A Systematic Review on the Antimicrobial Properties of Mediterranean Wild Edible Plants: We Still Know Too Little about Them, but What We Do Know Makes Persistent Investigation Worthwhile
Abstract
:1. Introduction
1.1. Rationale
1.2. Objectives
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
- Experiments performed in Mediterranean countries defined according to the biogeographical definition, which includes countries characterized by a Mediterranean climate and ecotype, even if they do not overlook the Mediterranean Sea (such as Portugal and Jordan);
- Experiments performed in non-Mediterranean countries but analyzing plants growing mainly in the Mediterranean basin (by checking the species geographical distribution on https://www.gbif.org/ accessed on 14 April 2021, see Figure S4). These plants, even if they are prevalently distributed in the Mediterranean basin, can also grow in other geographical areas, such as the case of Sonchus spp. in China, for example. This criterion means that we did not include experiments conducted with imported dried plants.
2.5. Data Collection Process
2.6. Data Items
2.7. Study Risk of Bias Assessment
2.8. Effect Measures
- The diameter of the growth inhibition zone on the agar plate in mm, for disk diffusion agar test. In accordance with Hudzicki [5], we adopted the following significance of the nearest whole inhibition zone, when obtained with an extract concentration ≤ 0.5 mg/mL.
Diameter Zone, Nearest Whole mm | ||
Resistant | Intermediate | Susceptible |
≤10 | 11–12 | ≥13 |
- 2.
- The extract concentration of the minimal inhibitory concentration (MIC) and/or MBC/MFC in w/v (mg/mL) or in % (v/v). Minimum inhibitory concentration is defined as that which can block bacterial growth as long as the test compound is present in the growth medium. This means that the bacteria resume growth once placed on a medium without the test compound. When bacteria do not resume growth in the new medium, the compound displays a minimum bactericidal concentration instead.
- 3.
- The combination of 1 and 2, above.
- In the studies with a disk diffusion test and the MIC, the extracts inducing a zone of inhibition ≥13 mm obtained with a MIC ≤ 0.5 mg/mL (in an assay made on a 100 mm plate, poured with 25 mL of Mueller–Hinton agar medium, to a measured depth of 4 mm; agar should be 1.7%, purchased from BD BBL, Franklin Lakes, NJ, as previously specified in the Kirby–Bauer disk diffusion susceptibility test protocol) [5];
- In the studies with MIC only, a MIC value ≤ 0.5 mg/mL;
- In the studies with disk diffusion test only, reporting the concentration of the extracts and an inhibition zone ≥ 13 mm, as obtained with a concentration value ≤ 0.5 mg/mL.
2.9. Synthesis Method
2.10. Certainty Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias in Studies
3.4. Results of Individual Studies
3.5. Results of Syntheses
3.5.1. The Antimicrobial Effects Reported for the Most Studied Species
3.5.2. The Overall Picture of MWEPs Antimicrobial Effects on Gram-Positive Bacteria, Gram-Negative Bacteria, Fungi
- How many Gram-negative bacteria are sensitive to MWEPs extracts?
- 2.
- How many Gram-positive bacteria are sensitive to MWEPs extracts?
- 3.
- How many fungi are susceptible to MWEPs extracts?
3.5.3. The Comparison of MIC Values
3.6. Reporting Biases
- -
- The protocols used to extract the active principles from the plants;
- -
- The assays employed to evaluate the antimicrobial properties of the extracts.
3.7. Antioxidant vs. Antimicrobial Properties: Direct or Inverse Association?
3.8. Certainty of Evidence
4. Discussion
4.1. MWEPs Open Questions
4.1.1. After All, How Much Do We Know about Antimicrobial MWEPs?
4.1.2. How Many Are the Most Studied MWEPs?
4.1.3. How Much of MWEPs Extracts Are Necessary vs. Antibiotics?
4.2. MWEPs Useful Properties
4.2.1. Antimicrobial Efficacy
- Gram-negative bacteria are sensitive to MWEPs extracts.
- 2.
- Gram-positive bacteria are sensitive to MWEPs extracts.
