy for developing healthy meat products replacing saturated fat with oleogels. Curr. Opin. Food Sci. 2021, 40, 40–45. [Google Scholar] [CrossRef]
- Knothe, G.; Dunn, R.O. A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry. J. Am. Oil Chem. Soc. 2009, 86, 843–856. [Google Scholar] [CrossRef]
- Du, M.; Ahn, D.U. Volatile Substances of Chinese Traditional Jinhua Ham and Cantonese Sausage. J. Food Sci. 2001, 66, 827–831. [Google Scholar] [CrossRef]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of Volatile Compounds of Dry-Cured Meat Products Using HS-SPME-GC/MS Technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Zeng, X.; Pan, Q.; Guo, Y.; Wu, Z.; Sun, Y.; Dang, Y.; Cao, J.; He, J.; Pan, D. Potential mechanism of nitrite degradation by Lactobacillus fermentum RC4 based on proteomic analysis. J. Proteom. 2019, 194, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhao, Q.; Zhao, H.; Zhao, M.; Yang, B. Volatile compounds of Cantonese sausage released at different stages of processing and storage. Food Chem. 2010, 121, 319–325. [Google Scholar] [CrossRef]
- Coloretti, F.; Tabanelli, G.; Chiavari, C.; Lanciotti, R.; Grazia, L.; Gardini, F.; Montanari, C. Effect of wine addition on microbiological characteristics, volatile molecule profiles and biogenic amine contents in fermented sausages. Meat Sci. 2014, 96, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, R.; Ge, Q.; Wu, M.; Xu, B.; Xi, J.; Yu, H. Effects of branched-chain amino acids and Lactobacillus plantarum CGMCC18217 on volatiles formation and textural properties of dry-cured fermented sausage. Int. J. Food Sci. Technol. 2021, 56, 374–383. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Wen, R.; Chen, Q.; Kong, B. Role of lactic acid bacteria in flavor development in traditional Chinese fermented foods: A review. Crit. Rev. Food Sci. Nutr. 2020, 1–15. [Google Scholar] [CrossRef]
- Martínez-Onandi, N.; Rivas-Cañedo, A.; Nuñez, M.; Picon, A. Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham. Meat Sci. 2016, 111, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Olivares, A.; Navarro, J.L.; Flores, M. Effect of fat content on aroma generation during processing of dry fermented sausages. Meat Sci. 2011, 87, 264–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Z.; Cai, G.; Wu, C.; Hu, Z.; Xu, X.; Xie, G.; Wu, D.; Lu, J. Profiling the key metabolites produced during the modern brewing process of Chinese rice wine. Food Res. Int. 2021, 139, 109955. [Google Scholar] [CrossRef]
- Kęska, P.; Stadnik, J. Taste-active peptides and amino acids of pork meat as components of dry-cured meat products: An in-silico study. J. Sens. Stud. 2017, 32, e12301. [Google Scholar] [CrossRef]
- Zeng, W.; Wen, W.; Deng, Y.; Tian, Y.; Sun, H.; Sun, Q. Chinese ethnic meat products: Continuity and development. Meat Sci. 2016, 120, 37–46. [Google Scholar] [CrossRef]
