Recent Progress on Improving the Quality of Bran-Enriched Extruded Snacks
Abstract
:1. Introduction
2. Effect of Extrusion on Bran Constituents
2.1. Bran Composition
2.2. Impact of Dietary Fiber Types
2.3. Impact on Minor Components
3. Factors Determining the Quality of Extruded Snacks and Their Evaluation
4. Impact of Bran on the Characteristics of Extruded Snack Products
4.1. Impact on Expansion and Texture
4.2. Impact on Product Acceptability
4.3. Impact of Bran Composition on Attributes and Stability of Extruded Products
5. Strategies to Enhance the Quality of Bran-Enriched Snacks
5.1. Bran Pre-Treatments
5.1.1. Particle Size Reduction
5.1.2. Chemical Approaches
5.1.3. Bio-Technological Approaches
5.1.4. Other Approaches
5.2. Optimal Extrusion-Cooking Conditions
6. Knowledge Gaps and Future Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Available online: https://www.marketsandmarkets.com/ (accessed on 17 July 2021).
- Serna-Saldivar, S.O. Manufacturing of cereal-based snacks. In Cereal Grains: Properties, Processing, and Nutritional Attributes, 1st ed.; Barbosa-Cánova, G.V., Ed.; RC Press: Boca Raton, FL, USA, 2010; pp. 355–394. [Google Scholar]
- Brennan, M.A.; Derbyshire, E.; Tiwari, B.K.; Brennan, C.S. Ready-to-eat snack products: The role of extrusion technology in developing consumer acceptable and nutritious snacks. Int. J. Food Sci. Technol. 2013, 48, 893–902. [Google Scholar] [CrossRef]
- Shah, F.U.H.; Sharif, M.K.; Bashir, S.; Ahsan, F. Role of healthy extruded snacks to mitigate malnutrition. Food Rev. Int. 2019, 35, 299–323. [Google Scholar] [CrossRef]
- Global Market Insights. Available online: https://www.gminsights.com/industry-analysis/dietary-fibers-market (accessed on 17 July 2021).
- Nutrition Claims. Available online: https://ec.europa.eu/food/food/labelling-and-nutrition/nutrition-and-health-claims/nutrition-claims_en (accessed on 17 July 2021).
- Onipe, O.O.; Jideani, A.I.; Beswa, D. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Angelino, D.; Rosi, A.; Dall’Asta, M.; Pellegrini, N.; Martini, D. Evaluation of the nutritional, quality of breakfast cereals sold on the Italian market: The Food Labelling of Italian Products (FLIP) study. Nutrients 2019, 11, 2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grasso, S. Extruded snacks from industrial by-products: A review. Trends Food Sci. Technol. 2020, 99, 284–294. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of extrusion technology in plant food processing byproducts: An overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef]
- Dey, D.; Richter, J.K.; Ek, P.; Gu, B.J.; Ganjyal, G.M. Utilization of food processing by-products in extrusion processing: A review. Front. Sustain. Food Syst. 2021, 4, 603751. [Google Scholar] [CrossRef]
- Menis-Henrique, M.E.C.; Scarton, M.; Piran, M.V.F.; Clerici, M.T.P.S. Cereal fiber: Extrusion modifications for food industry. Curr. Opin. Food Sci. 2020, 33, 141–148. [Google Scholar] [CrossRef]
- Robin, F.; Schuchmann, H.P.; Palzer, S. Dietary fiber in extruded cereals: Limitations and opportunities. Trends Food Sci. Technol. 2012, 28, 23–32. [Google Scholar] [CrossRef]
- Hemdane, S.; Jacobs, P.J.; Dornez, E.; Verspreet, J.; Delcour, J.A.; Courtin, C.M. Wheat (Triticum aestivum L.) bran in bread making: A critical review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 28–42. [Google Scholar] [CrossRef] [Green Version]
