Volatile Components and Preliminary Antibacterial Activity of Tamarillo (Solanum betaceum Cav.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemicals and Reagents
2.3. Analysis of VCs of Tamarillo Fruits by SPME–GC–MS
2.4. Analysis of VCs of Tamarillo Fruits by TD–GC–MS
2.5. Determination of Odor Threshold and Relative Odor Activity Value (OAV)
2.6. Preparation of Extracts for Antibacterial Activity Testing
2.7. Evaluation of Antibacterial Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Impact of Freeze-Drying in Volatile Components of Tamarillos
3.2. Comparison between SPME and TD–GC–MS for Analyzing Volatiles
3.3. Volatile Compounds in Peel and Pulp of Freeze-Dried Tamarillos
3.4. Odor Threshold and Relative Odor Activity Value (OAV) of Freeze-Dried Tamarillo
3.5. Antibacterial Activities of Different Solvent Extracts from Tamarillo
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Diep, T.; Pook, C.; Yoo, M. Phenolic and Anthocyanin Compounds and Antioxidant Activity of Tamarillo (Solanum betaceum Cav.). Antioxidants 2020, 9, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schotsmans, W.; East, A.; Woolf, A. Tamarillo (Solanum betaceum (Cav.)). In Woodhead Publishing Series in Food Science, Technology and Nutrition, Postharvest Biology and Technology of Tropical and Subtropical Fruits: Mangosteen to White Sapote; Woodhead Publishing: Amsterdam, The Netherlands, 2011; pp. 427–442e. [Google Scholar]
- Diep, T.T.; Pook, C.; Rush, E.C.; Yoo, M.J.Y.Y. Quantification of Carotenoids, α-Tocopherol, and Ascorbic Acid in Amber, Mulligan, and Laird’s Large Cultivars of New Zealand Tamarillos (Solanum betaceum Cav.). Foods 2020, 9, 769. [Google Scholar] [CrossRef]
- Diep, T.T.; Pook, C.; Yoo, M.J.Y.Y. Physicochemical properties and proximate composition of tamarillo (Solanum betaceum Cav.) fruits from New Zealand. J. Food Compost. Anal. 2020, 92, 103563. [Google Scholar] [CrossRef]
- Diep, T.T.; Rush, E.C.; Yoo, M.J.Y.Y. Tamarillo (Solanum betaceum Cav.): A Review of Physicochemical and Bioactive Properties and Potential Applications. Food Rev. Int. 2020, 1–25. [Google Scholar] [CrossRef]
- Durant, A.A.; Rodríguez, C.; Santana, A.I.; Herrero, C.; Rodríguez, J.C.; Gupta, M.P. Analysis of Volatile Compounds from Solanumbetaceum Cav. Fruits from Panama by Head-Space Micro Extraction. Rec. Nat. Prod. 2013, 7, 15. [Google Scholar]
- Torrado, A.; Suárez, M.; Duque, C.; Krajewski, D.; Neugebauer, W.; Schreier, P. Volatile constituents from tamarillo (Cyphomandra betacea Sendtn.) fruit. Flavour Fragr. J. 1995, 10, 349–354. [Google Scholar] [CrossRef]
- Wong, K.; Wong, S. Volatile constituents of Cyphomandra betacea Sendtn. fruit. J. Essent. Oil Res. 1997, 9, 357–359. [Google Scholar] [CrossRef]
- Bezerra, T.S.; Pereira, C.G.; Prado, M.E.T.; de Barros Vilas Boas, E.V.; Resende, J.V.d. Induction of crystallization influences the retention of volatile compounds in freeze-dried marolo pulp. Dry. Technol. 2018, 36, 1250–1262. [Google Scholar] [CrossRef]
- Huang, L.-L.; Zhang, M.; Yan, W.-Q.; Mujumdar, A.S.; Sun, D.-F. Effect of coating on post-drying of freeze-dried strawberry pieces. J. Food Eng. 2009, 92, 107–111. [Google Scholar] [CrossRef]
- Gonçalves, L.A.; Lorenzo, J.M.; Trindade, M.A. Fruit and Agro-Industrial Waste Extracts as Potential Antimicrobials in Meat Products: A Brief Review. Foods 2021, 10, 1469. [Google Scholar] [CrossRef]
- Ordonez, R.M.; Ordonez, A.A.L.; Sayago, J.E.; Moreno, M.I.N.; Isla, M.I. Antimicrobial activity of glycosidase inhibitory protein isolated from Cyphomandra betacea Sendt. fruit. Peptides 2006, 27, 1187–1191. [Google Scholar] [CrossRef]
- Santos, T.; de Aquino Santana, L. Antimicrobial potential of exotic fruits residues. S. Afr. J. Bot. 2019, 124, 338–344. [Google Scholar] [CrossRef]
- Wang, L.; Qian, C.; Bai, J.; Luo, W.; Jin, C.; Yu, Z. Difference in volatile composition between the pericarp tissue and inner tissue of tomato (Solanum lycopersicum) fruit. J. Food Process. Preserv. 2018, 42, e13387. [Google Scholar] [CrossRef]
- Leffingwell & Associates. Odor & Flavor Detection Thresholds in Water (In Parts per Billion). Available online: https://www.leffingwell.com/odorthre.htm?fbclid=IwAR14SUO0bKevtkBroRKImueFbSWBLYVCHxaqEDO20YjafzPps-JeNrZo_88 (accessed on 16 July 2020).
