Heavy Metal Levels in Milk and Cheese Produced in the Kvemo Kartli Region, Georgia
Abstract
:1. Introduction
2. Methodology
2.1. Sampling Sites
2.2. Collection of Samples
- no mechanical milking machines were used,
- the person collecting the samples wore nitrile or latex gloves,
- the udder was well ‘sanitized’ before milking,
- all samples were numbered according to the villages in which they were taken from farmers.
2.3. Preparation and Analysis of Samples
2.3.1. Certified Reference Material (CRM)
2.3.2. Milk and Cheese Samples
2.4. Data Analysis
3. Results and Discussion
3.1. Toxic Metals
Mean Concentration (mg L−1) ± Standard Deviation (SD) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Milk Samples | Trace Elements | Toxic Metals | |||||||||
Chromium (Cr) | Manganese (Mn) | Iron (Fe) | Cobalt (Co) | Nickel (Ni) | Copper (Cu) | Zinc (Zn) | Selenium (Se) | Molybdenum Mo | Cadmium Cd | Lead Pb | |
Bolnisi (n = 22) | 0,002 ± 0,0016 | 0,036 ± 0,026 | 0,987 ± 0,841 | <0,001 | 0,001 ± 0,0007 | 0,274 ± 0,370 | 2,975 ± 1,423 | 0,007 ± 0,0106 | 0,014 ± 0,0022 | <0,001 | 0,006 ± 0,0079 |
Chapala (n = 22) | 0,004 ± 0,002 | 0,075 ± 0,010 | 1,541 ± 1,284 | 0,0056 ± 0,003 | 0,017 ± 0,004 | 0,173 ± 0,079 | 3,458 ± 2,054 | 0,042 ± 0,023 | 0,022 ± 0,009 | <0,001 | 0,008 ± 0,006 |
Daba Kazreti (n = 24) | 0,002 ± 0,0036 | 0,044 ± 0,0617 | 1,391 ± 2,0387 | 0,004 ± 0,0107 | 0,002 ± 0,0016 | 0,133 ± 0,1404 | 2,411 ± 1,7129 | 0,005 ± 0,0038 | 0,009 ± 0,0068 | <0,001 | 0,005 ± 0,0039 |
Kvemo Bolnisi (n = 24) | 0,003 ± 0,002 | 0,036 ± 0,011 | 0,717 ± 0,525 | 0,003 ± 0,003 | 0,007 ± 0,005 | 0,133 ± 0,055 | 3,116 ± 0,959 | 0,020 ± 0,020 | 0,034 ± 0,025 | <0,001 | 0,048 ± 0,204 |
Khidiskuri (n = 22) | 0,001 ± 0,0013 | 0,023 ± 0,0229 | 0,502 ± 0,3815 | 0,007 ± 0,0172 | 0,006 ± 0,0075 | 0,120 ± 0,0811 | 2,223 ± 1,9752 | 0,020 ± 0,0142 | 0,011 ± 0,0092 | <0,001 | 0,009 ± 0,0067 |
Mitskineti (n = 22) | 0,003 ± 0,0014 | 0,049 ± 0,0185 | 1,089 ± 1,5586 | 0,005 ± 0,0030 | 0,002 ± 0,0026 | 0,142 ± 0,0544 | 3,916 ± 0,5227 | 0,006 ± 0,0022 | 0,022 ± 0,0138 | <0,001 | 0,008 ± 0,0114 |
Ratawani (n = 23) | 0,003 ± 0,002 | 0,058 ± 0,023 | 2,650 ± 2,137 | 0,002 ± 0,001 | 0,003 ± 0,003 | 0,404 ± 0,189 | 4,209 ± 1,671 | 0,011 ± 0,006 | 0,035 ± 0,025 | <0,001 | 0,013 ± 0,015 |
Sabereti (n = 12) | 0,002 ± 0,0006 | 0,032 ± 0,0059 | 5,537 ± 0,5251 | <0,001 | 0,002 ± 0,0009 | 0,568 ± 0,1445 | 2,862 ± 0,3414 | 0,011 ± 0,0063 | 0,004 ± 0,0017 | <0,001 | 0,004 ± 0,0029 |
Vanati (n = 24) | 0,004 ± 0,0025 | 0,079 ± 0,0361 | 6,150 ± 2,5317 | 0,002 ± 0,0017 | 0,004 ± 0,0029 | 0,592 ± 0,2698 | 4,294 ± 1,0783 | 0,007 ± 0,0034 | 0,047 ± 0,0108 | <0,001 | 0,012 ± 0,0115 |
Permissible limit * | 0,02 [63] 1 | 0,02–0,05 [64] 2 | 0,7 [65,66] 3,4 | 0,006 [63,66,67] 1,4,5 | 0,027 [63,67] 1,5 | 0,4 [68] 6,7 | 3–5 [69] 8/2–6 [70] 9 | 0,5 [71] 10 | 0,05 [63] 1 | 0,2 [51] 6 | 0,020 [53,58] 11,120,500 [51] 6 |
LOD, mg L−1 | 0,00013 | 0,00010 | 0,00041 | 0,00001 | 0,00007 | 0,00010 | 0,00033 | 0,00533 | 0,00005 | 0,00001 | 0,00006 |
Mean Concentration (mg/kg *) ± Standard Deviation (SD) | |||
---|---|---|---|
Cheese Samples n = 25 | |||
Trace Elements | Imeruli (n = 16) | Sulguni (n = 9) | LOD |
Cr | 0,035 ± 0,017 | 0,079 ± 0,057 | 0,0013 |
Mn | 0,886 ± 0,595 | 2,348 ± 2,267 | 0,00033 |
Fe | 69,09 ± 64,918 | 101,1 ± 91,166 | 0,00349 |
Co | 0,013 ± 0,011 | 0,03 ± 0,026 | 0,00003 |
Ni | 0,011 ± 0,007 | 0,026 ± 0,029 | 0,00034 |
