Compositional and Functional Characteristics of Feta-Type Cheese Made from Micellar Casein Concentrate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MCC
2.2. Manufacture of Feta-Type Cheese
2.3. Analyses
2.3.1. Cheese Composition
2.3.2. Rheological Characteristics
2.3.3. Hardness
2.3.4. Color Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Composition
3.2. Yield and Hardness
3.3. Rheological Characteristics
3.4. Color Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamdy, A.M.; Ahmed, M.E.; Mehta, D.; Elfaruk, M.S.; Hammam, A.R.A.; El-Derwy, Y.M.A. Enhancement of low-fat Feta cheese characteristics using probiotic bacteria. Food Sci. Nutr. 2021, 9, 62–70. [Google Scholar] [CrossRef]
- Katsouri, E.; Magriplis, E.; Zampelas, A.; Nychas, G.-J.; Drosinos, E.H. Nutritional Characteristics of Prepacked Feta PDO Cheese Products in Greece: Assessment of Dietary Intakes and Nutritional Profiles. Foods 2020, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Bintsis, T.; Robinson, R. A study of the effects of adjunct cultures on the aroma compounds of Feta-type cheese. Food Chem. 2004, 88, 435–441. [Google Scholar] [CrossRef]
- Michaelidou, A.; Katsiari, M.; Kondyli, E.; Voutsinas, L.; Alichanidis, E. Effect of a commercial adjunct culture on proteolysis in low-fat Feta-type cheese. Int. Dairy J. 2003, 13, 179–189. [Google Scholar] [CrossRef]
- Katsiari, M.C.; Voutsinas, L.P. Manufacture of low-fat Feta cheese. Food Chem. 1994, 49, 53–60. [Google Scholar] [CrossRef]
- Zonoubi, R.; Goli, M. The effect of complete replacing sodium with potassium, calcium, and magnesium brine on sodium-free ultrafiltration Feta cheese at the end of the 60-day ripening period: Physicochemical, proteolysis–lipolysis indices, microbial, colorimetric, and sensory. Food Sci. Nutr. 2021, 9, 866–874. [Google Scholar] [CrossRef]
- Metzger, L.E.; Hammam, A.R.A. Process for Manufacture of Process Cheese Without Emulsifying Salt. U.S. Patent Application 16/793,818, 20 August 2020. [Google Scholar]
- Hammam, A.R.A.; Martínez-Monteagudo, S.I.; Metzger, L.E. Progress in micellar casein concentrate: Production and applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4426–4449. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.G.; Cheng, N.; Kapoor, R.; Meletharayil, G.H.; Drake, M.A. Invited review: Microfiltration-derived casein and whey proteins from milk. J. Dairy Sci. 2021, 104, 2465–2479. [Google Scholar] [CrossRef]
- Beliciu, C.M.; Sauer, A.; Moraru, C.I. The effect of commercial sterilization regimens on micellar casein concentrates. J. Dairy Sci. 2012, 95, 5510–5526. [Google Scholar] [CrossRef] [Green Version]
- Sauer, A.; Moraru, C.I. Heat stability of micellar casein concentrates as affected by temperature and pH. J. Dairy Sci. 2012, 95, 6339–6350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salunke, P. Impact of Transglutaminase on the Functionality of Milk Protein Concentrate and Micellar Casein Concentrate. Ph.D. Dissertation, Dairy and Food Science Department, South Dakota State University, Brookings, SD, USA, 2013. [Google Scholar]
- Amelia, I.; Drake, M.; Nelson, B.; Barbano, D.M. A new method for the production of low-fat Cheddar cheese. J. Dairy Sci. 2013, 96, 4870–4884. [Google Scholar] [CrossRef]
