Synergistic Antibiofilm Effects of Ultrasound and Phenyllactic Acid against Staphylococcus aureus and Salmonella enteritidis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Cultivation
2.2. Treatment Parameters
2.3. Biofilm Cultivation and Treatment
2.4. Enumeration of Biofilm Cells
2.5. Polysaccharide Content in Biofilms
2.6. Confocal Laser Scanning Microscopy (CLSM) Analysis
2.7. Scanning Electron Microscopy (SEM)
2.8. Release of Intracellular ATP
2.9. Respiratory Chain Dehydrogenase (RCD) Determination
2.10. Statistical Analysis
3. Results
3.1. Inactivation of S. aureus and S. enteritidis Biofilm Cells
3.2. EPS Contents in Biofilms
3.3. CLSM Analysis
3.4. SEM Analysis
3.5. Release of Intracellular ATP
3.6. Activity of Respiratory Chain Dehydrogenase (RCD)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Shao, T.; Dong, Y.; Chen, X.J.; Xu, X.L.; Wang, H.H. Modeling the elimination of mature biofilms formed by Staphylococcus aureus and Salmonella spp. using combined ultrasound and disinfectants. Ultrason. Sonochem. 2020, 69, 105269. [Google Scholar] [CrossRef]
- Sharahi, J.Y.; Azimi, T.; Shariati, A.; Safari, H.; Tehrani, M.K.; Hashemi, A. Advanced strategies for combating bacterial biofilms. J. Cell. Physiol. 2019, 234, 14689–14708. [Google Scholar] [CrossRef]
- Omwenga, I.; Aboge, G.O.; Mitema, E.S.; Obiero, G.; Ngaywa, C.; Ngwili, N.; Wamwere, G.; Wainaina, M.; Bett, B. Staphylococcus aureus enterotoxin genes detected in milk from various livestock species in northern pastoral region of Kenya. Food Control 2019, 103, 126–132. [Google Scholar] [CrossRef]
- Sun, J.L.; Zhang, S.K.; Chen, J.Y.; Han, B.Z. Efficacy of acidic and basicelectrolyzed water in eradicating Staphylococcus aureus biofilm. Can. J. Microbiol. 2012, 58, 448–454. [Google Scholar] [CrossRef]
- Jung, Y.G.; Matthews, K.R. Potential transfer of extended spectrum β-lactamase encoding gene, blashv18 gene, between Klebsiella pneumoniae in raw foods. Food Microbiol. 2020, 60, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Pontin, K.P.; Borges, K.A.; Furian, T.Q.; Carvalho, D.; Wilsmann, D.E.; Cardoso, H.R.P.; Alves, A.K.; Chitolina, G.Z.; Salle, C.T.P.; Moraes, H.L.D.S.; et al. Antimicrobial activity of copper surfaces against biofilm formation by Salmonella enteritidis and its potential application in the poultry industry. Food Microbiol. 2020, 94, 103645. [Google Scholar] [CrossRef]
- Wu, H.; Wang, M.; Liu, Y.; Wang, X.; Wang, Y.; Lu, J.; Xu, H. Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. Int. J. Food Microbiol. 2016, 232, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Hansen, M.F.; Roeder, H.L.; Wang, N.; Burmølle, M.; He, G. Mixed-species biofilms in the food industry: Current knowledge and novel control strategies. Crit. Rev. Food Sci. Nutr. 2019, 60, 2277–2293. [Google Scholar] [CrossRef]
- Yu, H.; Seow, Y.X.; Ong, P.K.; Zhou, W. Effects of high-intensity ultrasound on Maillard reaction in a model system of d-xylose and l-lysine. Ultrason. Sonochem. 2017, 34, 154–163. [Google Scholar] [CrossRef]
- Techathuvanan, C.; D’Souza, D.H. High intensity ultrasound for Salmonella enteritidis Inactivation in culture and liquid whole eggs. J. Food Sci. 2018, 83, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.; McMaster, L.D.; Britz, T.J. Impact of ultrasound on dairy spoilage microbes and milk components. Dairy Sci. Technol. 2009, 89, 83–98. [Google Scholar] [CrossRef]
- Chemat, F.; Huma, Z.E.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Bang, H.-J.; Park, S.Y.; Kim, S.E.; Rahaman, M.M.F.; Ha, S.-D. Synergistic effects of combined ultrasound and peroxyacetic acid treatments against Cronobacter sakazakii biofilms on fresh cucumber. LWT 2017, 84, 91–98. [Google Scholar] [CrossRef]