Cu | 1,261 ± 0,739 | 2,463 ± 2,314 | 0,00106 |
Zn | 75,86 ± 52,528 | 124,8 ± 97,775 | 0,00092 |
Se | 1,003 ± 0,901 | 3,06 ± 3,144 | 0,01107 |
Mo | 0,289 ± 0,111 | 0,401 ± 0,254 | 0,00023 |
Toxic metals | |||
Cd | 0,002 ± 0,0015 | 0,007 ± 0,003 | 0,00024 |
Pb | 0,121 ± 0,093 | 0,258 ± 0,215 | 0,00018 |
3.2. Trace Elements
3.3. The Differences in the Presence of Minerals and Trace Elements in Cheese and Milk
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Group Descriptives | Group | N | Mean | SD | SE |
---|---|---|---|---|---|
Cr | Imeruli | 16,00 | 0.035 | 0.017 | 0.004 |
Sulguni | 9,00 | 0.079 | 0.057 | 0.019 | |
Mn | Imeruli | 16,00 | 0.887 | 0.595 | 0.149 |
Sulguni | 9,00 | 2,35 | 2,27 | 0.756 | |
Fe | Imeruli | 16,00 | 69,10 | 64,92 | 16,23 |
Sulguni | 9,00 | 101,13 | 91,17 | 30,39 | |
Co | Imeruli | 16,00 | 0.014 | 0.011 | 0.003 |
Sulguni | 9,00 | 0.030 | 0.026 | 0.009 | |
Ni | Imeruli | 16,00 | 0.005 | 0.007 | 0.002 |
Sulguni | 9,00 | 0.018 | 0.027 | 0.009 | |
Cu | Imeruli | 16,00 | 1,26 | 0.739 | 0.185 |
Sulguni | 9,00 | 2,46 | 2,32 | 0.772 | |
Zn | Imeruli | 16,00 | 75,86 | 52,53 | 13,13 |
Sulguni | 9,00 | 124,84 | 97,78 | 32,59 | |
Se | Imeruli | 16,00 | 0.878 | 0.906 | 0.227 |
Sulguni | 9,00 | 3,06 | 3,14 | 1048,00 | |
Mo | Imeruli | 16,00 | 0.290 | 0.111 | 0.028 |
Sulguni | 9,00 | 0.401 | 0.245 | 0.082 | |
Cd | Imeruli | 16,00 | 0.002 | 0.002 | 0.0004 |
Sulguni | 9,00 | 0.004 | 0.005 | 0.002 | |
Pb | Imeruli | 16,00 | 0.122 | 0.093 | 0.023 |
Sulguni | 9,00 | 0.259 | 0.215 | 0.072 |
Group Descriptives | |||||
---|---|---|---|---|---|
Group | N | Mean | SD | SE | |
Cr | Khrami | 45 | 0.003 | 0.002 | 0,0003 |
Mashavera | 146 | 0.003 | 0.002 | 0.0002 | |
Mn | Khrami | 45 | 0.037 | 0.020 | 0.003 |
Mashavera | 146 | 0.053 | 0.037 | 0.003 | |
Fe | Khrami | 45 | 0.855 | 0.706 | 0.105 |
Mashavera | 146 | 2.493 | 2.634 | 0.218 | |
Co | Khrami | 45 | 0.002 | 0.003 | 0.0004 |
Mashavera | 146 | 0.004 | 0.008 | 0.0006 | |
Ni | Khrami | 45 | 0.005 | 0.004 | 0.0006 |
Mashavera | 146 | 0.006 | 0.006 | 0.0004 | |
Cu | Khrami | 45 | 0.202 | 0.269 | 0.040 |
Mashavera | 146 | 0.287 | 0.242 | 0.020 | |
Zn | Khrami | 45 | 3.024 | 1.194 | 0.178 |
Mashavera | 146 | 3.361 | 1.714 | 0.142 | |
Se | Khrami | 45 | 0.014 | 0.016 | 0.002 |
Mashavera | 146 | 0.015 | 0.017 | 0.001 | |
Mo | Khrami | 45 | 0.023 | 0.019 | 0.003 |
Mashavera | 146 | 0.023 | 0.019 | 0.002 | |
Cd | Khrami | 45 | 0.0003 | 0.001 | 0.0001 |
Mashavera | 146 | 0.0003 | 0.0007 | 0.0006 | |
Pb | Khrami | 45 | 0.006 | 0.007 | 0.001 |
Mashavera | 146 | 0.009 | 0.010 | 0.0008 |
Appendix B
References
- Licata, P.; Trombetta, D.; Cristani, M.; Giofre, F.; Martino, D.; Calo, M.; Naccari, F. Levels of “toxic” and “essential” metals in samples of bovine milk from various dairy farms in Calabria, Italy. Environ. Int. 2004, 30, 1–6. [Google Scholar] [CrossRef]
- Haryanto, B.; Suksmasari, T.; Wintergerst, E.; Maggini, S. Multivitamin supplementation supports immune function and ameliorates conditions triggered by reduced air quality. Vitam. Min. 2015, 4, 1–15. [Google Scholar]
- Panter, K.E.; James, L.F. Natural plant toxicants in milk: A review. J. Anim. Sci. 1990, 68, 892–904. [Google Scholar] [CrossRef] [PubMed]