- Li, B.; Waldron, D.S.; Tobin, J.T.; Subhir, S.; Kelly, A.L.; McSweeney, P.L.H. Evaluation of production of Cheddar cheese from micellar casein concentrate. Int. Dairy J. 2020, 107, 104711. [Google Scholar] [CrossRef]
- Xia, X.; Tobin, J.T.; Subhir, S.; Fenelon, M.A.; McSweeney, P.L.H.; Sheehan, J.J. Effect of thermal treatment on serum protein reduced micellar casein concentrate: An evaluation of rennet coagulability, cheese composition and yield. Int. Dairy J. 2021, 114, 104902. [Google Scholar] [CrossRef]
- Bong, D.D.; Moraru, C.I. Use of micellar casein concentrate for Greek-style yogurt manufacturing: Effects on processing and product properties. J. Dairy Sci. 2014, 97, 1259–1269. [Google Scholar] [CrossRef]
- Hammam, A.R.A.; Metzger, L.E. Manufacture of Imitation Mozzarella Cheese without Emulsifying Salts Using Acid Curd and Micellar Casein Concentrate. J. Dairy Sci. 2020, 103, 179. [Google Scholar]
- Lu, Y.; McMahon, D.J.; Vollmer, A.H. Investigating rennet coagulation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making. J. Dairy Sci. 2017, 100, 892–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; McMahon, D.J.; Vollmer, A.H. Investigating cold gelation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making. J. Dairy Sci. 2016, 99, 5132–5143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammam, A.R.A.; Beckman, S.L.; Sunkesula, V.; Metzger, L.E. Effect of Storage of High Concentrated Micellar Casein on the Functional Properties of Process Cheese. J. Dairy Sci. 2019, 102, 34. [Google Scholar]
- Hammam, A.R.A.; Metzger, L.E. Manufacturing of Process Cheese without Emulsifying Salt Using Acid Curd. J. Dairy Sci. 2019, 102, 81–82. [Google Scholar]
- Hammam, A.R.A.; Metzger, L.E. Manufacture of Culture-Based Acid Curd Using Micellar Casein Concentrate. J. Dairy Sci. 2020, 103, 130–131. [Google Scholar]
- Pouliot, Y. Membrane processes in dairy technology—From a simple idea to worldwide panacea. Int. Dairy J. 2008, 18, 735–740. [Google Scholar] [CrossRef]
- Gholamhosseinpour, A.; Mazaheri Tehrani, M.; Razavi, S.M.A. Optimization of textural characteristics of analogue UF-Feta cheese made from dairy and non-dairy ingredients. Iran. J. Food Sci. Technol. Res. 2018, 13, 80–91. [Google Scholar]
- Abed El Malek, F.; Osman, S.; Younis, N. Palm Kernel Oil as a Substitute of Milk Fat in Feta Cheese. J. Food Dairy Sci. 2019, 10, 31–35. [Google Scholar] [CrossRef]
- Metzger, L.E. Nutrition Labeling Using a Computer Program. In Food Analysis Laboratory Manual; Nielsen, S.S., Ed.; Food Science Texts Series; Springer US: Boston, MA, USA, 2010; pp. 1–7. ISBN 978-1-4419-1462-0. [Google Scholar]
- Hassan, A.N.; Frank, J.F.; Elsoda, M. Observation of bacterial exopolysaccharide in dairy products using cryo-scanning electron microscopy. Int. Dairy J. 2003, 13, 755–762. [Google Scholar] [CrossRef]
- Hassan, A.N.; Frank, J.F.; Corredig, M. Microstructure of Feta Cheese Made Using Different Cultures as Determined by Confocal Scanning Laser Microscopy. J. Food Sci. 2002, 67, 2750–2753. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000.