- 3.
- Fungi are sensitive to MWEPs extracts.
4.2.2. MWEPs vs. Antibiotic-Resistant Species
4.2.3. Antioxidant vs. Antimicrobial Properties
4.2.4. Implications of the Results for Practice, Policy, and Future Research
4.2.5. Limitations of the Evidence Included in the Review
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary
WEPs | Wild edible plants |
MWEPs | Mediterranean wild edible plants |
MIC | Minimum inhibitory concentration |
MBC | Minimum bactericidal concentration |
MFC | Minimal fungicidal concentration |
ABR | Antibiotic bacterial resistance |
EOs | Essential oils |
TPCs | Total phenolic compounds |
IC50 | 50% inhibitory concentration |
EC50 | Amount of antioxidant necessary to decrease the initial DPPH absorbance by 50% |
ppm | Parts per million |
MSSA | Methicillin Sensitive S. aureus |
MRSA | Methicillin Resistant S. aureus |
ESKAPE | Acronym with six nosocomial pathogens that exhibit multidrug resistance: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. |
References
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance, 2016. Wellcome Trust and HM Government. Available online: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (accessed on 14 April 2021).
- Shankar, D.; Patwardhan, B. AYUSH for New India: Vision and strategy. J. Ayurveda Integr. Med. 2017, 8, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Zhang, F. The immunoregulatory effects of Chinese herbal medicine on the maturation and function of dendritic cells. J. Ethnopharmacol. 2015, 171, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, M.; Prieto, J. Diet and healthy ageing 2100: Will we globalise local knowledge systems? Ageing Res. Rev. 2008, 7, 249–274. [Google Scholar] [CrossRef] [PubMed]
- Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. In Proceedings of the Resource Peer-Reviewed at the ASM Conference for Undergraduate Educators; 2009. Available online: https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Protocol-pdf.pdf (accessed on 14 April 2021).
- Glasset, B.; Herbin, S.; Granier, S.A.; Cavalié, L.; Lafeuille, E.; Guérin, C.; Ruimy, R.; Casagrande-Magne, F.; Levast, M.; Chautemps, N.; et al. Bacillus cereus, a serious cause of nosocomial infections: Epidemiologic and genetic survey. PLoS ONE 2018, 13, e0194346. [Google Scholar] [CrossRef]
- Xia, D.-Z.; Yu, X.-F.; Zhu, Z.-Y.; Zou, Z.-D. Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China. Nat. Prod. Res. 2011, 25, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Mhamdi, B.; Abbassi, F.; Abdelly, C. Chemical composition, antioxidant and antimicrobial activities of the edible medicinal Ononis natrix growing wild in Tunisia. Nat. Prod. Res. 2015, 29, 1157–1160. [Google Scholar] [CrossRef]
- Iyda, J.H.; Fernandes, Â.; Ferreira, F.D.; Alves, M.J.; Pires, T.C.S.P.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Res. Int. 2019, 121, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Adedapo, A.; Jimoh, F.; Afolayan, A. Comparison of the nutritive value and biological activities of the acetone, methanol and water extracts of the leaves of Bidens pilosa and Chenopodium album. Acta Pol. Pharm. 2011, 68, 83–92. [Google Scholar]