- Honců, I.; Sluková, M.; Vaculová, K.; Sedláĉková, I.; Wiege, B.; Fehling, E. The effects of extrusion on the content and properties of dietary fibre components in various barley cultivars. J. Cereal Sci. 2016, 68, 132–139. [Google Scholar] [CrossRef]
- Zhong, L.; Fang, Z.; Wahlqvist, M.L.; Wu, G.; Hodgson, J.M.; Johnson, S.K. Seed coats of pulses as a food ingredient: Characterization, processing, and applications. Trends Food Sci. Technol. 2018, 80, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Berglund, P.T.; Fastnaught, C.E.; Holm, E.T. Physicochemical and sensory evaluation of extruded high-fiber barley cereals. Cereal Chem. 1994, 71, 91–95. [Google Scholar]
- Sibakov, J.K.; Kirjoranta, S.J.; Alam, S.A.; Kokkonen, H.; Jurvelin, J.S.; Jouppila, K.; Poutanen, K.S.; Sozer, N. Effect of oat bran fractions on extrudates made of defatted oats. Food Bioprocess Technol. 2015, 8, 445–458. [Google Scholar] [CrossRef]
- Ralet, M.C.; Thibault, J.F.; Valle, G.D. Influence of extrusion-cooking on the physico-chemical properties of wheat bran. J. Cereal Sci. 1990, 11, 249–259. [Google Scholar] [CrossRef]
- Roye, C.; Henrion, M.; Chanvrier, H.; De Roeck, K.; De Bondt, Y.; Liberloo, I.; King, R.; Courtin, C.M. Extrusion-cooking modifies physicochemical and nutrition-related properties of wheat bran. Foods 2020, 9, 738. [Google Scholar] [CrossRef]
- Izydorczyk, M.S. Arabinoxylans. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 653–692. [Google Scholar]
- Naumann, S.; Schweiggert-Weisz, U.; Martin, A.; Schuster, M.; Eisner, P. Effects of extrusion processing on the physiochemical and functional properties of lupin kernel fibre. Food Hydrocoll. 2021, 111, 106222. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Total, soluble, and insoluble dietary fiber in foods; Method 991.43. In Official Methods of Analysis of the AOAC, 15th ed.; AOAC International: Gaithersburg, MD, USA, 1990. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Integrated total dietary fiber; Method 2009.01. In Official Methods of Analysis of the AOAC, 15th ed.; AOAC International: Gaithersburg, MD, USA, 1990. [Google Scholar]
- Nikinmaa, M.; Kajala, I.; Liu, X.; Nordlund, E.; Sozer, N. The role of rye bran acidification and in situ dextran formation on structure and texture of high fibre extrudates. Food Res. Int. 2020, 137, 109438. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Arlotti, G.; Bonifati, A.M.; Napolitano, A.; Vitale, D.; Fogliano, V. Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Int. 2005, 38, 1167–1173. [Google Scholar] [CrossRef]
- Zokaityte, E.; Lele, V.; Starkute, V.; Zavistanaviciute, P.; Klupsaite, D.; Bartkevics, V.; Pugajeva, I.; Bērziņa, Z.; Gruzauskas, R.; Sidlauskiene, S.; et al. The influence of combined extrusion and fermentation processes on the chemical and biosafety parameters of wheat bran. LWT-Food Sci. Technol. 2021, 146, 111498. [Google Scholar] [CrossRef]
- Gambús, H.; Matusz-Mirlak, A.; Dulińsi, R.; Ziobro, R.; Golachowski, A. The influence of extrusion process on myo-inositol phosphate content and profile in snacks containing rye bran. Int. J. Food Sci. Nutr. 2012, 63, 41–44. [Google Scholar] [CrossRef]
- Kaur, S.; Sharma, S.; Singh, B.; Dar, B.N. Effect of extrusion variables (temperature, moisture) on the antinutrient components of cereal brans. J. Food Sci. Technol. 2015, 52, 1670–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, R.; Grant, G.; Dewey, P.; Marzo, F. Nutritional assessment in vitro and in vivo of raw and extruded peas (Pisum sativum L.). J. Agric. Food Chem. 2000, 48, 2286–2290. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Chauhan, G.S.; Suresh, I.; Tyagi, M. Nutritional quality of extruded snacks developed from composite of rice brokens and wheat bran. Int. J. Food Prop. 2000, 3, 421–431. [Google Scholar] [CrossRef]