- FAO; UNEP. Global Assessment of Soil Pollution—Summary for Policy Makers; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Modabberi, S.; Tashakor, M.; Soltani, N.S.; Hursthouse, A.S. Potentially toxic elements in urban soils: Source apportionment and contamination assessment. Environ. Monit. Assess. 2018, 190, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, A.; Riaz, M.; Akhtar, S.; Goodwill, J.E.; Sun, J. Heavy metals in milk: Global prevalence and health risk assessment. Toxin Rev. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Tavakoli-Hosseinabady, B.; Ziarati, P.; Ballali, E.; Umachandran, K. Detoxification of heavy metals from leafy edible vegetables by agricultural waste: Apricot pit shell. J. Environ. Anal. Toxicol. 2018, 8, 548. [Google Scholar]
- Llobet, J.M.; Falco, G.; Casas, C.; Teixido, A.; Domingo, J.L. Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. J. Agric. Food Chem. 2003, 51, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Hague, T.; Petroczi, A.; Andrews, P.L.; Barker, J.; Naughton, D.P. Determination of metal ion content of beverages and estimation of target hazard quotients: A comparative study. Chem. Cent. J. 2008, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alimardan, M.; Ziarati, P.; Jafari Moghadam, R. Adsorption of heavy metal ions from contaminated soil by B. integerrima barberry. Biomed. Pharmacol. J. 2016, 9, 169–175. [Google Scholar] [CrossRef]
- Ziarati, P.; Moslehishad, M.; Mohammad-Makki, F.M. Novel adsorption method for contaminated water by wild endemic almond: Amygdalus scoparia. Biosci. Biotechnol. Res. Asia 2016, 13, 147–153. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Faccia, M.; Gambacorta, G.; Quinto, M.; Di Luccia, A. Lead and cadmium in some milk and milk-based mozzarella cheeses from Apulia, Italy. Ital. J. Food Sci. 2010, 22, 150. [Google Scholar]
- Chary, N.S.; Kamala, C.T.; Raj, D.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Maas, S.; Lucot, E.; Gimbert, F.; Crini, N.; Badot, P.M. Trace metals in raw cows’ milk and assessment of transfer to Comté cheese. Food Chem. 2011, 129, 7–12. [Google Scholar] [CrossRef]
- Joint W.H.O.; World Health Organization. Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution (No. EUR/06/5067592); WHO Regional Office for Europe: Copenhagen, Denmark, 2007. [Google Scholar]
- Lahiji, F.A.S.; Ziarati, P.; Jafarpour, A. Potential of Rice Husk Biosorption in Reduction of Heavy Metals from Oryza sativa Rice. Biosci. Biotechnol. Res. Asia 2016, 13, 2231–2237. [Google Scholar] [CrossRef]
- Razafsha, A.; Ziarati, P. Removal of heavy metals from Oryza sativa rice by sour lemon peel as bio-sorbent. Biomed. Pharmacol. J. 2016, 9, 543–553. [Google Scholar] [CrossRef]
- Motaghi, M.; Ziarati, P. Adsorptive removal of cadmium and lead from oryza sativa rice by banana peel as bio-sorbent. Biomed. Pharmacol. J. 2016, 9, 739–749. [Google Scholar] [CrossRef]
- Ziarati, P.; Alaedini, S. The phytoremediation technique for cleaning up contaminated soil by Amaranthus sp. J. Environ. Anal. Toxicol. 2014, 4, 208. [Google Scholar]
- Gholizadeh, E.; Ziarati, P. Remediation of contaminated rice farmlands soil and Oryza sativa rice product by apple pomace as adsorbent. Biosci. Biotechnol. Res. Asia 2016, 13, 2245. [Google Scholar] [CrossRef]
- Leontopoulos, S.; Svarnas, C. Transfer of heavy metal contaminants from animal feed to animal products. J. Agric. Sci. Technol. A 2012, 2, 149–154. [Google Scholar]
- Ogundiran, M.B.; Ogundele, D.T.; Afolayan, P.G.; Osibanjo, O. Heavy metals levels in forage grasses, leachate and lactating cows reared around lead slag dumpsites in Nigeria. Int. J. Environ. Res. 2012, 6, 695–702. [Google Scholar]