- Ušjak, L.; Petrović, S.; Drobac, M.; Sokovic, M.; Stanojković, T.; Ciric, A.; Niketić, M. Edible wild plant Heracleum pyrenaicum subsp. orsinii as a potential new source of bioactive essential oils. J. Food Sci. Technol. 2017, 54, 2193–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Desouky, T.A. Evaluation of effectiveness aqueous extract for some leaves of wild edible plants in Egypt as anti-fungal and anti-toxigenic. Heliyon 2021, 7, e06209. [Google Scholar] [CrossRef] [PubMed]
- McCook-Russell, K.P.; Nair, M.G.; Facey, P.C.; Bowen-Forbes, C.S. Nutritional and nutraceutical comparison of Jamaican Psidium cattleianum (strawberry guava) and Psidium guajava (common guava) fruits. Food Chem. 2012, 134, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Wahab, A.; Jan, S.A.; Rauf, A.; Rehman, Z.U.; Khan, Z.; Ahmed, A.; Syed, F.; Safi, S.Z.; Khan, H.; Imran, M. Phytochemical composition, biological potential and enzyme inhibition activity of Scandix pecten-veneris L. J. Zhejiang Univ. Sci. B 2018, 19, 120–129. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Ivanov, M.; Sokovic, M.D.; Ferreira, I.C.; Barros, L. The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina subsp. mixta (DC.) Runemark. Molecules 2020, 25, 3175. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Di Gioia, F.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.; Barros, L.; et al. Wild and Cultivated Centaurea raphanina subsp. mixta: A Valuable Source of Bioactive Compounds. Antioxidants 2020, 9, 314. [Google Scholar] [CrossRef] [PubMed]
- Karaman, K.; Polat, B.; Ozturk, I.; Sagdic, O.; Ozdemir, C. Volatile Compounds and Bioactivity of Eremurus spectabilis (Ciris), a Turkish Wild Edible Vegetable. J. Med. Food 2011, 14, 1238–1243. [Google Scholar] [CrossRef]
- Gatto, M.A.; Ippolito, A.; Linsalata, V.; Cascarano, N.A.; Nigro, F.; Vanadia, S.; Di Venere, D. Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol. Technol. 2011, 61, 72–82. [Google Scholar] [CrossRef]
- Panagouleas, C.; Skaltsa, H.; Lazari, D.; Skaltsounis, A.-L.; Sokovic, M. Antifungal Activity of Secondary Metabolites of Centaurea raphanina ssp. mixta, Growing Wild in Greece. Pharm. Biol. 2003, 41, 266–270. [Google Scholar] [CrossRef]
- Najjaa, H.; Zerria, K.; Fattouch, S.; Ammar, E.; Neffati, M. Antioxidant and Antimicrobial Activities of Allium roseum L. “Lazoul,” A Wild Edible Endemic Species in North Africa. Int. J. Food Prop. 2011, 14, 371–380. [Google Scholar] [CrossRef]
- Tuzcu, Z.; Koclar, G.; Agca, C.A.; Aykutoglu, G.; Dervisoglu, G.; Tartik, M.; Darendelioglu, E.; Ozturk, Z.; Kaya, B.; Sahin, K. Antioxidant, antimicrobial and anticancer effects of different extracts from wild edible plant Eremurus spectabilis leaves and roots. Int. J. Clin. Exp. Med. 2017, 10, 4787–4797. [Google Scholar]
- Pavlović, D.R.; Vukelic, M.; Najman, S.; Kostic, M.; Zlatkovic, B.; Mihajilov-Krstev, T.; Kitic, D. Assessment of polyphenol content, in vitro antioxidant, antimicrobial and toxic potentials of wild growing and cultured rue. J. Appl. Bot. Food Qual. 2014, 87, 175–181. [Google Scholar] [CrossRef]
- Rayan, M.; Abu-Farich, B.; Basha, W.; Rayan, A.; Abu-Lafi, S. Correlation between Antibacterial Activity and Free-Radical Scavenging: In-Vitro Evaluation of Polar/Non-Polar Extracts from 25 Plants. Processes 2020, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Anzabi, Y.; Aghdam, V.B.; Makoui, M.H.; Anvarian, M.; Mousavinia, M.N. Evaluation of antibacterial properties of edible oils and extracts of a native plant, Ziziphora clinopodioides (mountains’ Kakoty), on bacteria isolated from urinary tract infections. Life Sci. J. 2013, 10 (Suppl. 4), 121–127. [Google Scholar]