- Brennan, C.; Brennan, M.; Derbyshire, E.; Tiwari, B. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci. Technol. 2011, 22, 570–575. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Q.; Zheng, D.; Wang, Q.; Wang, N.; Saleh, A.S.M.; Zhu, M.; Xiao, Z. Physicochemical and antioxidant properties of rice flour based extrudates enriched with stabilized rice bran. Starch 2018, 70, 1800050. [Google Scholar] [CrossRef]
- Cardoso, L.D.; Pinheiro, S.S.; De Carvalho, C.W.P.; Queiroz, V.A.V.; de Menezes, C.B.; Moreira, A.V.B.; de Barros, F.A.R.; Awika, J.M.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Phenolic compounds profile in sorghum processed by extrusion cooking and dry heat in a conventional oven. J. Ceral Sci. 2015, 65, 220–226. [Google Scholar] [CrossRef]
- Zieliński, H.; Kozłowska, H.; Lewczuk, B. Bioactive compounds in the cereal grains before and after hydrothermal processing. Innov. Food Sci. Emerg. Technol. 2001, 2, 159–169. [Google Scholar] [CrossRef]
- Zhang, R.; Khan, S.A.; Chi, J.; Wei, Z.; Zhang, Y.; Deng, Y.; Liu, L.; Zhang, M. Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. LWT-Food Sci. Technol. 2018, 88, 64–70. [Google Scholar] [CrossRef]
- Ye, G.; Wu, Y.; Wang, L.; Tan, B.; Shen, W.; Li, X.; Liu, Y.; Tian, X.; Zhang, D. Comparison of six modification methods on the chemical composition, functional properties and antioxidant capacity of wheat bran. LWT-Food Sci. Technol. 2021, 149, 111996. [Google Scholar] [CrossRef]
- Arora, B.; Yoon, A.; Sriram, M.; Singha, P.; Rizvi, S.S. Reactive extrusion: A review of the physicochemical changes in food systems. Innov. Food Sci. Emerg. Technol. 2020, 64, 102429. [Google Scholar] [CrossRef]
- Gu, L.; House, S.E.; Rooney, L.W.; Prior, R.L. Sorghum extrusion increases bioavailability of catechins in weanling pigs. J. Agric. Food Chem. 2008, 56, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Hole, A.S.; Kjos, N.P.; Grimmer, S.; Kohler, A.; Lea, P.; Rasmussen, B.; Lima, L.R.; Narvhus, J.; Sahlstrom, S. Extrusion of barley and oat improves the bioaccessibility of dietary phenolic acids in growing pigs. J. Agric. Food Chem. 2013, 61, 2739–2747. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awika, J.M.; Dykes, L.; Gu, L.; Rooney, L.W.; Prior, R.L. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J. Agric. Food Chem. 2003, 51, 5516–5521. [Google Scholar] [CrossRef] [PubMed]
- Torbica, A.; Belović, M. Popović, L.; Čakarević, J. Heat and hydrothermal treatments of non-wheat flours. Food Chem. 2021, 334, 127523. [Google Scholar] [CrossRef] [PubMed]
- Adarkwah-Yiadom, M.; Duodu, K.G. Effect of extrusion cooking and simulated in vitro gastrointestinal digestion on condensed tannins and radical scavenging activity of type II and type III whole grain sorghum. Int. J. Food Sci. Technol. 2017, 52, 2282–2294. [Google Scholar] [CrossRef]
- Amoako, D.B.; Awika, J.M. Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Food Chem. 2019, 285, 326–333. [Google Scholar] [CrossRef]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Oladiran, D.A.; Emmambux, N.M. Effects of extrusion cooking and wheat bran substitution on the functional, nutritional, and rheological properties of cassava-defatted toasted soy composite. Starch 2016, 69, 1600183. [Google Scholar] [CrossRef]