- Zhou, X. Heavy Metals in Chinese Raw Cow Milk: Spatial Distribution and Relationships with Silage and Environmental Factors. Ph.D. Thesis, Université de Liège, Liège, Belgique, 2019. [Google Scholar]
- Amer, A. Effect of processing of some dairy products on levels of some. In Proceedings of the Second International Congress of food Hygiene and Human Health, Assiut, Egypt, 21–23 October 2003; pp. 15–31. Available online: https://www.researchgate.net/publication/312332697_EFFECT_OF_PROCESSING_OF_SOME_DAIRY_PRODUCTS_ON_LEVELS_OF_SOME_HEAVY_METALS (accessed on 3 April 2021).
- Wouters, A.P.; van der Lee, J. Smallholder Dairy Development-drivers, trends and opportunities. In Proceedings of the AgriProFocus-Heifer Learning Event “Dairy and Development: Dilemmas of Scaling-up”, Veessen, The Netherlands, 2 July 2009; pp. 1–10. [Google Scholar]
- FAO. Agribusiness Handbook: Milk/Dairy Products; FAO: Rome, Italy, 2009; p. 65. Available online: http://www.eastagri.org/publications/detail.php?id=36 (accessed on 14 June 2021).
- Hemme, T.; Otte, J. Status and Prospects for Smallholder Milk Production: A Global Perspective; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010. [Google Scholar]
- Korakhashvili, A.; Jeiranashvili, G. Food safety hazards in Georgian Tushuri Guda cheese. Ann. Agrar. Sci. 2016, 14, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Swiss Agency for Development and Cooperation (SDC). Meat and Cheese are Kvemo Kartli’s Future, Project Factsheet, Georgia September 2013. Available online: https://www.eda.admin.ch/dam/countries/countries-content/georgia/en/archive/resource_en_225775.pdf (accessed on 10 September 2021).
- ALCP. National Cheese Sector Research; Swiss Agency for Development and Cooperation SDC: Bern, Switzerland, 2016. [Google Scholar]
- Shields, D.A. Dairy Pricing Issues. Congr. Res. Serv. 2009, 40903. Available online: https://28xeuf2otxva18q7lx1uemec-wpengine.netdna-ssl.com/wp-content/uploads/assets/crs/R40903.pdf (accessed on 10 September 2021).
- Lomsadze, Z.; Makharadze, K.; Pirtskhalava, R. The ecological problems of rivers of Georgia (the Caspian Sea basin). Ann. Agrar. Sci. 2016, 14, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Avkopashvili, G.; Avkopashvili, M.; Gongadze, A.; Tsulukidze, M.; Shengelia, E. Determination of Cu, Zn and Cd in soil, water and food products in the vicinity of RMG gold and copper mine, Kazreti, Georgia. Ann. Agrar. Sci. 2017, 15, 269–272. [Google Scholar] [CrossRef]
- Banerjee, D.; Kuila, P.; Ganguli, A.; Das, D.; Mukherjee, S.; Ray, L. Heavy metal contamination in vegetables collected from market sites of Kolkata, India. Electron. J. Environ. Agric. Food Chem. 2011, 10, 2160–2165. [Google Scholar]
- Withanachchi, S.S.; Ghambashidze, G.; Kunchulia, I.; Urushadze, T.; Ploeger, A. A paradigm shift in water quality governance in a transitional context: A critical study about the empowerment of local governance in Georgia. Water 2018, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Matchavariani, L.; Kalandadze, B.; Lagidze, L.; Gokhelashvili, N.; Sulkhanishvili, N.; Paichadze, N.; Dvalashvili, G. Soil quality changes in response to their pollution by heavy metals, Georgia. J. Environ. Biol. 2015, 36, 85. [Google Scholar] [PubMed]
- Agenda Mining Resumes at Controversial Sakdrisi Gold Mine. 2014. Available online: https://agenda.ge/en/news/2014/2863. (accessed on 3 April 2021).