- Iyda, J.H.; Fernandes, Â.; Calhelha, R.C.; Alves, M.J.; Ferreira, F.D.; Barros, L.; Amaral, J.S.; Ferreira, I.C. Nutritional composition and bioactivity of Umbilicus rupestris (Salisb.) Dandy: An underexploited edible wild plant. Food Chem. 2019, 295, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Najjaa, H.; Zouari, S.; Ammar, E.; Neffati, M. Phytochemical screening and antibacterial properties of Allium roseum L., A WILD EDIBLE SPECIES IN NORTH AFRICA. J. Food Biochem. 2011, 35, 699–714. [Google Scholar] [CrossRef]
- Shehadeh, M.; Jaradat, N.; Al-Masri, M.; Zaid, A.N.; Hussein, F.; Khasati, A.; Suaifan, G.; Darwish, R. Rapid, cost-effective and organic solvent-free production of biologically active essential oil from Mediterranean wild Origanum syriacum. Saudi Pharm. J. 2019, 27, 612–618. [Google Scholar] [CrossRef]
- Aboukhalaf, A.; El Amraoui, B.; Tabatou, M.; Da Rocha, J.M.F.; Belahsen, R. Screening of the antimicrobial activity of some extracts of edible wild plants in Morocco. Funct. Foods Health Dis. 2020, 10, 265. [Google Scholar] [CrossRef]
- Coruh, I.; Gormez, A.A.; Ercisli, S.; Bilen, S. Total phenolics, mineral elements, antioxidant and antibacterial activities of some edible wild plants in Turkey. Asian J. Chem. 2007, 19, 5755–5762. [Google Scholar]
- Khammassi, M.; Loupassaki, S.; Tazarki, H.; Mezni, F.; Slama, A.; Tlili, N.; Zaouali, Y.; Mighri, H.; Jamoussi, B.; Khaldi, A. Variation in essential oil composition and biological activities of Foeniculum vulgare Mill. populations growing widely in Tunisia. J. Food Biochem. 2018, 42, e12532. [Google Scholar] [CrossRef]
- Najjaa, H.; Neffati, M.; Ammar, E.; Fattouch, S. Antimicrobial properties of Allium roseum L.: A wild edible species in Southern Tunisia. Acta Hortic. 2010, 853, 323–328. [Google Scholar] [CrossRef]
- Najjaa, H.; Ammar, E.; Neffati, M. Antimicrobial activities of protenic extracts of Allium roseum L., a wild edible species in North Africa. J. Food Agric. Environ. 2009, 7, 150–154. [Google Scholar]
- Hussain, A.; Qarshi, I.A.; Liaqat, R.; Akhtar, S.; Aziz, I.; Ullah, I.; Shinwari, Z.K. Antimicrobial potential of leaf and fruit extracts and oil of wild and cultivated edible olive. Pak. J. Bot. 2014, 46, 1463–1468. [Google Scholar]
- Ivashchenko, I.V. Chemical composition of essential oil and antimicrobial properties of Chrysantemum coronarium (Asteraceae). Biosyst. Divers. 2017, 25, 119–123. [Google Scholar] [CrossRef]
- Kayiran, S.D.; Ozkan, E.E.; Kara, E.M.; Yilmaz, M.A.; Zengin, G.; Boga, M. Comprehensive analysis of an uninvestigated wild edible medicinal garlic species from Turkey: Allium macrochaetum Boiss. & Hausskn. J. Food Biochem. 2019, 43, e12928. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Dias, M.; Pereira, C.; Calhelha, R.; Ivanov, M.; Sokovic, M.; Ferreira, I.; Barros, L. Effects of Growing Substrate and Nitrogen Fertilization on the Chemical Composition and Bioactive Properties of Centaurea raphanina ssp. mixta (DC.) Runemark. Agronomy 2021, 11, 576. [Google Scholar] [CrossRef]