- Selan, L.; Papa, R.; Barbato, G.; Scoarughi, G.L.; Vrenna, G.; Artini, M. Ultrasound affects minimal inhibitory concentration of ampicillin against methicillin resistant Staphylococcus aureus USA300. New Microbiol. 2019, 42, 52–54. [Google Scholar]
- Alenyorege, E.A.; Ma, H.; Ayim, I.; Aheto, J.H.; Hong, C.; Zhou, C. Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite. LWT 2018, 101, 410–418. [Google Scholar] [CrossRef]
- Duarte, A.L.A.; Rosario, D.K.A.D.; Oliveira, S.B.S.; de Souza, H.L.S.; de Carvalho, R.V.; Carneiro, J.C.S.; Silva, P.I.; Bernardes, P.C. Ultrasound improves antimicrobial effect of sodium dichloroisocyanurate to reduce Salmonella Typhimurium on purple cabbage. Int. J. Food Microbiol. 2018, 269, 12–18. [Google Scholar] [CrossRef]
- Meireles, A.; Machado, I.; Fulgêncio, R.; Mergulhão, F.; Melo, L.; Simões, M. Efficacy of antimicrobial combinations to reduce the use of sodium hypochlorite in the control of planktonic and sessile Escherichia coli. Biochem. Eng. J. 2015, 104, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Sagong, H.G.; Lee, S.Y.; Chang, P.S.; Heu, S.; Ryu, S.; Choi, Y.J.; Kang, D.H. Combined effect of ultrasound and organic acids to reduce Escherichia coli 0157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int. J. Food Microbiol. 2011, 145, 287–292. [Google Scholar] [CrossRef]
- Liu, F.; Sun, Z.; Wang, F.; Liu, Y.; Zhu, Y.; Du, L.; Wang, D.; Xu, W. Inhibition of biofilm formation and exopolysaccharide synthesis of Enterococcus faecalis by phenyllactic acid. Food Microbiol. 2019, 86, 103344. [Google Scholar] [CrossRef]
- Liu, F.; Du, L.; Zhao, T.; Zhao, P.; Doyle, M.P. Effects of phenyllactic acid as sanitizing agent for inactivation of Listeria monocytogenes biofilms. Food Control 2017, 78, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Tang, H.; Chen, W.; Dou, Z.; Chen, R.; Hu, Y.; Chen, W.; Chen, H. Antimicrobial effect of black pepper petroleum ether extract for the morphology of Listeria monocytogenes and Salmonella typhimurium. J. Food Sci. Technol. 2017, 54, 2067–2076. [Google Scholar] [CrossRef]
- Richter, A.K.; Frossard, E.; Brunner, I. Polyphenols in the woody roots of Norway spruce and European beech reduce TTC. Tree Physiol. 2007, 27, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef]
- Bragason, E.; Berhe, T.; Dashe, D.; Sørensen, K.I.; Guya, M.E.; Hansen, E.B. Antimicrobial activity of novel Lactococcus lactis strains against Salmonella Typhimurium DT12, Escherichia coli O157:H7 VT− and Klebsiella pneumoniae in raw and pasteurised camel milk. Int. Dairy J. 2020, 111, 104832. [Google Scholar] [CrossRef]
- Kang, J.-W.; Lee, H.-Y.; Kang, D.-H. Synergistic bactericidal effect of hot water with citric acid against Escherichia coli O157:H7 biofilm formed on stainless steel. Food Microbiol. 2020, 95, 103676. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, H.H.; Duc, H.M.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Endolysin LysSTG2: Characterization and application to control Salmonella Typhimurium biofilm alone and in combination with slightly acidic hypochlorous water. Food Microbiol. 2021, 98, 103791. [Google Scholar] [CrossRef]
- Li, J.; Ahn, J.; Liu, D.; Chen, S.; Ye, X.Q.; Ding, T. Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by Flow Cytometry and Transmission Electron Microscopy. Appl. Environ. Microbiol. 2016, 82, 1828–1837. [Google Scholar] [CrossRef] [Green Version]
- Ashokkumar, M. The characterization of acoustic cavitation bubbles—An overview. Ultrason. Sonochem. 2011, 18, 864–872. [Google Scholar] [CrossRef]