- Ahmad, R.; Dalziel, J.E. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front. Pharmacol. 2020, 11, 587664. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cui, Y.; Jin, R.; Lang, H.; Yu, H.; Sun, F.; He, C.; Ma, T.; Li, Y.; Zhou, X.; et al. Enjoyment of Spicy Flavor Enhances Central Salty-Taste Perception and Reduces Salt Intake and Blood Pressure. Hypertension 2017, 70, 1291–1299. [Google Scholar] [CrossRef]
Plain Types | Spiced Types | |||||
---|---|---|---|---|---|---|
Sse | Nos | Fel | Tos | Sau | Nap | |
Ingredients | pork, salt, spices, dextrose, sugar, lactose, potassium nitrate | pork, salt, glucose, spices, food additives (sodium-D-isoascorbate, sodium nitrite and potassium nitrate) | pork, salt, glucose, sugar, food additives (ascorbic acid and sodium nitrite) | pork, salt, glucose, sugar, food additives (ascorbic acid and sodium nitrite) | pork, salt, spices (red pepper 3.4%), dextrose, glucose syrup sugar, lactose, potassium nitrate | pork, salt, glucose, spices including hot spicy, food additives (sodium-D-isoascorbate, sodium nitrite and potassium nitrate) |
Starter cultures | L. plantarum | L. sakei S. xylose | P. acidilactici P. pentosaceus | P. acidilactici P. pentosaceus | L. plantarum | L. sakei S. xylose |
Plain Types | Spiced Types | |||||
---|---|---|---|---|---|---|
Sse | Nos | Fel | Tos | Sau | Nap | |
Visual | - | - | - | Negative perception on lighter colour Looks too oily | Negative perception on dark colour | Looks spicy |
Texture | Too chewy and firm A little greasy | Loose fat and greasy Soft Melt in the mouth | Chewy Dry and firmChecked Greasy | Good texture Good chewiness, Too oily | Not greasy, Chewy and soft | Good chewiness Moderate softness and firmness |
Ideal chewy ranking: Tos, but the focus group concluded Nos product as ideal texture product | ||||||
Aroma | Like it Meat aroma, cheese flavour, No aftertaste or very light. | Dislike Less flavour Less aftertaste | Smell good Less aftertaste | Dislike Strong oily flavour | Like it Garlicy Smoky Hot, mix of different meat flavour | Dislike Spicy flavour overwhelming meat flavour |
Taste | Moderate sweet and salt. | Moderate salty, sweet and sour | Strong sour Moderate salty and sweet | Strong sourness Too salty | Sweet, sour and spicy, good salty | Spicy, but does not last long Not sweet |
Ideal flavour ranking: Sau > Nos = Nap > Sse > Fel > Tos | ||||||
Overall preference * | 4.2 ab | 3.8 abc | 3.3 bc | 2.7 c | 4.8 a | 4.2 ab |
Overall preference ranking: Sau ≥ Nap = Sauc ≥ Nos ≥ Fel ≥ Tos |
Plain Types | Spiced Types | ||||||
---|---|---|---|---|---|---|---|
Sse | Nos | Fel | Tos | Sau | Nap | SEM a | |
Moisture | 27.2 ab | 34.1 a | 25.3 ab | 22.3 b | 21.9 b | 33.2 a | 0.57 |
Protein | 27.7 b | 26.2 b | 33.4 a | 29.7 ab | 29.1 ab | 27.8 b | 0.75 |
Fat | 32.2 bc | 30.0 c | 26.6 d | 36.4 a | 33.7 b | 30.5 c | 0.94 |