- Nasir, A.; Khan, M.; Rehman, Z.; Khalil, A.A.K.; Farman, S.; Begum, N.; Irfan, M.; Sajjad, W.; Parveen, Z. Evaluation of Alpha-Amylase Inhibitory, Antioxidant, and Antimicrobial Potential and Phytochemical Contents of Polygonum hydropiper L. Plants 2020, 9, 852. [Google Scholar] [CrossRef]
- Zengin, G.; Mahomoodally, M.F.; Aktumsek, A.; Ceylan, R.; Uysal, S.; Mocan, A.; Yilmaz, M.A.; Picot-Allain, C.M.N.; Ćirić, A.; Glamočlija, J.; et al. Functional constituents of six wild edible Silene species: A focus on their phytochemical profiles and bioactive properties. Food Biosci. 2018, 23, 75–82. [Google Scholar] [CrossRef]
- Ozkan, E.E.; Boga, M.; Yilmaz, M.A.; Kara, E.M.; Yesil, Y. LC-MS/MS analyses of Ziziphora clinopodioides Lam. from Turkey: Antioxidant, anticholinesterase, antimicrobial and anticancer activities. Istanb. J. Pharm. 2020, 50, 33–41. [Google Scholar]
- Khan, H.; Jan, S.A.; Javed, M.; Shaheen, R.; Khan, Z.; Ahmad, A.; Safi, S.Z.; Imran, M. Nutritional Composition, Antioxidant and Antimicrobial Activities of Selected Wild Edible Plants. J. Food Biochem. 2015, 40, 61–70. [Google Scholar] [CrossRef]
- Souilem, F.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Harzallah-Skhiri, F.; Ferreira, I.C. Phenolic Profile and Bioactive Properties of Carissa macrocarpa (Eckl.) A.DC: An In Vitro Comparative Study between Leaves, Stems, and Flowers. Molecules 2019, 24, 1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minareci, E.; Ergonul, B.; Kalyoncu, F. Proximate composition, antimicrobial and antioxidant activities of six wild edible celeries (Smyrnium L.). Afr. J. Pharm. Pharmacol. 2012, 6, 968–972. [Google Scholar] [CrossRef]
- Akgunlu, S.; Sekeroglu, N.; Koca-Caliskan, U.; Ozkutlu, F.; Ozcelik, B.; Kulak, M.; Gezici, S. Research on selected wild edible vegetables: Mineral content and antimicrobial potentials. Ann. Phytomed. Int. J. 2016, 5, 50–57. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Salmeron-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide Research Trends on Medicinal Plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Yu, H.; Luo, H.-M.; Wu, Q.; Li, C.-F.; Steinmetz, A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med. 2016, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Chowdhury, M.A.K.; Huo, Y.; Gong, J. Phytogenic Compounds as Alternatives to In-Feed Antibiotics: Potentials and Challenges in Application. Pathogens 2015, 4, 137–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadgrove, N.J.; Jones, G.L. From Petri Dish to Patient: Bioavailability Estimation and Mechanism of Action for Antimicrobial and Immunomodulatory Natural Products. Front. Microbiol. 2019, 10, 2470. [Google Scholar] [CrossRef]
- Nayaka, N.; Sasadara, M.; Sanjaya, D.; Yuda, P.; Dewi, N.; Cahyaningsih, E.; Hartati, R. Piper betle (L.): Recent Review of Antibacterial and Antifungal Properties, Safety Profiles, and Commercial Applications. Molecules 2021, 26, 2321. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Nandy, S.; Mundhra, A.; Das, N.; Pandey, D.K.; Dey, A. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. Drug Resist. Updates 2020, 51, 100695. [Google Scholar] [CrossRef] [PubMed]
- Silveira, D.; Prieto-Garcia, J.M.; Boylan, F.; Estrada, O.; Fonseca-Bazzo, Y.M.; Jamal, C.M.; Magalhães, P.O.; Pereira, E.O.; Tomczyk, M.; Heinrich, M. COVID-19: Is There Evidence for the Use of Herbal Medicines as Adjuvant Symptomatic Therapy? Front. Pharmacol. 2020, 11, 581840. [Google Scholar] [CrossRef] [PubMed]