- Withanachchi, S.S.; Kunchulia, I.; Ghambashidze, G.; Al Sidawi, R.; Urushadze, T.; Ploeger, A. Farmers’ perception of water quality and risks in the Mashavera River Basin, Georgia: Analyzing the vulnerability of the social-ecological system through community perceptions. Sustainability 2018, 10, 3062. [Google Scholar] [CrossRef] [Green Version]
- Avkopashvili, G.; Gongadze, A.; Gakhokidze, R.; Avkopashvili, M. Phytoremediation of contaminated soils, contaminated with heavy metals from gold mine in Georgia. In Proceedings of the International Conference Applied Ecology: Problems, Innovations, Tbilisi, Georgia, 7–10 May 2015; pp. 154–157. [Google Scholar]
- Avkopashvili, G.; Avkopashvili, M.; Gongadze, A.; Gakhokidze, R. Eco-Monitoring of Georgia’s Contaminated Soil and Water with Heavy Metals. Carpathian J. Earth Environ. Sci. 2017, 12, 595–604. [Google Scholar]
- Matchavariani, L.; Kalandadze, B. Pollution of soils by heavy metals from irrigation near mining region of Georgia. Forum Geografic 2012, XI, 127–136. [Google Scholar] [CrossRef]
- Felix-Henningsen, P.; Urushadze, T.F.; Narimanidze, E.I.; Wichmann, L.C.; Steffens, D.; Kalandadze, B.B. Heavy metal pollution of soils and food crops due to mining wastes in the Mashavera River Valley. Bull. Georg. Natl. Acad. Sci. 2007, 175, 35–49. [Google Scholar]
- Tsivtsivadze, N.; Matchavariani, L.; Lagidze, L.; Paichadze, N.; Motsonelidze, N. Problem of surface water ecology in georgia. In Environment and Ecology in the Mediterranean Region II; Cambridge Scholars Publishing: Cambridge, UK, 2014; pp. 283–294. [Google Scholar]
- Melikadze, G. Monitoring and Spatial-Time Modelling of Groundwater on Territories of Georgia for Solving Ecological and Seismic Problems. Ph.D. Thesis, Tbilisi State University, Tbilisi, Georgia, 2006. (In Georgian). [Google Scholar]
- Asanidze, L.; Avkopashvili, G.; Tsikarishvili, K.; Lezhava, Z.; Chikhradze, N.; Avkopashvili, M.; Chartolani, G. Geoecological monitoring of Karst water in the Racha Limestone Massif (Country of Georgia). Open J. Geol. 2017, 7, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Tsikaridze, N.; Avkopashvili, G.; Kazaishvili, K.H.; Avkopashvili, M.; Gognadze, A.; Samkharadze, Z. Kvemo Kartli Manufacturing Mining Pollution Analysis in Green Politics Context; Green Policy Public Platform: Tbilisi, Georgia, 2017. (In Georgian) [Google Scholar]
- Ellison, S.L.R.; Williams, A. Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement. Available online: www.eurachem.org (accessed on 10 September 2021).
- Górecka, H.; Górecki, J.; Dobrzański, Z. An application of plasma spectrometry ICP-OES and ICP-MS for metal content analysis in biological and environmental samples. Chem. Agric. 2001, 2, 359. [Google Scholar]
- IDF Standard. Metal contamination in milk and milk products. In International Dairy Federation Bulletin; The International Dairy Federation: Schaerbeek, Belgium, 1979. [Google Scholar]
- Ministry of Labour and Health; Social Affairs of Georgia. Order of Minister of Labour, Health, and Social Affairs of Georgia—On Approval of the Norms of the Quality of Environment 297/N; Ministry of Labour and Health: Tbilisi, Georgia, 2001.
- Codex Alimentarius Commission. Joint FAO/WHO food standards programme. In Proceedings of the Codex Committee on Methods of Analysis And Sampling, Twenty-Eighth Session, Budapest, Hungary, 5–9 March 2007. [Google Scholar]
- European Commission. Commission Regulation 2006/1881/EC of 19 December 2006 Replacing Regulation (EC)466/2001 Setting Maximum Levels for Certain Contaminants in Foodstuffs; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Cheese Story. Alliances Caucasus Programme (Alcp). 2018. Available online: http://alcp.ge/index.php?cat=3&news=18 (accessed on 3 July 2021).
- Field Mission Report 10–15 December 2017, Georgia. Available online: http://eastagri.org/docs/group/476/Field%20mission%20report%2010-15%20December%202017.pdf (accessed on 3 July 2021).
- The lost cheese of Georgia, David Farley 2019–03–19. Available online: http://dfarley.com/uploads/3/5/8/1/35811128/savvsp19_georgia_fordavid.pdf (accessed on 3 July 2021).