pH | 5.76 a | 5.85 a | 5.19 b | 5.25 b | 4.88 c | 5.43 bc | 0.06 |
Aw (1) | 0.87 bc | 0.89 a | 0.84 e | 0.84 de | 0.86 cd | 0.88 ab | 0.00 |
L* | 50.4 a | 48.4 ab | 45.1 b | 44.7 b | 39.5 c | 44.7 b | 1.01 |
a* | 7.72 d | 11.4 cd | 11.3 cd | 10.0 cd | 19.8 a | 17.0 b | 0.63 |
b* | 11.8 c | 11.1 cd | 9.07 d | 10.0 cd | 24.1 a | 20.9 b | 0.51 |
Plain Types | Spiced Types | ||||||
---|---|---|---|---|---|---|---|
Sse | Nos | Fel | Tos | Sau | Nap | SEM | |
Instrumental texture analysis | |||||||
Hardness (kg) | 17.5 a | 13.0 bc | 11.9 bc | 14.8 ab | 10.8 c | 10.3 c | 0.38 |
Springiness | 0.69 b | 0.79 ab | 0.71 ab | 0.83 a | 0.71 ab | 0.76 ab | 0.01 |
Cohesiveness | 0.58 b | 0.63 a | 0.52 c | 0.48 c | 0.62 a | 0.63 a | 0.01 |
Chewiness (kg) | 7.06 a | 6.54 ab | 4.56 b | 5.96 ab | 4.73 b | 4.99 b | 0.19 |
Oral processing simulation | |||||||
Fat released (%) | 0.96 c | 4.5 a | 1.8 b | 2.2 b | 0.86 c | 5.0 a | 0.12 |
Fatty acid composition (%) | |||||||
SFA | 37.7 ab | 35.7 cd | 38.6 a | 39.1 a | 36.6 bc | 34.2 d | 0.290 |
MUFA | 48.9 a | 45.7 b | 42.3 c | 42.7 c | 48.5 a | 45.0 b | 0.408 |
PUFA | 12.1 c | 17.4 b | 18.0 ab | 17.3 b | 13.7 c | 19.5 a | 0.408 |
UFA | 61.1 cd | 63.2 ab | 60.3 d | 60.1 d | 62.3 bc | 64.6 a | 0.278 |
UFA/SFA | 1.63 cd | 1.76 ab | 1.45 d | 1.53 d | 1.70 bc | 1.88 a | 0.020 |
Compound | Plain Types | Spiced Types | |||||||
---|---|---|---|---|---|---|---|---|---|
Retention Time | Retention Index | m/z | Sse | Nos | Fel | Tos | Sau | Nap | |
Aldehydes | 9.16 | 2.85 | 15.67 | 19.43 | 3.69 | 2.11 | |||
Acetaldehyde | 1.398 | 412 | 44 | 2.37 | 1.23 | 1.64 | 1.46 | 2.05 | 0.47 |
2-methyl propanal | 2.393 | 535 | 72 | 0.06 | 0.30 | 1.33 | 1.47 | 0.38 | 0.28 |
3-methyl butanal | 4.002 | 649 | 58 | 0.20 | 0.79 | 1.77 | 3.15 | 0.63 | 0.45 |
2-methyl butanal | 4.247 | 661 | 86 | 0.03 | 0.07 | 0.20 | 0.40 | 0.08 | 0.04 |
Pentanal | 5.03 | 698 | 58 | 0.56 | 0.12 | 1.55 | 1.95 | 0.14 | 0.13 |
2-methyl-2-Butenal | 6.442 | 748 | 84 | 0.04 | 0.00 | 0.05 | 0.26 | 0.00 | 0.00 |
Hexanal | 8.31 | 811 | 56 | 5.71 | 0.33 | 9.01 | 10.60 | 0.34 | 0.71 |
Heptanal | 11.809 | 902 | 70 | 0.16 | 0.01 | 0.11 | 0.14 | 0.05 | 0.01 |
Nonanal | 18.947 | 1102 | 82 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Acids | 3.32 | 5.70 | 10.65 | 8.22 | 18.21 | 10.16 | |||
Acetic acid | 3.03 | 602 | 60 | 3.09 | 5.41 | 10.02 | 7.72 | 17.33 | 9.71 |
butanoic acid | 7.472 | 790 | 60 | 0.12 | 0.27 | 0.48 | 0.35 | 0.64 | 0.41 |
2-methyl butyric acid | 9.662 | 846 | 74 | 0.03 | 0.01 | 0.06 | 0.01 | 0.19 | 0.00 |
hexanoic acid | 14.161 | 977 | 60 | 0.08 | 0.02 | 0.09 | 0.13 | 0.05 | 0.03 |
Esters | 0.91 | 0.36 | 0.33 | 1.05 | 6.59 | 0.40 | |||
Methyl acetate | 2.104 | 515 | 74 | 0.02 | 0.02 | 0.05 | 0.04 | 1.95 | 0.02 |
Ethyl acetate | 3.18 | 612 | 61 | 0.79 | 0.23 | 0.22 | 0.82 | 2.75 | 0.28 |
Methyl lactate | 6.402 | 754 | 45 | 0.02 | 0.02 | 0.02 | 0.02 | 0.76 | 0.01 |