- Peterfalvi, A.; Miko, E.; Nagy, T.; Reger, B.; Simon, D.; Miseta, A.; Czéh, B.; Szereday, L. Much More Than a Pleasant Scent: A Review on Essential Oils Supporting the Immune System. Molecules 2019, 24, 4530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Family | Species | Assayed vs. | Ref. | |
---|---|---|---|---|
Bacteria | Fungi | |||
Asteraceae | Sonchus oleraceus * | yes | no | [7] |
Sonchus arvensis * | yes | no | “ | |
Sonchus asper * | yes | no | “ | |
Sonchus uliginosus * | yes | no | “ | |
Asteraceae | Reicardia picroides * | yes | yes | [8] |
Picris echioides * | yes | yes | “ | |
Urospermum picroides | yes | yes | “ | |
Taraxacum officinale * | yes | yes | “ | |
Hymenonema graecum | yes | yes | “ | |
Sonchus oleraceus * | yes | yes | “ | |
Hedypnois cretica * | yes | yes | “ | |
Taraxacum spp. * | yes | yes | “ | |
Fabaceae | Ononis natrix * | yes | yes | [9] |
Brassicaceae | Raphanus raphanistrum | yes | no | [10] |
Asteraceae | Bidens pilosa * | yes | no | [11] |
Amaranthaceae | Chenopodium album * | yes | no | “ |
Apiaceae | Heracleum pyrenaicum subsp. orsinii * | yes | yes | [12] |
Asteraceae | Sonchus oleraceus * | no | yes | [13] |
Cichorium pumilum | no | yes | “ | |
Portulacaceae | Portulaca oleracea * | no | yes | “ |
Myrtaceae | Psidium cattleianum | yes | no | [14] |
Psidium guajava | yes | no | “ | |
Apiaceae | Scandix pecten-veneris * | yes | yes | [15] |
Asteraceae | Centaurea raphanina * | yes | yes | [16] |
Asteraceae | Centaurea raphanina | yes | yes | [17] |
Asphodelaceae | Eremurus spectabilis * | yes | no | [18] |
Boraginaceae | Borago officinalis * | no | yes | [19] |
Orobanchaceae | Orobanche crenata * | no | yes | “ |
Plantagineceae | Plantago coronopus * | no | yes | “ |
Plantagineceae | Plantago lanceolate * | no | yes | “ |
Rosaceae | Sanguisorba minor * | no | yes | “ |
Caryophyllaceae | Silene vulgaris | no | yes | “ |
Asteraceae | Sonchus asper * | no | yes | “ |
Sonchus oleraceus * | no | yes | “ | |
Taraxacum officinale | no | yes | “ | |
Asteraceae | Centaurea raphanina * | no | yes | [20] |
Amaryllidaceae | Allium roseum * | yes | yes | [21] |
Asphodelaceae | Eremurus spectabilis | yes | yes | [22] |
Rutaceae | Ruta angustifolia | yes | yes | [23] |
Apiaceae | Foeniculum vulgare * | yes | no | [24] |
Lamiaceae | Salvia palaestina fruticose * | yes | no | “ |
Lamiaceae | Micromeria fruticose * | yes | no | “ |
Fabaceae | Trigonella foenum-graecum * | yes | no | “ |
Asteraceae | Cichorium pumilum jacq * | yes | no | “ |
Lamiaceae | Salvia hierosolymitana boiss * | yes | no | “ |
Rutaceae | Ruta chalepensis * | yes | no | “ |
Asteraceae | Chrysanthemum coronarium * | yes | no | “ |
Lamiaceae | Ziziphora clinopodioides * | yes | no | [25] |
Crassulaceae | Umbilicus rupestris | yes | no | [26] |
Amaryllidaceae | Allium roseum * | yes | no | [27] |
Lamiaceae | Origanum syriacum * | yes | no | [28] |
Euphorbiaceae | Mercurialis annua | yes | yes | [29] |
Papaveraceae | Papaver rhoeas | yes | yes | “ |
Apiaceae | Foeniculum vulgare | yes | yes | “ |
Amaranthaceae | Chenopodium murale | yes | yes | “ |
Asteraceae | Scolymus hispanicus | yes | yes | “ |
Brassicaceae | Sinapis arvensis * | yes | no | [30] |
Polygonaceae | Polygonum aviculare * | yes | no | “ |
Asteraceae | Tragopogon aureus * | yes | no | “ |