- Acree, T.; Arn, H. Gas chromatography-olfactometry (GCO) of natural products. In Flavornet and Human Odor Space; DATU Inc.: Geneva, NY, USA, 2004; Available online: http://www.flavornet.org (accessed on 16 July 2020).
- Oladele, O.; Blessing, D.; Okosodo, J. Antifungal activity and phytochemical analysis of selected fruit peels. J. Biol. Med. 2019, 3, 040–043. [Google Scholar]
- Garcia, J.M.; Prieto, L.J.; Guevara, A.; Malagon, D.; Osorio, C. Chemical Studies of Yellow Tamarillo (Solanum betaceum Cav.) Fruit Flavor by Using a Molecular Sensory Approach. Molecules 2016, 21, 1729. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Qian, M. Quantification of 2, 5-dimethyl-4-hydroxy-3 (2H)-furanone using solid-phase extraction and direct microvial insert thermal desorption gas chromatography–mass spectrometry. J. Chromatogr. 2008, 1208, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Ruan, E.D.; Aalhus, J.L.; Juárez, M.; Sabik, H. Analysis of volatile and flavor compounds in grilled lean beef by stir bar sorptive extraction and thermal desorption—gas chromatography mass spectrometry. Food Anal. Methods 2015, 8, 363–370. [Google Scholar] [CrossRef]
- Tholl, D.; Boland, W.; Hansel, A.; Loreto, F.; Röse, U.S.; Schnitzler, J.P. Practical approaches to plant volatile analysis. Plant. J. 2006, 45, 540–560. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Yin, H.; Deng, Y.; Jiang, Y.; Yuan, H.; Dong, C.; Li, J.; Hua, J.; Wang, J. Rapid profiling of volatile compounds in green teas using Micro-Chamber/Thermal Extractor combined with thermal desorption coupled to gas chromatography-mass spectrometry followed by multivariate statistical analysis. LWT 2018, 96, 42–50. [Google Scholar] [CrossRef]
- Kücklich, M.; Möller, M.; Marcillo, A.; Einspanier, A.; Weiß, B.M.; Birkemeyer, C.; Widdig, A. Different methods for volatile sampling in mammals. PLoS ONE 2017, 12, e0183440. [Google Scholar] [CrossRef] [Green Version]
- Tabaszewska, M.; Antoniewska, A.; Rutkowska, J.; Skoczylas, Ł.; Słupski, J.; Skoczeń-Słupska, R. Bioactive Components, Volatile Profile and In Vitro Antioxidative Properties of Taxus baccata L. Red Arils. Molecules 2021, 26, 4474. [Google Scholar] [CrossRef] [PubMed]
- Tylewicz, U.; Inchingolo, R.; Rodriguez-Estrada, M.T. Food aroma compounds. In Nutraceutical and Functional Food Components; Elsevier: Amsterdam, The Netherlands, 2017; pp. 297–334. [Google Scholar]
- Bernstein, L.R.; Tanner, T.; Godfrey, C.; Noll, B. Chemistry and pharmacokinetics of gallium maltolate, a compound with high oral gallium bioavailability. Met. Based Drugs 2000, 7, 33–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reffitt, D.M.; Burden, T.J.; Seed, P.T.; Wood, J.; Thompson, R.P.; Powell, J.J. Assessment of iron absorption from ferric trimaltol. Ann. Clin. Biochem. 2000, 37, 457–466. [Google Scholar] [CrossRef] [PubMed]
- El Hadi, M.A.M.; Zhang, F.-J.; Wu, F.-F.; Zhou, C.-H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.Z.; Chen, R.R.; Bao, J.Y.; Yang, G.M. Comparison of volatiles of banana powder dehydrated by vacuum belt drying, freeze-drying and air-drying. Food Chem. 2007, 104, 1516–1521. [Google Scholar] [CrossRef]