Ethyl lactate | 8.757 | 821 | 45 | 0.05 | 0.01 | 0.01 | 0.15 | 1.04 | 0.02 |
Butyrolactone | 12.222 | 915 | 86 | 0.02 | 0.08 | 0.03 | 0.02 | 0.05 | 0.07 |
Ethyl 2-methylbutanoate | 10.022 | 850 | 102 | 0.01 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 |
Alcohols | 26.73 | 19.03 | 8.73 | 14.39 | 37.50 | 14.59 | |||
Ethanol | 1.605 | 440 | 45 | 14.29 | 16.03 | 5.93 | 9.70 | 30.35 | 12.88 |
1-propanol | 2.36 | 533 | 59 | 0.79 | 2.49 | 0.43 | 0.32 | 0.21 | 0.54 |
2-methyl propanol | 3.357 | 639 | 74 | 0.03 | 0.01 | 0.02 | 0.01 | 0.52 | 0.01 |
1-butanol | 4.159 | 668 | 56 | 0.26 | 0.01 | 0.06 | 0.12 | 0.06 | 0.04 |
1-pentene-3-ol | 4.673 | 686 | 57 | 2.85 | 0.05 | 0.93 | 1.42 | 0.67 | 0.31 |
1-pentanol | 7.113 | 766 | 55 | 1.48 | 0.04 | 0.37 | 0.90 | 0.12 | 0.10 |
3-methyl-1-Butanol | 6.102 | 730 | 55 | 0.78 | 0.12 | 0.44 | 0.41 | 3.33 | 0.11 |
1,2-propanodiol | 6.212 | 732 | 45 | 0.03 | 0.08 | 0.08 | 0.03 | 0.78 | 0.05 |
2,3-butanodiol | 7.854 | 800 | 45 | 1.72 | 0.07 | 0.14 | 0.10 | 1.20 | 0.10 |
1-hexanol | 10.602 | 869 | 56 | 4.50 | 0.13 | 0.33 | 1.35 | 0.26 | 0.46 |
Ketones | 11.54 | 14.85 | 20.75 | 16.51 | 8.45 | 5.55 | |||
2-propanone | 1.825 | 503 | 58 | 4.98 | 4.09 | 11.03 | 9.69 | 3.22 | 3.88 |
2,3-butanedione | 2.747 | 579 | 86 | 0.74 | 0.14 | 0.08 | 0.04 | 0.14 | 0.06 |
2-butanone | 2.892 | 601 | 72 | 1.61 | 1.98 | 3.92 | 6.36 | 4.16 | 1.04 |
2-pentanone | 4.759 | 685 | 58 | 0.23 | 0.04 | 0.02 | 0.02 | 0.09 | 0.01 |
3-hydroxy-2-butanone | 5.438 | 706 | 88 | 2.86 | 7.86 | 5.22 | 0.24 | 0.44 | 0.44 |
Cyclopentanone | 7.987 | 797 | 55 | 0.03 | 0.12 | 0.34 | 0.04 | 0.07 | 0.03 |
2-methyl-cyclopentanone | 9.748 | 847 | 55 | 0.01 | 0.03 | 0.10 | 0.00 | 0.03 | 0.01 |
2-heptanone | 11.4 | 893 | 58 | 0.82 | 0.55 | 0.04 | 0.09 | 0.24 | 0.05 |
2-octanone | 14.97 | 993 | 58 | 0.15 | 0.01 | 0.00 | 0.01 | 0.05 | 0.02 |
2-nonanone | 18.499 | 1093 | 58 | 0.13 | 0.03 | 0.00 | 0.01 | 0.01 | 0.00 |
Sulphur compounds | 1.46 | 19.99 | 12.18 | 4.43 | 11.09 | 10.37 | |||
Carbon disulphide | 2.271 | 522 | 534 | 1.40 | 10.61 | 5.81 | 2.81 | 3.32 | 7.63 |
Allyl methyl sulfide | 5.078 | 700 | 701 | 0.00 | 9.18 | 5.89 | 0.95 | 7.32 | 2.23 |
Dimethyl disulfide | 6.588 | 758 | 761 | 0.06 | 0.03 | 0.25 | 0.52 | 0.09 | 0.33 |
Allyl sulfide | 10.421 | 868 | 862 | 0.00 | 0.04 | 0.01 | 0.00 | 0.11 | 0.01 |
3-(methylthio)-propanal | 11.995 | 907 | 906 | 0.00 | 0.00 | 0.03 | 0.07 | 0.00 | 0.01 |
Methyl 2-propenyl disulfide | 12.519 | 922 | 919 | 0.00 | 0.11 | 0.18 | 0.08 | 0.21 | 0.16 |
Diallyl disulphide | 18.325 | 1088 | 1082 | 0.00 | 0.01 | 0.00 | 0.00 | 0.04 | 0.01 |
Terpenes | 41.73 | 29.69 | 24.61 | 27.45 | 6.03 | 42.67 | |||
alpha-Thujene | 12.908 | 925 | 93 | 4.63 | 0.35 | 0.12 | 1.13 | 0.26 | 2.28 |
alpha-Pinene | 13.221 | 939 | 93 | 5.35 | 5.00 | 3.66 | 3.74 | 1.01 | 11.01 |
alpha-Fenchene | 13.709 | 951 | 93 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.04 |