- Alam, S.A.; Pentikäinen, S.; Närväinen, J.; Katina, K.; Poutanen, K.; Sozer, N. The effect of structure and texture on the breakdown pattern during mastication and impacts on in vitro starch digestibility of high fibre rye extrudates. Food Funct. 2019, 10, 1958–1973. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.A.; Pentikäinen, S.; Närväinen, J.; Holopainen-Mantila, U.; Katina, K.; Poutanen, K.; Sozer, N. Effects of structural and textural properties of brittle cereal foams on mechanisms of oral breakdown and in vitro starch digestibility. Food Res. Int. 2017, 96, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, S.A.; Järvinen, J.; Kokkonen, H.; Jurvelin, J.; Poutanen, K.; Sozer, N. Factors affecting structural properties and in vitro starch digestibility of extruded starchy foams containing bran. J. Cereal Sci. 2016, 71, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Serna-Salvidar, S.O. Production of breakfast cereals and snack foods. In Cereal Grains: Laboratory Reference and Procedures Manual, 1st ed.; Barbosa-Cánova, G.V., Ed.; RC Press: Boca Raton, FL, USA, 2012; pp. 299–330. [Google Scholar]
- Bresciani, A.; Giordano, D.; Vanara, F.; Blandino, M.; Marti, A. The effect of the amylose content and milling fractions on the physico-chemical features of co-extruded snacks from corn. Food Chem. 2021, 343, 128503. [Google Scholar] [CrossRef]
- Tacer-Caba, Z.; Nilufer-Erdil, D.; Boyacioglu, M.H.; Ng, P.K. Evaluating the effects of amylose and Concord grape extract powder substitution on physicochemical properties of wheat flour extrudates produced at different temperatures. Food Chem. 2014, 157, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Paula, A.M.; Conti-Silva, A.C. Texture profile and correlation between sensory and instrumental analyses on extruded snacks. J. Food Eng. 2014, 121, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Philipp, C.; Buckow, R.; Silcock, P.; Oey, I. Instrumental and sensory properties of pea protein-fortified extruded rice snacks. Food Res. Int. 2017, 102, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Day, L.; Swanson, B.G. Functionality of protein-fortified extrudates. Compr. Rev. Food Sci. Food Saf. 2013, 12, 546–564. [Google Scholar] [CrossRef]
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–473. [Google Scholar] [CrossRef]
- Pasqualone, A.; Costantini, M.; Coldea, T.E.; Summo, C. Use of legumes in extrusion cooking: A review. Foods 2020, 9, 958. [Google Scholar] [CrossRef]
- Sozer, N.; Poutanen, K. Fibre in extruded products. In Fibre-Rich and Wholegrain Foods: Improving Quality, 1st ed.; Delcour, J.A., Poutanen, K., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 256–272. [Google Scholar]
- Robin, F.; Dubois, C.; Pineau, N.; Schuchmann, H.P.; Palzer, S. Expansion mechanism of extruded foams supplemented with wheat bran. J. Food Eng. 2011, 107, 80–89. [Google Scholar] [CrossRef]
- Kallu, S.; Kowalski, R.J.; Ganjyal, G.M. Impacts of cellulose fiber particle size and starch type on expansion during extrusion processing. J. Food Sci. 2017, 82, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, S.; Hanna, M.A. Amylose-lipid complex formation during single-screw extrusion of various corn starches. Cereal Chem. 1994, 71, 582–586. [Google Scholar] [CrossRef]