- Gao, S.; Hemar, Y.; Ashokkumar, M.; Paturel, S.; Lewis, G. Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water Res. 2014, 60, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Yu, S.; Zhu, L.; Zhang, T.; Jiang, B. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound. Appl. Microbiol. Biotechnol. 2012, 95, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Lavermicocca, P.; Valerio, F.; Visconti, A. Antifungal activity of phenyl-lactic acid against molds isolated from bakery products. Appl. Environ. Microbiol. 2003, 69, 634–640. [Google Scholar] [CrossRef] [Green Version]
- Schwenninger, S.M.; Lacroix, C.; Truttmann, S.; Jans, C.; Spörndli, C.; Bigler, L.; Meile, L. Characterization of Low-Molecular-Weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium Coculture. J. Food Prot. 2008, 71, 2481–2487. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, F.; Du, L.; Zhao, T.; Doyle, M.P.; Wang, D.; Zhang, X.; Sun, Z.; Xu, W. Antibacterial and antibiofilm activity of phenyllactic acid against Enterobacter cloacae. Food Control 2018, 84, 442–448. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.; Wang, D.; Sun, Z.; Du, L.; Wang, D. The synergistic effects of phenyllactic acid and slightly acid electrolyzed water to effectively inactivate Klebsiella oxytoca planktonic and biofilm cells. Food Control 2020, 125, 107804. [Google Scholar] [CrossRef]
Different Treatments | S. aureus (log10CFU/mL) | ||||
---|---|---|---|---|---|
5 min | 10 min | 20 min | 30 min | 60 min | |
Control | 9.4 ± 0.52 Aa | 9.5 ± 0.09 Aa | 9.5 ± 0.03 Aa | 9.5 ± 0.03 Aa | 9.6 ± 0.02 Ba |
US | 9.3 ± 0.49 Aa | 9.3 ± 0.18 Aa | 9.1 ± 0.10 Bb | 9.1 ± 0.24 Bab | 9.3 ± 0.13 Ab |
0.5% PLA | 9.0 ± 0.02 Aa | 8.9 ± 0.01 Ab | 8.9 ± 0.09 Ac | 8.6 ± 0.07 Bb | 7.9 ± 0.37 Cb |
1% PLA | 7.7 ± 0.04 Ab | 7.6 ± 0.24 Ac | 6.9 ± 0.08 Bd | 5.9 ± 0.55 Cc | 5.8 ± 0.27 Cc |
US + 0.5% PLA | 7.7 ± 0.33 Ab | 7.6 ± 0.37 Ac | 6.8 ± 0.08 Bd | 6.1 ± 0.36 Cc | 5.7 ± 0.31 Dc |
US + 1% PLA | 6.1 ± 0.08 Bc | 6.3 ± 0.05 Ad | 6.2 ± 0.03 ABe | 5.3 ± 0.36 Cd | 5.3 ± 0.44 Cd |
Different Treatments | S. enteritidis (log10CFU/mL) | ||||
---|---|---|---|---|---|
5 min | 10 min | 20 min | 30 min | 60 min | |
Control | 8.5 ± 0.06 Aa | 8.6 ± 0.11 Aa | 8.5 ± 0.10 Aa | 8.5 ± 0.05 Aa | 8.5 ± 0.01 Aa |
US | 8.5 ± 0.04 Aab | 8.5 ± 0.21 Aa | 8.4 ± 0.09 Ab | 7.6 ± 0.24 Bb | 7.5 ± 0.13 Bb |
0.5% PLA | 8.3 ± 0.04 Ab | 7.7 ± 0.24 Bb | 7.6 ± 0.06 Bc | 6.5 ± 0.19 Cc | 5.7 ± 0.08 Dc |
1% PLA | 7.5 ± 0.07 Ac | 7.4 ± 0.03 ABc | 7.3 ± 0.06 Bd | 5.4 ± 0.42 Cd | 5.3 ± 0.15 Cd |
US + 0.5% PLA | 3.7 ± 0.03 Ad | 3.5 ± 0.10 Bd | 3.4 ± 0.07 Be | 3.2 ± 0.15 Ce | 3.1 ± 0.09 Ce |
US + 1% PLA | 3.5 ± 0.28 Ad | 3.3 ± 0.23 Bd | 3.2 ± 0.04 Bf | 2.9 ± 0.05 Ce | 2.4 ± 0.11 Df |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, D.; Sun, J.; Sun, Z.; Liu, F.; Du, L.; Wang, D. Synergistic Antibiofilm Effects of Ultrasound and Phenyllactic Acid against Staphylococcus aureus and Salmonella enteritidis. Foods 2021, 10, 2171. https://doi.org/10.3390/foods10092171
Zhang J, Wang D, Sun J, Sun Z, Liu F, Du L, Wang D. Synergistic Antibiofilm Effects of Ultrasound and Phenyllactic Acid against Staphylococcus aureus and Salmonella enteritidis. Foods. 2021; 10(9):2171. https://doi.org/10.3390/foods10092171
Chicago/Turabian StyleZhang, Jiaojiao, Debao Wang, Jinyue Sun, Zhilan Sun, Fang Liu, Lihui Du, and Daoying Wang. 2021. "Synergistic Antibiofilm Effects of Ultrasound and Phenyllactic Acid against Staphylococcus aureus and Salmonella enteritidis" Foods 10, no. 9: 2171. https://doi.org/10.3390/foods10092171
APA StyleZhang, J., Wang, D., Sun, J., Sun, Z., Liu, F., Du, L., & Wang, D. (2021). Synergistic Antibiofilm Effects of Ultrasound and Phenyllactic Acid against Staphylococcus aureus and Salmonella enteritidis. Foods, 10(9), 2171. https://doi.org/10.3390/foods10092171