- Sutherland, B.J. Control of salt absorption and whey drainage in Cheddar cheese manufacture. Aust. J. Dairy Technol. 1974, 29, 86–93. [Google Scholar]
- Coulson, D.M.; Cavanagh, L.A. Automatic Chloride Analyzer. Anal. Chem. 1960, 32, 1245–1247. [Google Scholar] [CrossRef]
- Mehaia, M.A. Manufacture of fresh soft white cheese (Domiati-type) from ultrafiltered goats’ milk. Food Chem. 2002, 79, 445–452. [Google Scholar] [CrossRef]
- Kosikowski, F.V.; Mistry, V.V. Ultrafiltration in Cheese Making. In Cheese and Fermented Milk Foods, Volume 1 Origins and Principles; Kosikowski, F.V., Mistry, V.V., Eds.; LLC: Westport, CT, USA, 1997. [Google Scholar]
- Karami, M.; Ehsani, M.R.; Mousavi, S.M.; Rezaei, K.; Safari, M. Changes in the rheological properties of Iranian UF-Feta cheese during ripening. Food Chem. 2009, 112, 539–544. [Google Scholar] [CrossRef]
- Prasad, N.; Alvarez, V.B. Effect of Salt and Chymosin on the Physico-Chemical Properties of Feta Cheese during Ripening. J. Dairy Sci. 1999, 82, 1061–1067. [Google Scholar] [CrossRef]
- Power, O.M.; Fenelon, M.A.; O’Mahony, J.A.; McCarthy, N.A. Influence of sodium hexametaphosphate addition on the functional properties of milk protein concentrate solutions containing transglutaminase cross-linked proteins. Int. Dairy J. 2020, 104, 104641. [Google Scholar] [CrossRef]
- Wadhwani, R.; McMahon, D.J. Color of low-fat cheese influences flavor perception and consumer liking. J. Dairy Sci. 2012, 95, 2336–2346. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowski, K.L.; Barbano, D.M. Modification of the Kjeldahl noncasein nitrogen method to include bovine milk concentrates and milks from other species. J. Dairy Sci. 2015, 98, 7510–7526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsiari, M.; Voutsinas, L.; Kondyli, E.; Alichanidis, E. Flavour enhancement of low-fat Feta-type cheese using a commercial adjunct culture. Food Chem. 2002, 79, 193–198. [Google Scholar] [CrossRef]
- Hamad, M.N.F. Comparative study between traditional Domiati cheese and Recombined Feta cheese Comparative study between traditional Domiati. Indian J. Dairy Sci 2015, 68, 442–452. [Google Scholar] [CrossRef]
- Mallatou, H.; Pappas, C.P.; Voutsinas, L.P. Manufacture of feta cheese from sheep’s milk, goats’ milk or mixtures of these milks. Int. Dairy J. 1994, 4, 641–664. [Google Scholar] [CrossRef]
- McMahon, D.J.; Motawee, M.M.; McManus, W.R. Influence of brine concentration and temperature on composition, microstructure, and yield of feta cheese. J. Dairy Sci. 2009, 92, 4169–4179. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Rathnakumar, K.; Awasti, N.; Elfaruk, M.S.; Hammam, A.R.A. Influence of probiotic adjunct cultures on the characteristics of low-fat Feta cheese. Food Sci. Nutr. 2021, 9, 1512–1520. [Google Scholar] [CrossRef]
- Pappas, C.P.; Kondyli, E.; Voutsinas, L.P.; Mallatou, H. Effect of standardization of ewes’ milk for casein/fat ratio on the composition, sensory and rheological properties of Feta cheese. Int. Dairy J. 1994, 4, 763–778. [Google Scholar] [CrossRef]
- Pappas, C.P.; Kondyli, E.; Voutsinas, L.P.; Mallatou, H. Effects of salting method and storage time on composition and quality of feta cheese. Int. J. Dairy Technol. 1996, 49, 113–118. [Google Scholar] [CrossRef]
- Altan, A.; Oztop, M.H.; McCarthy, K.L.; McCarthy, M.J. Monitoring changes in feta cheese during brining by magnetic resonance imaging and NMR relaxometry. J. Food Eng. 2011, 107, 200–207. [Google Scholar] [CrossRef]