- Renoldi, N.; Peighambardoust, S.H.; Peressini, D. The effect of rice bran on physicochemical, textural and glycaemic properties of ready-to-eat extruded corn snacks. Int. J. Food Sci. Technol. 2020, 56, 3235–3244. [Google Scholar] [CrossRef]
- Brennan, M.A.; Monro, J.A.; Brennan, C.S. Effect of inclusion of soluble and insoluble fibres into extruded breakfast cereal products made with reverse screw configuration. Int. J. Food Sci. Technol. 2008, 43, 2278–2288. [Google Scholar] [CrossRef]
- Lobato, L.P.; Anibal, D.; Lazaretti, M.M.; Grossmann, M.V.E. Extruded puffed functional ingredient with oat bran and soy flour. LWT-Food Sci. Technol. 2011, 44, 933–939. [Google Scholar] [CrossRef]
- Fleischman, E.F.; Kowalski, R.J.; Morris, C.F.; Nguyen, T.; Li, C.; Ganjyal, G.; Ross, C.F. Physical, textural, and antioxidant properties of extruded waxy wheat flour snack supplemented with several varieties of bran. J. Food Sci. 2016, 81, E2726–E2733. [Google Scholar] [CrossRef]
- Diaz, J.M.R.; Kirjoranta, S.; Tenitz, S.; Penttilä, P.A.; Serimaa, R.; Lampi, A.M.; Jouppila, K. Use of amaranth, quinoa and kañiwa in extruded corn-based snacks. J. Cereal Sci. 2013, 58, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Castellanos-Gallo, L.; Galicia-García, T.; Estrada-Moreno, I.; Mendoza-Duarte, M.; Márquez-Meléndez, R.; Portillo-Arroyo, B.; Soto-Figueroa, C.; Leal-Ramos, Y.; Sanchez-Aldana, D. Development of an expanded snack of rice starch enriched with amaranth by extrusion process. Molecules 2019, 24, 2430. [Google Scholar] [CrossRef] [Green Version]
- Mendonca, S.; Grossmann, M.V.E.; Verhé, R. Corn bran as a fibre source in expanded snacks. LWT-Food Sci. Technol. 2000, 33, 2–8. [Google Scholar] [CrossRef]
- Proserpio, C.; Bresciani, A.; Marti, A.; Pagliarini, E. Legume flour or bran: Sustainable, biber-rich ingredients for extruded snacks? Foods 2020, 9, 1680. [Google Scholar] [CrossRef]
- Rzedzicki, Z.; Sobota, A. Study on the process of single-screw extrusion-cooking of mixtures with a content of pea hulls. Int. Agrophysics 2006, 20, 327–336. [Google Scholar]
- Heiniö, R.L.; Noort, M.W.J.; Katina, K.; Alam, S.A.; Sozer, N.; De Kock, H.L.; Hersleth, M.; Poutanen, K. Sensory characteristics of wholegrain and bran-rich cereal foods—A review. Trends Food. Sci. Technol. 2016, 47, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.; Peterson, D. Identification of aroma differences in refined and whole grain extruded maize puffs. Molecules 2020, 25, 2261. [Google Scholar] [CrossRef]
- Hernández-Díaz, J.R.; Quintero-Ramos, A.; Barnard, J.; Balandrán-Quintana, R.R. Functional properties of extrudates prepared with blends of wheat flour/pinto bean meal with added wheat bran. Food Sci. Technol. Int. 2007, 13, 301–308. [Google Scholar] [CrossRef]
- Santala, O.; Kiran, A.; Sozer, N.; Poutanen, K.; Nordlund, E. Enzymatic modification and particle size reduction of wheat bran improves the mechanical properties and structure of bran-enriched expanded extrudates. J. Cereal Sci. 2014, 60, 448–456. [Google Scholar] [CrossRef]
- Pai, D.A.; Blake, O.A.; Hamaker, B.R.; Campanella, O.H. Importance of extensional rheological properties of fiber-enriched corn extrudates. J. Cereal Sci. 2009, 50, 227–234. [Google Scholar] [CrossRef]
- Yanniotis, S.; Petraki, A.; Soumpasi, E. Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. J. Food Eng. 2007, 80, 594–599. [Google Scholar] [CrossRef]