- A Guide to Georgian Dairy Products. Available online: https://folkways.today/georgian-dairy-products/ (accessed on 3 July 2021).
- Codex Alimentarius. Codex General Standard for Contaminants and Toxins in Food and Feed; Codex Standard 193–1995, Adopted 1995. Revised 1997, 2006, 2008, 2009. Amended 2010, 2012; Codex Secretariat: Rome, Italy, 1995. [Google Scholar]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, south China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Fan, W.; Wang, X.; Qu, L.; Yao, S. Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China. Food Chem. Toxicol. 2011, 49, 3081–3085. [Google Scholar] [CrossRef] [PubMed]
- Eleboudy, A.A.; Amer, A.A.; Abo El-Makarem, H.S.; Hadour, H.; Abo, H. Heavy Metals Residues in Some Dairy Products. Alex. J. Vet. Sci. 2016, 51, 334–346. [Google Scholar] [CrossRef]
- Özcan, M.M.; Juhaimi, F.Y.A. Determination of heavy metals in bee honey with connected and not connected metal wires using inductively coupled plasma atomic emission spectrometry (ICP–AES). Environ. Monit. Assess. 2012, 184, 2373–2375. [Google Scholar] [CrossRef] [PubMed]
- Flynn, A. Minerals and trace elements in milk. Adv. Food Nutr. Res. 1992, 36, 209–252. [Google Scholar]
- Knowles, S.O.; Grace, N.D.; Knight, T.W.; McNabb, W.C.; Lee, J. Reasons and means for manipulating the micronutrient composition of milk from grazing dairy cattle. Anim. Feed. Sci. Technol. 2006, 131, 154–167. [Google Scholar] [CrossRef]
- Storelli, M.M.; Barone, G.; Garofalo, R.; Marcotrigiano, G.O. Metals and organochlorine compounds in eel (Anguilla anguilla) from the Lesina lagoon, Adriatic Sea (Italy). Food Chem. 2007, 100, 1337–1341. [Google Scholar] [CrossRef]
- Safonov, V. Assessment of Heavy Metals in Milk Produced by Black-and-White Holstein Cows from Moscow. Curr. Res. Nutr. Food Sci. J. 2020, 8, 410–415. [Google Scholar] [CrossRef]
- Hurleyw, L. Lactation biology. In Minerals and Vitamins; Univ, U., Ed.; University Urbana: Champaign, IL, USA, 1997. [Google Scholar]
- European Commission (EC). Setting maximum levels for certain contaminants in food stuffs. Off. J. Eur. Communities 2001, 77, 1–75. [Google Scholar]
- World Health Organization. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996; p. 78. [Google Scholar]
- Pechovà, A.; Pavlata, L.; Dvořàk, R.; Lokajovà, E. Contents of Zn, Cu, Mn and Se in Milk in Relation to their Concentrations in Blood, Milk Yield and Stage of Lactation in Dairy Cattle. Acta Vet. Brno. Czech Repub. 2008, 77, 523–553. [Google Scholar] [CrossRef] [Green Version]
- EFSA—European Food Safety Authority. Scientific opinion on the safety and efficacy of Sel Plex (organic form of selenium produced by Saccharomyces cerevisiae CNCM I-3060) for all species. EFSA J. 2011, 9, 2110. [Google Scholar] [CrossRef]
- Ghosh, J.; Sil, P.C. Mechanism for arsenic induced toxic effects. Handb. Arsen. Toxicol. 2015, 203–231. [Google Scholar] [CrossRef]
- Moreno-Rojas, R.; Sánchez-Segarra, P.J.; Cámara-Martos, F.; Amaro-López, M.A. Heavy metal levels in Spanish cheeses: Influence of manufacturing conditions. Food Addit. Contam. 2010, 3, 90–100. [Google Scholar] [CrossRef]
- Duffus, J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Meshref, A.M.S.; Moselhy, W.A.; El-Houda, N.; Hassan, Y. Heavy metals and trace elements levels in milk and milk products. J. Food MeasCharact 2014, 8, 381–388. [Google Scholar] [CrossRef]
- Vahcic, N.; Hruskar, M.; Markovic, K.; Banovic, M.; Baric, I.C. Essential minerals in milk and their daily intake through milk consumption. Mljekarstvo 2010, 60, 77–85. [Google Scholar]