- Li, Y.-H.; Sun, Z.-H.; Zheng, P. Determination of vanillin, eugenol and isoeugenol by RP-HPLC. Chromatographia 2004, 60, 709–713. [Google Scholar] [CrossRef]
- Yao, S.-S.; Guo, W.-F.; Lu, Y.; Jiang, Y.-X. Flavor characteristics of lapsang souchong and smoked lapsang souchong, a special Chinese black tea with pine smoking process. J. Agric. Food Chem. 2005, 53, 8688–8693. [Google Scholar] [CrossRef]
- Arctander, S. Perfume and Flavor Chemicals:(Aroma Chemicals); Allured Publishing Corporation: Carol Stream, IL, USA, 1969; Volume 2. [Google Scholar]
- Zhang, J.-h.; Sun, H.-l.; Chen, S.-y.; Zeng, L.; Wang, T.-t. Anti-fungal activity, mechanism studies on α-Phellandrene and Nonanal against Penicillium cyclopium. Bot. Stud. 2017, 58, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Buttery, R.G.; Takeoka, G.R.; Naim, M.; Rabinowitch, H.; Nam, Y. Analysis of furaneol in tomato using dynamic headspace sampling with sodium sulfate. J. Agric. Food Chem. 2001, 49, 4349–4351. [Google Scholar] [CrossRef]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- European Commission. Commission implementing Regulation (EU) No 872/2012 of 1 October 2012 adopting the list of flavouring substances provided for by Regulation (EC) No 2232/96 of the European Parliament and of the Council, introducing it in Annex I to Regulation (EC) No 1334/2008 of the European Parliament and of the Council and repealing Commission Regulation (EC) No 1565/2000 and Commission Decision 1999/217/EC. Off. J. Eur. Communities 2012, 50, 1–161. [Google Scholar]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Aroma compounds. In Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2004; pp. 342–408. [Google Scholar]
- Warth, A.D. Mechanism of action of benzoic acid on Zygosaccharomyces bailii: Effects on glycolytic metabolite levels, energy production, and intracellular pH. Appl. Environ. Microbiol. 1991, 57, 3410–3414. [Google Scholar] [CrossRef] [Green Version]
- Morton, J.I.; Siegel, B.V. Effects of oral dimethyl sulfoxide and dimethyl sulfone on murine autoimmune lymphoproliferative disease. Proc. Soc. Exp. Biol. Med. 1986, 183, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.H.; Jetten, A.M. Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett. 2010, 287, 123–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kromidas, L.; Perrier, E.; Flanagan, J.; Rivero, R.; Bonnet, I. Release of antimicrobial actives from microcapsules by the action of axillary bacteria. Int. J. Cosmet. Sci. 2006, 28, 103–108. [Google Scholar] [CrossRef]
- McDonald, G.R.; Hudson, A.L.; Dunn, S.M.; You, H.; Baker, G.B.; Whittal, R.M.; Martin, J.W.; Jha, A.; Edmondson, D.E.; Holt, A. Bioactive contaminants leach from disposable laboratory plasticware. Science 2008, 322, 917. [Google Scholar] [CrossRef] [PubMed]
- Pino, J.A.; Queris, O. Analysis of volatile compounds of mango wine. Food Chem. 2011, 125, 1141–1146. [Google Scholar] [CrossRef]