- Gomez, M.; Gutkoski, L.; Bravo-Nunez, A. Understanding whole-wheat flour and its effect in breads: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3241–3265. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.J.; Pike, O.A. A simple method to measure lipase activity in wheat and wheat bran as an estimation of storage quality. J. Am. Oil Chem. Soc. 2006, 83, 415–419. [Google Scholar] [CrossRef]
- Nordlund, E.; Heiniö, R.L.; Viljanen, K.; Pihlava, J.M.; Lehtinen, P.; Poutanen, K. Flavour and stability of rye grain fractions in relation to their chemical composition. Food Res. Int. 2013, 54, 48–56. [Google Scholar] [CrossRef]
- Gray, D.A.; Bowen, S.E.; Farhat, I.; Hill, S.E. Lipid oxidation in glassy and rubbery-state starch extrudates. Food Chem. 2008, 106, 227–234. [Google Scholar] [CrossRef]
- Amft, J.; Bauer, J.L.; Rostek, J.; Spielvogel, S.; Schwarz, K. Effect of water addition on the microstructure, lipid incorporation, and lipid oxidation of corn extrudates. Eur. J. Lipid Sci. Technol. 2019, 121, 1800433. [Google Scholar] [CrossRef]
- Barden, L.; Decker, E.A. Lipid oxidation in low-moisture food: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2467–2482. [Google Scholar] [CrossRef] [PubMed]
- Amft, J.; Bauer, J.L.; Rostek, J.; Spielvogel, S.; Döring, F.; Schwarz, K. MCT oil coating improves the oxidative stability of surface lipids in corn extrudates. Eur. J. Lipid Sci. Technol. 2020, 122, 1900350. [Google Scholar] [CrossRef]
- Sharma, S.; Kaur, S.; Dar, B.N.; Singh, B. Storage stability and quality assessment of processed cereal brans. J. Food Sci. Technol. 2014, 51, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Fu, Y.; Wang, L.; Saleh, A.S.M.; Cao, H.; Xiao, Z. Effect of enrichment with stabilized rice bran and extrusion process on gelatinization and retrogradation properties of rice starch. Starch 2017, 69, 1600201. [Google Scholar] [CrossRef]
- Sharma, H.R.; Chauhan, G.S.; Agrawal, K. Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking. Int. J. Food Prop. 2004, 7, 603–614. [Google Scholar] [CrossRef]
- Lampi, A.M.; Damerau, A.; Li, J.; Moisio, T.; Partanen, R.; Forssell, P.; Piironen, V. Changes in lipids and volatile compounds of oat flours and extrudates during processing and storage. J. Cereal Sci. 2015, 62, 102–109. [Google Scholar] [CrossRef]
- Moisio, T.; Damerau, A.; Lampi, A.M.; Partanen, R.; Forssell, P.; Piironen, V. Effect of extrusion processing on lipid stability of rye bran. Eur. Food Res. Technol. 2015, 241, 49–60. [Google Scholar] [CrossRef]
- Elizalde, B.E.; Rosa, M.D.; Lerici, C.R. Effect of Maillard reaction volatile products on lipid oxidation. J. Am. Oil Chem. Soc. 1991, 68, 758–762. [Google Scholar] [CrossRef]
- Alam, S.A.; Järvinen, J.; Kirjoranta, S.; Jouppila, K.; Poutanen, K.; Sozer, N. Influence of particle size reduction on structural and mechanical properties of extruded rye bran. Food Bioprocess Technol. 2014, 7, 2121–2133. [Google Scholar] [CrossRef]
- Roye, C.; Chanvrier, H.; Henrion, M.; De Roeck, K.; De Bondt, Y.; Liberloo, I.; King, R.; Courtin, C.M. Single-pass, double-pass and acid twin-screw extrusion-cooking impact physicochemical and nutrition-related properties of wheat bran. Innov. Food Sci. Emerg. 2020, 66, 102520. [Google Scholar] [CrossRef]
- Dang, T.T.; Vasanthan, T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking. Food Hydrocoll. 2019, 89, 773–782. [Google Scholar] [CrossRef]