Camphene | 13.805 | 953 | 121 | 0.13 | 0.13 | 0.07 | 0.08 | 0.02 | 0.21 |
Sabinen | 14.586 | 977 | 93 | 3.85 | 0.46 | 0.06 | 1.07 | 0.37 | 3.65 |
beta-Pinene | 14.804 | 981 | 93 | 6.48 | 6.09 | 4.10 | 1.48 | 1.27 | 8.18 |
Myrcene | 15.031 | 992 | 69 | 0.48 | 0.35 | 0.37 | 0.21 | 0.05 | 0.31 |
alpha.-Phellandrene | 15.667 | 1006 | 93 | 0.50 | 0.60 | 0.56 | 0.14 | 0.05 | 0.42 |
3-carene | 15.895 | 1012 | 93 | 3.26 | 10.12 | 9.36 | 1.93 | 1.28 | 7.09 |
4-Carene | 16.08 | 1022 | 121 | 0.67 | 0.03 | 0.11 | 0.09 | 0.01 | 0.18 |
o-Cymene | 16.223 | 1020 | 119 | 0.05 | 0.28 | 0.22 | 0.39 | 0.04 | 0.17 |
m-Cymene | 16.348 | 1026 | 119 | 6.18 | 1.72 | 1.56 | 2.56 | 0.51 | 3.37 |
Limonene | 16.529 | 1031 | 68 | 5.11 | 2.70 | 2.67 | 4.48 | 0.57 | 2.61 |
Eucalyptol | 16.622 | 1046 | 93 | 3.70 | 1.30 | 1.63 | 3.32 | 0.45 | 2.05 |
gamma-Terpinen | 17.504 | 1064 | 93 | 0.80 | 0.04 | 0.01 | 0.22 | 0.02 | 0.23 |
p-Menth-2-en-1-ol | 17.83 | 1145 | 93 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
Terpinolen | 18.625 | 1088 | 121 | 0.19 | 0.04 | 0.03 | 0.04 | 0.01 | 0.06 |
Fenchone | 18.727 | 1088 | 81 | 0.00 | 0.07 | 0.00 | 2.51 | 0.01 | 0.13 |
beta-Linalool | 18.822 | 1101 | 93 | 0.02 | 0.04 | 0.01 | 0.01 | 0.02 | 0.12 |
1-Terpinen-4-ol | 21.444 | 1180 | 71 | 0.11 | 0.01 | 0.00 | 0.01 | 0.01 | 0.03 |
Estragole | 21.938 | 1196 | 148 | 0.00 | 0.06 | 0.00 | 1.10 | 0.00 | 0.04 |
Anethole | 24.042 | 1289 | 148 | 0.00 | 0.02 | 0.00 | 0.33 | 0.03 | 0.02 |
Copaene | 26.131 | 1394 | 119 | 0.01 | 0.02 | 0.01 | 0.01 | 0.00 | 0.03 |
beta-Caryophyllene | 27.066 | 1444 | 133 | 0.10 | 0.16 | 0.02 | 0.07 | 0.02 | 0.27 |
alpha-Caryophyllene | 27.709 | 1477 | 93 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 | 0.03 |
Hydrocarbons | 2.76 | 4.70 | 5.72 | 7.26 | 2.02 | 11.91 | |||
Miscellaneous | 0.22 | 0.09 | 0.08 | 0.32 | 0.38 | 0.05 | |||
Unidentified | 2.16 | 2.71 | 1.14 | 0.74 | 6.02 | 2.17 | |||
Total chromatography peak area (×106) | 106 | 48 | 83 | 118 | 69 | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Knowles, S.; Ahmad, R.; Day, L. Objective Measurements Associated with the Preferred Eating Qualities of Fermented Salamis. Foods 2021, 10, 2003. https://doi.org/10.3390/foods10092003
Kim J, Knowles S, Ahmad R, Day L. Objective Measurements Associated with the Preferred Eating Qualities of Fermented Salamis. Foods. 2021; 10(9):2003. https://doi.org/10.3390/foods10092003
Chicago/Turabian StyleKim, Jihan, Scott Knowles, Raise Ahmad, and Li Day. 2021. "Objective Measurements Associated with the Preferred Eating Qualities of Fermented Salamis" Foods 10, no. 9: 2003. https://doi.org/10.3390/foods10092003
APA StyleKim, J., Knowles, S., Ahmad, R., & Day, L. (2021). Objective Measurements Associated with the Preferred Eating Qualities of Fermented Salamis. Foods, 10(9), 2003. https://doi.org/10.3390/foods10092003