Apiaceae | Foeniculum vulgare * | yes | yes | [31] |
Amaryllidaceae | Allium roseum * | yes | yes | [32] |
Amaryllidaceae | Allium roseum * | yes | yes | [33] |
Oleaceae | Olea europeae | yes | no | [34] |
Oleaceae | Olea ferrugineae | yes | no | “ |
Asteraceae | Chrysanthemum coronarium * | yes | yes | [35] |
Amaryllidaceae | Allium macrochaetum * | yes | yes | [36] |
Asteraceae | Centaurea raphanina * | yes | yes | [37] |
Polygonaceae | Polygonum hydropiper | yes | no | [38] |
Caryophyllaceae | Silene alba * | yes | yes | [39] |
Caryophyllaceae | Silene conoidea * | yes | yes | “ |
Caryophyllaceae | Silene dichotoma * | yes | yes | “ |
Caryophyllaceae | Silene italica * | yes | yes | “ |
Caryophyllaceae | Silene supine * | yes | yes | “ |
Caryophyllaceae | Silene vulgaris * | yes | yes | “ |
Lamiaceae | Ziziphora clinopodioides * | yes | yes | [40] |
Amaranthaceae | Chenopodium murale * | yes | no | [41] |
Brassicaceae | Eruca sativa * | yes | no | “ |
Brassicaceae | Malcolmia africana * | yes | no | “ |
Malvaceae | Malva neglecta * | yes | no | “ |
Fabaceae | Medicago polymorpha * | yes | no | “ |
Fabaceae | Melilotus officinalis * | yes | no | “ |
Brassicaceae | Nasturtium officinale * | yes | no | “ |
Apocynaceae | Carissa macrocarpa | yes | no | [42] |
Apiaceae | Smyrnium olusatrum | yes | yes | [43] |
Apiaceae | Smyrnium perfoliatum | yes | yes | “ |
Apiaceae | Smyrnium rotundifolium Miller | yes | yes | “ |
Apiaceae | Smyrnium cordifolium Boiss | yes | yes | “ |
Apiaceae | Smyrnium connatum Boiss and Kotschy | yes | yes | “ |
Apiaceae | Smyrnium creticum Miller * | yes | yes | “ |
Araceae | Arum dioscoridis * | yes | yes | [44] |
Amaranthaceae | Chenopodium album * | yes | yes | “ |
Malvaceae | Malva sylvestris * | yes | yes | “ |
Lamiaceae | Mentha longifolia * | yes | yes | “ |
Brassicaceae | Nasturtium officinale * | yes | yes | “ |
Papaveraceae | Papaver rhoeas * | yes | yes | “ |
Polygonaceae | Polygonum aviculare * | yes | yes | “ |
Polygonaceae | Rumex acetosella * | yes | yes | “ |
Brassicaceae | Sinapis alba * | yes | yes | “ |
Urticaceae | Urtica dioica * | yes | yes | “ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappelli, G.; Mariani, F. A Systematic Review on the Antimicrobial Properties of Mediterranean Wild Edible Plants: We Still Know Too Little about Them, but What We Do Know Makes Persistent Investigation Worthwhile. Foods 2021, 10, 2217. https://doi.org/10.3390/foods10092217
Cappelli G, Mariani F. A Systematic Review on the Antimicrobial Properties of Mediterranean Wild Edible Plants: We Still Know Too Little about Them, but What We Do Know Makes Persistent Investigation Worthwhile. Foods. 2021; 10(9):2217. https://doi.org/10.3390/foods10092217
Chicago/Turabian StyleCappelli, Giulia, and Francesca Mariani. 2021. "A Systematic Review on the Antimicrobial Properties of Mediterranean Wild Edible Plants: We Still Know Too Little about Them, but What We Do Know Makes Persistent Investigation Worthwhile" Foods 10, no. 9: 2217. https://doi.org/10.3390/foods10092217
APA StyleCappelli, G., & Mariani, F. (2021). A Systematic Review on the Antimicrobial Properties of Mediterranean Wild Edible Plants: We Still Know Too Little about Them, but What We Do Know Makes Persistent Investigation Worthwhile. Foods, 10(9), 2217. https://doi.org/10.3390/foods10092217