- Mayer, F.; Takeoka, G.R.; Buttery, R.G.; Whitehand, L.C.; Naim, M.; Rabinowitch, H.D. Studies on the aroma of five fresh tomato cultivars and the precursors of cis-and trans-4, 5-epoxy-(E)-2-decenals and methional. J. Agric. Food Chem. 2008, 56, 3749–3757. [Google Scholar] [CrossRef]
- Saleem, M.; Saeed, M.T. Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J. King Saud Univ. Sci. 2020, 32, 805–810. [Google Scholar] [CrossRef]
- Phan, A.D.T.; Chaliha, M.; Sultanbawa, Y.; Netzel, M.E. Nutritional Characteristics and Antimicrobial Activity of Australian Grown Feijoa (Acca sellowiana). Foods 2019, 8, 376. [Google Scholar] [CrossRef] [Green Version]
- H Moreno, P.R.; da Costa-Issa, F.; Rajca-Ferreira, A.K.; Pereira, M.A.; Kaneko, T.M. Native Brazilian plants against nosocomial infections: A critical review on their potential and the antimicrobial methodology. Curr. Top. Med. Chem. 2013, 13, 3040–3078. [Google Scholar] [CrossRef] [PubMed]
- Al-Zoreky, N. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 2009, 134, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, P.; Capriles, V. Antibacterial properties of tropical plants from Puerto Rico. Phytomedicine 2006, 13, 272–276. [Google Scholar] [CrossRef] [PubMed]
Volatile/References | Methyl butanoate | Methyl hexanoate | Methyl octanoate | (Z)-3-hexen-1-ol | Ethyl butanoate | Ethyl hexanoate | Nonanal |
---|---|---|---|---|---|---|---|
This study | 8.5% | 36.9% | 0.2% | 1.6% | 0.55% | 0.51% | 0.27% |
Durant, et al. [6] | n.d. | 4.6% | n.d. | n.d. | 2.7% | 5.4% | 9.0% |
Torrado, et al. [7] | <100 μg/kg | >500 μg/kg | n.d. | >500 μg/kg | n.d. | <100 μg/kg | n.d. |
Wong and Wong [8] | n.d. | 8.6% | 0.2% | 26.6% | n.d. | 1.0% | n.d. |
No | Compounds | RI | m/z | Relative Concentration (μg/g DW) to the Internal Standard | |
---|---|---|---|---|---|
Peel | Pulp | ||||
Alcohols | |||||
1 | R-(-)-1,2-Propanediol | 975.9 | 45.1 | 287 ± 64.3 a | 1062 ± 100 b |
2 | 2,3-Butanediol | 996.6 | 45.1 | 492 ± 319 a | 1692 ± 1241 b |
3 | Alpha-terpineol | 1285.7 | 59.1 | 0.1 ± 0.1 a | 0.7 ± 0.6 a |
4 | p-Mentha-1(7), 2-dien-8-ol | 1487.6 | 94 | 0.7 ± 0.1 a | 1 ± 0.2 a |
5 | Eugenol | 1536.1 | 164.1 | 59.6 ± 34.9 a | 10.7 ± 5.4 b |
6 | 2,4,7,9-Tetramethyl-5-decyn-4,7-diol | 1571.0 | 151.1 | 14.5 ± 2 a | 25 ± 7.7 b |
7 | trans-Isoeugenol | 1614.9 | 164 | 40.2 ± 28.6 a | 5.6 ± 3.2 b |
8 | 2,6-Dimethoxy-4-(2-propenyl)-phenol | 1808.5 | 194 | 37.9 ± 26.8 a | 9 ± 3.7 b |
Aldehydes | |||||
9 | 3-Furaldehyde | 977.3 | 95 | 484 ± 161 a | 4313 ± 1195 b |
10 | Methional | 1036.4 | 104 | 15.4 ± 4.2 a | 118 ± 8.1 b |
11 | Octanal | 1078.4 | 55.1 | n.d. | 36.6 ± 1.6 |
12 | 5-Methyl-2-furancarboxaldehyde | 1096.2 | 110.1 | 102 ± 26.4 a | 1913 ± 104 b |
13 | Nonanal | 1176.8 | 57 | 19.2 ± 16 a | 12 ± 3.4 b |
14 | 1H-Pyrrole-2-carboxaldehyde | 1209.7 | 94 | 10.9 ± 12.2 a | 29.6 ± 3.7 b |
15 | (E)-2-Decenal | 1364.9 | 70.1 | 2.3 ± 1.4 a | 1.2 ± 0.1 a |
16 | 2-Undecenal | 1472.5 | 70.1 | n.d. | 0.8 ± 1.4 |