- Turnlund, J.R.; Jacob, R.A.; Keen, C.L.; Strain, J.J.; Kelley, D.S.; Domek, J.M.; Coulter, J. Long-term high copper intake: Effects on indexes of copper status, antioxidant status, and immune function in young men. Am. J. Clin. Nutr. 2004, 79, 1037–1044. [Google Scholar] [CrossRef]
- Barn, P.; Nicol, A.M.; Struck, S.; Dosanjh, S.; Li, R.; Kosatsky, T. Investigating elevated copper and lead levels in school drinking water. Environ. Health Rev. 2014, 56, 96–102. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Scientific Opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Eur. Food Saf. Auth. (EFSA) Parma Italy EFSA J. 2013, 11, 3408. [Google Scholar]
- EFSA (European Food Safety Authority). Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to the Tolerable Upper Intake Level of iron. EFSA J. 2004, 125, 1–34. [Google Scholar] [CrossRef]
- Gemechu, T.; Beyene, F.; Eshetu, M. Physical and chemical quality of raw cow’s milk produced and marketed in Shashemene Town, Southern Ethiopia. J. Food Agric. Sci. 2012, 5, 7–13. [Google Scholar]
- Dobrzanski, Z.; Kolacz, R.; Górecka, H.; Chojnacka, K.; Bartkowiak, A. The content of microelements and trace elements in raw milk from cows in the Silesian region. Pol. J. Environ. Stud. 2005, 14, 685. [Google Scholar]
- Muñiz-Naveiro, Ó.; Domínguez-González, R.; Bermejo-Barrera, A.; Bermejo-Barrera, P.; Cocho, J.A.; Fraga, J.M. Study of the bioavailability of selenium in cows’ milk after a supplementation of cow feed with different forms of selenium. Anal. Bioanal. Chem. 2006, 385, 189–196. [Google Scholar] [CrossRef]
- Givens, D.I.; Allison, R.; Cottrill, B.; Blake, J.S. Enhancing the selenium content of bovine milk through alteration of the form and concentration of selenium in the diet of the dairy cow. J. Sci. Food Agric. 2004, 84, 811–817. [Google Scholar] [CrossRef]
- Heard, J.W.; Walker, G.P.; Royle, P.J.; McIntosh, G.H.; Doyle, P.T. Effects of short-term supplementation with selenised yeast on milk production and composition of lactating cows. Aust. J. Dairy Technol. 2004, 59, 199. [Google Scholar]
- Juniper, D.T.; Phipps, R.H.; Jones, A.K.; Bertin, G. Selenium supplementation of lactating dairy cows: Effect on selenium concentration in blood, milk, urine, and feces. J. Dairy Sci. 2006, 89, 3544–3551. [Google Scholar] [CrossRef]
- Schöne, F.; Steinhöfel, O.; Weigel, K.; Bergmann, H.; Dunkel, S.; Kirmse, R.; Leiterer, M. Selenium in feedstuffs and rations for dairy cows including a view of the food chain up to the consumer. J. Für Verbrauch. Und Lebensm. 2013, 8, 271–280. [Google Scholar] [CrossRef]
- Grace, N.D.; Lee, J.; Mills, R.A.; Death, A.F. Influence of Se status on milk Se concentrations in dairy cows. N. Z. J. Agric. Res. 1997, 40, 75–78. [Google Scholar] [CrossRef]
- Malbe, M.; Otstavel, T.; Kodis, I.; Viitak, A. Content of selected micro and macro elements in dairy cows’ milk in Estonia. Agron. Res. 2010, 8, 323–326. [Google Scholar]
- Santamaria, A.B. Manganese exposure, essentiality and toxicity. Indian J. Med. Res. 2008, 128, 484–500. [Google Scholar]
- Qin, L.Q.; Wang, X.P.; Li, W.; Tong, X.; Tong, W.J. The minerals and heavy metals on cow’s milk from China and Japan. J. Health Sci. 2009, 55, 300–305. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Scientific opinion on dietary reference values for molybdenum. EFSA J. 2013, 11, 3333. [Google Scholar] [CrossRef] [Green Version]
- Gimou, M.M.; Pouillot, R.; Charrondiere, U.R.; Noël, L.; Guérin, T.; Leblanc, J.C. Dietary exposure and health risk assessment for 14 toxic and essential trace elements in Yaoundé: The Cameroonian total diet study. Food Addit. Contam. Part A 2014, 31, 1064–1080. [Google Scholar] [CrossRef]
- Shekhawat, K.; Chatterjee, S.; Joshi, B. Chromium toxicity and its health hazards. Int. J. Adv. Res. 2015, 3, 167–172. [Google Scholar]