- Nikinmaa, M.; Alam, S.A.; Raulio, M.; Katina, K.; Kajala, I.; Nordlund, E.; Sozer, S. Bioprocessing of bran with exopolysaccharide producing microorganisms as a tool to improve expansion and textural properties of extruded cereal foams with high dietary fibre content. LWT-Food Sci. Technol. 2017, 77, 170–177. [Google Scholar] [CrossRef]
- Hartikainen, K.; Poutanen, K.; Katina, K. Influence of bioprocessed wheat bran on the physical and chemical properties of dough and on wheat bread texture. Cereal Chem. 2014, 91, 115–123. [Google Scholar] [CrossRef]
- Wu, N.N.; Qiao, C.C.; Tian, X.H.; Tan, B.; Fang, Y. Retrogradation inhibition of rice starch with dietary fiber from extruded and unextruded rice bran. Food Hydrocoll. 2021, 113, 106488. [Google Scholar] [CrossRef]
- Sharma, R.; Srivastava, T.; Saxena, D.C. Valorization of deoiled rice bran by development and process optimization of extrudates. Eng. Agric. Environ. Food. 2019, 12, 173–180. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Liu, W.; Wan, J.; Wang, W.; Wu, L.; Zuo, N.; Zhou, Y.; Yin, Z. Preparation, physicochemical and texture properties of texturized rice produce by improved extrusion cooking technology. J. Cereal Sci. 2011, 54, 473–480. [Google Scholar] [CrossRef]
- Coutinho, L.S.; Batista, J.E.R.; Caliari, M.; Soares Júnior, M.S. Optimization of extrusion variables for the production of snacks from by-products of rice and soybean. Food Sci. Technol. 2013, 33, 705–712. [Google Scholar] [CrossRef] [Green Version]
- Jacques-Fajardo, G.E.; Prado-Ramírez, R.; Arriola-Guevara, E.; Carrillo, E.P.; Espinosa-Andrews, H.; Morales, G.M.G. Physical and hydration properties of expanded extrudates from a blue corn, yellow pea and oat bran blend. LWT-Food Sci. Technol. 2017, 84, 804–814. [Google Scholar] [CrossRef]
- Rzedzicki, Z.; Sobota, A.; Zarzycki, P. Influence of pea hulls on the twin screw extrusion-cooking process of cereal mixtures and the physical properties of the extrudate. Int. Agrophysics 2004, 18, 73–81. [Google Scholar]
- Duarte, G.; Carvalho, C.W.P.; Ascheri, J.L.R. Effect of soybean hull, screw speed and temperature on expanded maize extrudates. Braz. J. Food Technol. 2009, 12, 205–212. [Google Scholar] [CrossRef]
- Masatcioglu, T.M.; Ng, P.K.W.; Koksel, H. Effects of formulation and extrusion cooking conditions on furfural and hydroxymethylfurfural content. J. Cereal Sci. 2015, 65, 31–38. [Google Scholar] [CrossRef]
- Jozinovic, A.; Sarkanj, B.; Ackar, D.; Balentic, J.P.; Subaric, D.; Cvetkovic, T.; Ranilovic, J.; Guberac, S.; Babic, J. Simultaneous determination of acrylamide and hydroxymethylfurfural in extruded products by LC-MS/MS method. Molecules 2019, 24, 1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claus, A.; Carle, R.; Schieber, A. Acrylamide in cereal products: A review. J. Cereal Sci. 2008, 47, 118–133. [Google Scholar] [CrossRef]
- Onwulata, C.I.; Konstance, R.P.; Smith, P.W.; Holsinger, V.H. Co-extrusion of dietary fiber and milk proteins in expanded corn products. LWT-Food Sci. Technol. 2001, 34, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Makowska, A.; Polcyn, A.; Chudy, S.; Michniewicz, J. Application of oat, wheat and rye bran to modify nutritional properties, physical and sensory characteristics of extruded corn snacks. Acta Sci. Pol. Technol. Aliment. 2015, 14, 375–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bresciani, A.; Marti, A. Using pulses in baked products: Lights, shadows, and potential solutions. Foods 2019, 8, 451. [Google Scholar] [CrossRef] [Green Version]