17 | 4-Methyl-benzaldehyde | 1479.4 | 120 | 4.7 ± 1 a | 7.5 ± 0.3 b |
18 | 2,4-Dihydroxy-6-methyl-benzaldehyde | 1637.8 | 151 | 0.6 ± 0.6 a | 7.1 ± 0.8 b |
Benzenes | |||||
19 | 4-Ethenyl-1,2-dimethyl-benzene | 1138.6 | 132 | 7.3 ± 2.9 a | 47.2 ± 2.6 b |
20 | Benzeneacetaldehyde | 1163.8 | 91.1 | 114 ± 32.9 a | 405 ± 11 b |
21 | 2-Acetoxy-5-hydroxyacetophenone | 1429.6 | 137 | 8.6 ± 3.3 a | 21.3 ± 0.7 b |
22 | 3′,5′-Dihydroxyacetophenone | 1429.8 | 137.1 | 8.6 ± 3.3 a | 21.4 ± 0.8 b |
23 | 2′,6′-Dihydroxy-3′-methylacetophenone | 1514.1 | 151 | 5.6 ± 1.4 a | 15.9 ± 0.3 b |
24 | 1-Ethenyl-4-(2-methylpropyl)-benzene | 1603.2 | 117 | n.d. | n.d. |
25 | (E)-2,6-Dimethoxy-4-(prop-1-en-1-yl) phenol | 1922.4 | 194 | 9.9 ± 7.5 a | 3.6 ± 1 a |
26 | Diphenylacetylene | 1956.5 | 178 | 2.7 ± 1.7 a | 3.7 ± 0.1 a |
Carboxylic acids and derivatives | |||||
27 | Methylene-cyclopropane carboxylic acid | 1028.7 | 98.1 | 5.9 ± 8.4 a | 81 ± 23.3 b |
28 | Benzoic acid | 1403.9 | 105 | 17.2 ± 5.5 a | 71.3 ± 0.9 a |
29 | Valeric anhydride | 1532.4 | 85 | 27.1 ± 4.8 a | 110 ± 87.8 b |
30 | 3-Amino-4-hydroxybenzoic acid | 1678.7 | 153 | 22.3 ± 3.8 a | 41.2 ± 1 b |
Esters | |||||
31 | Hexanoic acid, ethyl ester | 1055.4 | 88 | 5.6 ± 2.4 a | 11.8 ± 2.7 a |
32 | Butanoic acid, 3-hydroxy-, ethyl ester | 1065.7 | 88.1 | 5.6 ± 2.4 a | 5.6 ± 8 a |
33 | 2-Propenoic acid, 2-methyl-, (tetrahydro-2-furanyl) methyl ester | 1113.9 | 71.1 | 8.8 ± 2.8 a | 77.4 ± 7.6 b |
34 | Propanoic acid, 2-methyl-, ethyl ester | 1238.5 | 71.1 | 33.2 ± 13.3 a | 29.9 ± 3.3 a |
35 | 3-Furancarboxylic acid, methyl ester | 1243.6 | 95 | 79.8 ± 20.7 a | 1585 ± 161 b |
36 | Aspirin methyl ester | 1289.4 | 120.1 | 1.7 ± 0.3 a | 1.2 ± 0.1 a |
37 | 1,2,3-Propanetriol, 1-acetate | 1440.7 | 61 | 18.4 ± 15.6 a | 28.7 ± 2.9 a |
38 | Propanoic acid, 2-methyl-, 3-hydroxy-2,2,4-trimethylpentyl ester | 1505.3 | 71.1 | 8.9 ± 12.6 a | 10 ± 2.7 a |
39 | Glycerol 1,2-diacetate | 1527.6 | 43.1 | 5.9 ± 3.4 a | 11.3 ± 13.7 a |
40 | Tributyl phosphate | 1667.2 | 99.1 | 57.7 ± 5.3 a | 89.1 ± 8.7 b |
41 | Carbamic acid, methylphenyl-, ethyl ester | 1905.0 | 179 | 27.5 ± 4.8 a | 121 ± 6.2 b |
42 | 2-Ethylhexyl salicylate | 1928.0 | 120 | 1.5 ± 0.7 a | 1.3 ± 0.1 a |
43 | Homosalate | 2020.9 | 138 | n.d. | 0.1 ± 0 |
44 | Phthalic acid, hept-4-yl isobutyl ester | 2058.3 | 149 | 562 ± 238 a | 730 ± 12.9 b |
45 | Hexadecanoic acid, ethyl ester | 2073.5 | 88 | 34.8 ± 29.3 a | 7.3 ± 1.4 b |
46 | Benzoic acid, 2-benzoyl-, methyl ester | 2193.4 | 163 | 2.5 ± 0.8 a | 2.5 ± 1.1 a |
47 | Ethyl oleate | 2259.7 | 55.1 | 4.2 ± 0.2 a | 1.5 ± 0.2 b |
48 | Hexanedioic acid, bis(2-ethylhexyl) ester | 2544.5 | 129 | 6 ± 2 a | 5.2 ± 2.2 a |
49 | 1,2-Cyclohexanedicarboxylic acid, dinonyl ester | 2924.2 | 155 | 3.1 ± 4.3 a | 0.5 ± 0.5 b |
50 | Phthalic acid, nonyl 4-octyl ester | 2981.9 | 149 | 2.4 ± 2.4 a | 2.2 ± 2.1 a |
Fatty acids | |||||
51 | Propanoic acid | 947.5 | 74.1 | 25.1 ± 7 a | 31.3 ± 10.3 a |
52 | Butanoic acid | 1003.8 | 60 | 5.7 ± 5.3 a | 0.7 ± 0.6 b |