- Beckett, W.S.; Nordberg, G.F.; Clarkson, T.W. Routes of Exposure, Dose and Metabolism of Metals: Handbook on the Toxicology of Metals, 3rd ed.; Elsevier B.V.: Amsterdam, The Netherland, 2007. [Google Scholar]
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects oxidative stress. Indian J. Med. Res. 2008, 128, 412. [Google Scholar] [PubMed]
- Doreswamy, K.; Shrilatha, B.; Rajeshkumar, T. Nickel-induced oxidative stress in testis of mice: Evidence of DNA damage and genotoxic effects. J. Androl. 2004, 25, 996–1003. [Google Scholar] [CrossRef]
- Pšenková, M.; Toman, R.; Tančin, V. Concentrations of toxic metals and essential elements in raw cow milk from areas with potentially undisturbed and highly disturbed environment in Slovakia. Environ. Sci. Pollut. Res. 2020, 27, 26763–26772. [Google Scholar] [CrossRef]
- Filippini, T.; Tancredi, S.; Malagoli, C.; Malavolti, M.; Bargellini, A.; Vescovi, L.; Nicolini, F.; Vinceti, M. Dietary estimated intake of trace elements: Risk assessment in an Italian Population. Expo. Health 2019, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Quantitative methods in psychology: A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Sellke, T.; Bayarri, M.J.; Berger, J.O. Calibration of ρ values for testing precise null hypotheses. Am. Stat. 2001, 55, 62–71. [Google Scholar] [CrossRef]
t | df | p | VS-MPR * | Mean Difference | SE (Mean Difference) | Effect Size (Cohen’s d) | |
---|---|---|---|---|---|---|---|
Cr | 2.902 | 23 | 0.004 | 16.591 | 0.044 | 0.015 | 1.209 |
Mn | 2.468 | 23 | 0.011 | 7.566 | 1.461 | 0.592 | 1.028 |
Fe | 1.024 | 23 | 0.158 | 1.261 | 32.030 | 31.290 | - |
Co | 2.210 | 23 | 0.019 | 4.949 | 0.016 | 0.007 | 0.921 |
Ni | 1.832 | 23 | 0.040 | 2.859 | 0.013 | 0.007 | 0.763 |
Cu | 1.936 | 23 | 0.033 | 3.296 | 1.202 | 0.621 | 0.807 |
Zn | 1.642 | 23 | 0.057 | 2.250 | 48.973 | 29.828 | - |
Se | 2.627 | 23 | 0.008 | 9.990 | 2.182 | 0.830 | 1.095 |
Mo | 1.574 | 23 | 0.065 | 2.080 | 0.112 | 0.071 | - |
Cd | 1.489 | 23 | 0.075 | 1.893 | 0.002 | 0.001 | - |
Pb | 2.229 | 23 | 0.018 | 5.103 | 0.137 | 0.062 | 0.929 |
t | df | p | VS-MPR * | Mean Difference | SE Difference | Cohen’s d | |
---|---|---|---|---|---|---|---|
Cr | 1.707 | 189 | 0.045 | 2.646 | 0.0006 | 0.0004 | 0.291 |
Mn | 2.876 | 189 | 0.002 | 26.838 | 0.017 | 0.006 | 0.490 |
Fe | 4.118 | 189 | <0.001 | 1232.574 | 1.638 | 0.398 | 0.702 |
Co | 1.383 | 189 | 0.084 | 1.767 | 0.002 | 0.001 | - |
Ni | 0.770 | 189 | 0.221 | 1.103 | 0.0007 | 0.0009 | - |
Cu | 2.007 | 189 | 0.023 | 4.225 | 0.085 | 0.042 | 0.342 |
Zn | 1.226 | 189 | 0.111 | 1.509 | 0.336 | 0.274 | - |
Se | 0.083 | 189 | 0.467 | 1.000 | 0.0002 | 0.003 | - |
Mo | -0.016 | 189 | 0.506 | 1.000 | −0.0005 | 0.003 | - |
Cd | −0.206 | 189 | 0.582 | 1.000 | −0.0003 | 0.0001 | - |
Pb | 1.749 | 189 | 0.041 | 2.812 | 0.003 | 0.002 | 0.298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Sidawi, R.; Ghambashidze, G.; Urushadze, T.; Ploeger, A. Heavy Metal Levels in Milk and Cheese Produced in the Kvemo Kartli Region, Georgia. Foods 2021, 10, 2234. https://doi.org/10.3390/foods10092234
Al Sidawi R, Ghambashidze G, Urushadze T, Ploeger A. Heavy Metal Levels in Milk and Cheese Produced in the Kvemo Kartli Region, Georgia. Foods. 2021; 10(9):2234. https://doi.org/10.3390/foods10092234
Chicago/Turabian StyleAl Sidawi, Rami, Giorgi Ghambashidze, Teo Urushadze, and Angelika Ploeger. 2021. "Heavy Metal Levels in Milk and Cheese Produced in the Kvemo Kartli Region, Georgia" Foods 10, no. 9: 2234. https://doi.org/10.3390/foods10092234
APA StyleAl Sidawi, R., Ghambashidze, G., Urushadze, T., & Ploeger, A. (2021). Heavy Metal Levels in Milk and Cheese Produced in the Kvemo Kartli Region, Georgia. Foods, 10(9), 2234. https://doi.org/10.3390/foods10092234