- Thakur, S.; Scanlon, M.G.; Tyler, R.T.; Milani, A.; Paliwal, J. Pulse flour characteristics from a wheat flour miller’s perspective: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 775–797. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.J.; Shukri, R.; de Mesa-Stonestreet, N.J.; Alavi, S.; Dogan, H.; Shi, Y.C. Mechanical and microstructural properties of soy protein–high amylose corn starch extrudates in relation to physiochemical changes of starch during extrusion. J. Food Eng. 2010, 100, 232–238. [Google Scholar] [CrossRef]
- Marti, A.; Cattaneo, S.; Benedetti, S.; Buratti, S.; Parizad, P.A.; Masotti, F.; Iamett, S.; Pagani, M.A. Characterization of whole grain pasta: Integrating physical, chemical, molecular, and instrumental sensory approaches. J. Food Sci. 2017, 82, 2583–2590. [Google Scholar] [CrossRef]
- Laureati, M.; Conte, A.; Padalino, L.; Del Nobile, M.A.; Pagliarini, E. Effect of fiber information on consumer’s expectation and liking of wheat bran enriched pasta. J. Sens. Stud. 2016, 31, 348–359. [Google Scholar] [CrossRef]
Source of Bran | Formulation | Bran Content (g/100 g) | Type of Extruder | Feed Moisture (%) | Screw Speed (rpm) | Maximum Temperature (°C) | Die Diameter (mm) | Quality Indices Considered for Optimization | Reference |
---|---|---|---|---|---|---|---|---|---|
Corn | Corn meal | 18, 25, 32 | Single screw | 16–22 | - | 150–190 | - | Sensory acceptability | [69] |
Rice | Rice flour (70%), corn flour (10%) | 20 | Twin screw | 12–18 13 | 116–284 203 | 86–154 140 | - | Lateral expansion, bulk density, water absorption index, water solubility index, hardness | [97] |
Rice | Rice (86%), potato starch (2%), corn starch (8%) | 4 | Single screw | 26.6–33.4 30 | 20.1–32.6 26.6 | 69.8–120.2 95 | - | Texture (hardness, adhesive force, springiness, gumminess, cohesiveness) | [98] |
Rice | Rice (81%), black soybean (10%) | 9 | Single screw | 12–20 | - | 60–110 85 | - | Expansion, color indices | [99] |
Oat | Blue corn (80%), yellow pea (15%) | 5 | Twin screw | 20–25 18.38 | 300–400 371.98 | 120–160 158.64 | - | Porosity, hardness | [100] |
Oat | Corn starch (20–30%), soy (20–50%), inulin (30–50%) | 20–50 37.5 | Single screw | 23–27 25 | - | 130–160 | - | Radial expansion, hardness | [65] |
Pea | Corn grits | 20–80 | Twin screw | 14–26 17 | - | 145–220 | 3.2–6 | Expansion, density | [101] |
Pea Oat | Corn grits, whole milk powder (0–0.5%) | pea: 2.5–15; ≤7.5 | Single screw | 13.5–16.5 | - | 125–175 145 | 3.5 | Expansion, density, water absorption index, texture, sensory | [71] |
Soybean | Corn grits | 8–40 for instrumental analysis, 10–40 for sensory | Single screw | 16 | 100–200 | 100–200 | 3 | Sectional expansion, sensory, pasting parameters | [103] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyl, C.; Bresciani, A.; Marti, A. Recent Progress on Improving the Quality of Bran-Enriched Extruded Snacks. Foods 2021, 10, 2024. https://doi.org/10.3390/foods10092024
Tyl C, Bresciani A, Marti A. Recent Progress on Improving the Quality of Bran-Enriched Extruded Snacks. Foods. 2021; 10(9):2024. https://doi.org/10.3390/foods10092024
Chicago/Turabian StyleTyl, Catrin, Andrea Bresciani, and Alessandra Marti. 2021. "Recent Progress on Improving the Quality of Bran-Enriched Extruded Snacks" Foods 10, no. 9: 2024. https://doi.org/10.3390/foods10092024
APA StyleTyl, C., Bresciani, A., & Marti, A. (2021). Recent Progress on Improving the Quality of Bran-Enriched Extruded Snacks. Foods, 10(9), 2024. https://doi.org/10.3390/foods10092024