53 | Hexanoic acid | 1166.3 | 45.1 | 79.9 ± 34.8 a | 128 ± 8.8 b |
54 | Heptanoic acid | 1253.7 | 60 | 15.3 ± 7.2 a | 28.5 ± 0.5 b |
55 | 2-Ethyl-hexoic acid | 1281.6 | 88 | 16.1 ± 6.8 a | 26.6 ± 1.5 b |
56 | Octanoic acid | 1353.4 | 60 | 47.6 ± 15.6 a | 86.5 ± 5.7 b |
57 | Nonanoic acid | 1448.0 | 60 | 62.9 ± 27.6 a | 97.7 ± 13.2 a |
58 | n-Decanoic acid | 1546.7 | 73.1 | 43.3 ± 18 a | 63.7 ± 10.5 a |
59 | Dodecanoic acid | 1749.4 | 73.1 | 119 ± 78.2 a | 261 ± 43.1 a |
60 | Tetradecanoic acid | 1932.9 | 73.1 | n.d. | n.d. |
61 | Myristoleic acid | 1944.2 | 69 | 8.7 ± 1.6 a | 16.6 ± 6.9 b |
62 | Z-11-Tetradecenoic acid | 1944.2 | 69.1 | 8.7 ± 1.6 a | 16.6 ± 6.9 b |
63 | Pentadecanoic acid | 2052.0 | 73 | 18 ± 0.6 a | 35.6 ± 9.7 b |
64 | Palmitoleic acid | 2144.5 | 69.1 | 15.4 ± 0.7 a | 28 ± 7.1 b |
65 | n-Hexadecanoic acid | 2155.4 | 73 | 94.7 ± 36.6 a | 234 ± 50 b |
66 | 9-Octadecenoic acid | 2341.8 | 83.1 | 1.9 ± 1.4 a | 9.9 ± 7.3 b |
67 | (E)-9-Octadecenoic acid | 2341.8 | 69 | 2 ± 1.5 a | 13.3 ± 7.7 b |
68 | (Z,Z)-9,12-Octadecadienoic acid | 2347.9 | 81.1 | 0.9 ± 0.7 a | 27.3 ± 27.2 b |
69 | Octadecanoic acid | 2353.7 | 73 | 9.3 ± 6.6 a | 55 ± 8 b |
Furans | |||||
70 | 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one | 1065.4 | 101.1 | 5.7 ± 0.3 a | 52.1 ± 14.6 b |
71 | Dihydro-3-methylene-2(3H)-Furanone | 1075.2 | 98.1 | 11.4 ± 10.1 a | 47.7 ± 41.8 b |
72 | 3-Furancarboxylic acid | 1097.3 | 112 | 28.1 ± 20 a | 81.6 ± 14.2 b |
73 | .+/−.-Tetrahydro-3-furanmethanol | 1113.4 | 71 | 8.6 ± 2.8 a | 77.3 ± 7.6 b |
74 | Furaneol | 1239.5 | 128 | 164 ± 36.8 a | 411 ± 17.5 b |
75 | 1-(2-furanylmethyl)-1H-pyrrole | 1298.9 | 81.1 | 6.5 ± 1.9 a | 7.1 ± 0.3 a |
76 | 5-Acetoxymethyl-2-furaldehyde | 1483.1 | 126.1 | 1.5 ± 0.2 a | 57.1 ± 4.5 b |
77 | 5-Hydroxymethylfurfural | 1524.5 | 97 | 115 ± 18.6 a | 5796 ± 371 b |
78 | Dihydro-4-hydroxy-2(3H)-furanone | 1556.1 | 44.1 | 13.3 ± 4.8 a | 33.8 ± 25.7 a |
79 | 2,3,5-Trimethyl-1H-indole | 1692.1 | 158.1 | 4.9 ± 3.1 a | 2.7 ± 2.2 a |
Hydrocarbons | |||||
80 | 1,1,5-Trimethyl-1,2-dihydronaphthalene | 1412.9 | 157.1 | 4.3 ± 1.5 a | 2.9 ± 0.1 a |
81 | Fluoranthene | 2301.0 | 202 | 0.6 ± 0.3 | n.d. |
82 | Tricosane | 2307.3 | 57 | 10.3 ± 6.1 a | 2.2 ± 0.7 b |
83 | Hexadecanamide | 2445.2 | 59.1 | 26.3 ± 23.3 a | 46.9 ± 24.1 a |
84 | (Z)-9-Octadecenamide | 2636.4 | 59.1 | 13.8 ± 11.4 a | 20.5 ± 11.8 a |
85 | Octadecanamide | 2649.2 | 59.1 | 26.5 ± 19.9 a | 61.3 ± 38.3 b |
Ketones | |||||
86 | 4-Hydroxy-4-methyl-2-pentanone | 992.4 | 59 | 912 ± 582 a | 617 ± 566 a |
87 | 1-(Acetyloxy)-2-propanone | 1034.6 | 86.1 | 22.3 ± 24.7 a | 29.4 ± 13.6 a |
88 | 4-Cyclopentene-1,3-dione | 1046.0 | 96 | 27 ± 8.8 a | 142 ± 7.6 a |
89 | 1-(4-Methylphenyl)-1-pentanone | 1062.3 | 119 | 5.1 ± 2 a | 11.7 ± 6.3 b |
90 | Butyrolactone | 1118.9 | 86.1 | 42.2 ± 13.2 a | 154 ± 37.6 b |
91 | 2-Hydroxy-3-methyl-2-cyclopenten-1-one | 1173.0 | 112 | 35.9 ± 14.8 a | 110 ± 8.9 b |
92 | Acetophenone | 1182.4 | 105 | 1.3 ± 1.1 a | 2.5 ± 0.1 b |
93 | Phorone | 1189.4 | 123 | 2.5 ± 3.6 a | 3.4 ± 0.2 a |
94 | 1-Methyl-2,4-Imidazolidinedione | 1239.2 | 114 | 112 ± 22.8 a | 234 ± 10.5 b |
95 | Furyl hydroxymethyl ketone | 1243.9 | 95 | 79.7 ± 20.7 a | 1585 ± 161 a |
96 | Maltol | 1263.0 | 126.1 | 201 ± 53.4 a | 508 ± 24.9 b |
97 | 5-Acetyl-2-methylpyridine | 1268.5 | 135.1 | 10.5 ± 2.8 a | 9.2 ± 0.5 a |
98 | 3,5-Dihydroxy-2-methyl-4H-pyran-4-one | 1348.8 | 142 | 609 ± 216 a | 2767 ± 392 b |
99 | 1-(2-Hydroxy-5-methylphenyl)-ethanone | 1471.2 | 150.1 | 75.5 ± 24.8 a | 108 ± 3.4 b |
100 | 1,2-Dihydro-3H-1,2,4-triazol-3-one | 1485.7 | 85.1 | 27.1 ± 4.8 a | 106 ± 93.8 b |
101 | 2-Imidazolidinone | 1502.7 | 86.1 | 42 ± 12.7 a | 184 ± 40.2 b |
102 | 4,4,6-Trimethyltetrahydro-1,3-oxazin-2-one | 1518.5 | 128 | 51.9 ± 10.1 a | 167 ± 4.3 b |
103 | (S)-4-Ethyl-2-oxazolidone | 1531.6 | 85.1 | 41.8 ± 12.7 a | 160 ± 77.3 b |
104 | 1,3-Dioxol-2-one | 1534.3 | 86.1 | 32.3 ± 8.5 a | 36.4 ± 16.3 a |
105 | 2,4,6-Tris(1,1-dimethylethyl)-4-methylcyclohexa-2,5-dien-1-one | 1594.7 | 205.1 | 1.5 ± 1.7 a | 1.1 ± 0.3 a |
Nitrogen compounds | |||||
106 | 1H-Imidazole-4-methanol | 1025.7 | 98.1 | 4.5 ± 6.4 a | 46.7 ± 43.3 b |
107 | N-Butyl-tert-butylamine | 1149.5 | 114 | 16.6 ± 2.7 a | 59.6 ± 5.8 b |
108 | 3-Formyl-4,5-dimethyl-pyrrole | 1162.2 | 123.1 | n.d. | n.d. |
109 | 5-Amino-2-methyl-2H-tetrazole | 1273.5 | 71.1 | 11.9 ± 2.4 a | 47.4 ± 3.2 b |
110 | 2-Pyrrolidinone | 1316.3 | 85.1 | 12.2 ± 1.9 a | 20.1 ± 18.4 a |
111 | 1-methyl-1H-pyrrole-2-carboxaldehyde | 1343.2 | 109.1 | 20.2 ± 4.6 a | 94.8 ± 3.7 b |
112 | 1-Azabicyclo [3.1.0] hexane | 1357.4 | 83.1 | 32.8 ± 31.2 a | 5.4 ± 4.3 b |
113 | Succinimide | 1417.2 | 99.1 | 7.7 ± 2.6 a | 23.9 ± 2.3 b |
114 | Caprolactam | 1491.7 | 113.1 | 3.2 ± 3.2 a | 4.3 ± 0.4 a |
115 | m-Aminophenylacetylene | 1532.4 | 117 | 0.9 ± 1.3 a | 10.6 ± 4.7 b |
116 | (Z)-13-Docosenamide | 3033.2 | 59.1 | 460 ± 100 a | 150 ± 43.3 b |
Sulphur compounds | |||||
117 | Dimethyl sulfone | 1175.8 | 79.1 | 5.2 ± 1.6 a | 14.7 ± 0.9 b |
118 | 2,3-Dihydro-thiophene | 1502.8 | 86.1 | 41.8 ± 12.7 a | 182 ± 39.3 b |
Pyrans | |||||
119 | 2,3-Dehydro-1,8-cineole | 1028.6 | 109.1 | 8.2 ± 2.6 a | 11.9 ± 0.7 a |
Terpenes | |||||
120 | 3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol | 1853.7 | 69.1 | 12.2 ± 9.0 a | 4.8 ± 1.6 a |
121 | Squalene | 2854.7 | 69.1 | 33.3 ± 9.9 a | 24.3 ± 15.4 a |
No | Compounds | Odor Threshold in Water (ppb) a | Relative Odor Activity Value (OAV) | Odor Description b | |
---|---|---|---|---|---|
Peel | Pulp | ||||
Alcohols | |||||
1 | 2,3-Butanediol | 30 | 16.39 | 56.41 | Fruity, creamy |
2 | Alpha-terpineol | 330–350 | <1 | <1 | Floral, citrus, minty |
3 | Eugenol | 6–30 | 9.94 | 1.78 | Sweet |
4 | 2,6-Dimethoxy-4-(2-propenyl)-phenol | 1850 | <1 | <1 | Sweet, spicy |
Aldehydes | |||||
5 | 3-Furaldehyde | 3000 | <1 | 1.44 | Almond |
6 | Methional | 0.2 | 77.12 | 588.59 | Tomato, potato skin |
7 | Octanal | 0.7 | <1 | 52.34 | Fatty, lemon, green |
8 | Nonanal | 1 | 19.17 | 12.00 | Fatty, citrus, green |
9 | (E)-2-Decenal | 0.3–0.4 | 7.60 | 4.15 | Fatty, green, mushroom |
Esters | |||||
10 | Hexanoic acid, ethyl ester | 1 | 5.55 | 11.80 | Sweet, fruity, apple peel |
11 | Propanoic acid, 2-methyl-, ethyl ester | 10 | 3.32 | 2.99 | Sweet, fruity |
12 | Hexadecanoic acid, ethyl ester | 2000 | <1 | <1 | Fruity, creamy, waxy |
Fatty acids | |||||
13 | Propanoic acid | 20,000 | <1 | <1 | Dairy, soy |
14 | Butanoic acid | 240 | <1 | <1 | Fruity, dairy, cheesy |
15 | Hexanoic acid | 3000 | <1 | <1 | Fatty, cheesy |
16 | Heptanoic acid | 3000 | <1 | <1 | Fruity, cheesy, pineapple |
17 | Octanoic acid | 3000 | <1 | <1 | Fatty, cheesy |
18 | Nonanoic acid | 3000 | <1 | <1 | Fatty, green |
19 | n-Decanoic acid | 10,000 | <1 | <1 | Fatty, citrus |
20 | Dodecanoic acid | 10,000 | <1 | <1 | Fatty, coconut, bay oil |
21 | Tetradecanoic acid | 10,000 | <1 | <1 | Fatty, pineapple citrus peel |
22 | Myristoleic acid | 10,000 | <1 | <1 | - |
23 | Z-11-Tetradecenoic acid | 10,000 | <1 | <1 | - |
24 | n-Hexadecanoic acid | 10,000 | <1 | <1 | Creamy |
25 | Octadecanoic acid | 20,000 | <1 | <1 | Fatty |
Furans | |||||
26 | Furaneol | 60 | 2.74 | 6.86 | Fruity, caramel, burnt pineapple |
27 | 5-Hydroxymethylfurfural | 3000–230,000 | <1 | 1.93 | Caramel, buttery |
Hydrocarbons | |||||
28 | 1,1,5-Trimethyl-1,2-dihydronaphthalene | 2 | 2.16 | 1.43 | Licoricey, delicious wine |
Ketones | |||||
29 | 4-Hydroxy-4-methyl-2-pentanone | 280 | 3.26 | 2.20 | Minty |
30 | 2-Hydroxy-3-methyl-2-cyclopenten-1-one | 1000 | <1 | <1 | Sweet, fruity |
31 | Acetophenone | 65 | <1 | <1 | Sweet, flower, almond |
32 | Maltol | 35,000 | <1 | <1 | Sweet, fruity caramel |
Nitrogen compounds | |||||
33 | N-Butyl-tert-butylamine | 50,000 | <1 | <1 | - |
34 | Caprolactam | 65 | <1 | <1 | - |
Pyrans | |||||
35 | 2,3-Dehydro-1,8-cineole | 12 | <1 | <1 | Minty, lemon, sweet |
Terpens | |||||
36 | 3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol (Farnesol) | 20 | <1 | <1 | Sweet, floral |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diep, T.T.; Yoo, M.J.Y.; Pook, C.; Sadooghy-Saraby, S.; Gite, A.; Rush, E. Volatile Components and Preliminary Antibacterial Activity of Tamarillo (Solanum betaceum Cav.). Foods 2021, 10, 2212. https://doi.org/10.3390/foods10092212
Diep TT, Yoo MJY, Pook C, Sadooghy-Saraby S, Gite A, Rush E. Volatile Components and Preliminary Antibacterial Activity of Tamarillo (Solanum betaceum Cav.). Foods. 2021; 10(9):2212. https://doi.org/10.3390/foods10092212
Chicago/Turabian StyleDiep, Tung Thanh, Michelle Ji Yeon Yoo, Chris Pook, Saeedeh Sadooghy-Saraby, Abhishek Gite, and Elaine Rush. 2021. "Volatile Components and Preliminary Antibacterial Activity of Tamarillo (Solanum betaceum Cav.)" Foods 10, no. 9: 2212. https://doi.org/10.3390/foods10092212
APA StyleDiep, T. T., Yoo, M. J. Y., Pook, C., Sadooghy-Saraby, S., Gite, A., & Rush, E. (2021). Volatile Components and Preliminary Antibacterial Activity of Tamarillo (Solanum betaceum Cav.). Foods, 10(9), 2212. https://doi.org/10.3390/foods10092212