- Salaün, F.; Mietton, B.; Gaucheron, F. Buffering capacity of dairy products. Int. Dairy J. 2005, 15, 95–109. [Google Scholar] [CrossRef]
- Shakerian, M.; Kiani, H.; Ehsani, M.-R. Effect of buffalo milk on the yield and composition of buffalo feta cheese at various processing parameters. Food Biosci. 2016, 15, 110–117. [Google Scholar] [CrossRef]
- Omrani Khiabanian, N.; Motamedzadegan, A.; Naghizadeh Raisi, S.; Alimi, M. Chemical, textural, rheological, and sensorial properties of wheyless feta cheese as influenced by replacement of milk protein concentrate with pea protein isolate. J. Texture Stud. 2020, 51, 488–500. [Google Scholar] [CrossRef]
- Baig, D.; Sabikhi, L.; Khetra, Y.; Kumar, D. Effect of casein to fat ratio of camel milk on solids losses in cheese whey and their recovery in camel milk cheese. Int. Dairy J. 2022, 124, 105185. [Google Scholar] [CrossRef]
- Sipahioglu, O.; Alvarez, V.; Solano-Lopez, C. Structure, physico-chemical and sensory properties of feta cheese made with tapioca starch and lecithin as fat mimetics. Int. Dairy J. 1999, 9, 783–789. [Google Scholar] [CrossRef]
- Kaya, S. Effect of salt on hardness and whiteness of Gaziantep cheese during short-term brining. J. Food Eng. 2002, 52, 155–159. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Ak, M.M. Linear Viscoelasticity of Cheese. In Cheese Rheology and Texture; Gunasekaran, S., Ak, M.M., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 255–282. ISBN 1420031945. [Google Scholar]
- Tunick, M.H. Rheology of Dairy Foods that Gel, Stretch, and Fracture. J. Dairy Sci. 2000, 83, 1892–1898. [Google Scholar] [CrossRef]
- Steffe, J.F. Rheological Methods in Food Process. Engineering; Freeman Press: East Lansing, MI, USA, 1996; ISBN 0963203614. [Google Scholar]
- Solorza, F.J.; Bell, A.E. Effect of calcium, fat and total solids on the rheology of a model soft cheese system. Int. J. Dairy Technol. 1995, 48, 133–139. [Google Scholar] [CrossRef]
- Giri, S.K.; Tripathi, M.K.; Kotwaliwale, N. Effect of composition and storage time on some physico-chemical and rheological properties of probiotic soy-cheese spread. J. Food Sci. Technol. 2018, 55, 1667–1674. [Google Scholar] [CrossRef]
- McMahon, D.J. Issues with lower fat and lower salt cheeses. Aust. J. Dairy Technol. 2010, 65, 200–205. [Google Scholar]
Ingredients (%) | Treatment 1 | ||
---|---|---|---|
MCC-3 | MCC-6 | MCC-9 | |
Water | 80.60 | 80.60 | 80.60 |
MCC powder | 3.10 | 6.90 | 10.70 |
Milk permeate powder | 8.20 | 4.50 | 0.80 |
Milk cream (40%) | 8.10 | 8.00 | 7.90 |
Total | 100 | 100 | 100 |
Treatment 1 | Composition 2 | ||||
---|---|---|---|---|---|
TS | TP | TP:Fat | Ash | NCN | |
Control | 12.36 b | 3.01 d | 0.91 c | 0.72 b | 0.94 a |
MCC-3 | 14.72 a | 3.28 c | 0.99 c | 0.82 a | 0.61 d |
MCC-6 | 14.57 a | 6.39 b | 1.93 b | 0.83 a | 0.73 c |
MCC-9 | 14.83 a | 9.61 a | 2.91 a | 0.82 a | 0.87 b |
SEM | 0.30 | 0.80 | 0.25 | 0.01 | 0.04 |
p-value | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
Treatment 1 | Composition 2 | |||||
---|---|---|---|---|---|---|
TS | TP | Fat | TP:Fat | Salt | Ash | |
Control | 49.03 ab | 17.36 b | 19.26 a | 0.90 c | 11.20 | 11.81 |
MCC-3 | 50.54 a | 14.04 c | 19.08 a | 0.73 c | 11.15 | 11.75 |
MCC-6 | 44.67 b | 18.08 ab | 12.59 b | 1.44 b | 11.33 | 12.36 |
MCC-9 | 45.47 ab | 19.10 a | 7.46 c | 2.55 a | 11.28 | 12.21 |
SEM | 1.00 | 0.60 | 1.86 | 0.21 | 0.09 | 0.13 |
p-value | 0.09 | <0.05 | <0.05 | <0.05 | 0.92 | 0.34 |
Treatment 1 | Yield (%) | Adjusted Yield 2 (%) | Hardness (kg) |
---|---|---|---|
Control | 17.54 c | 19.22 c | 9.25 |
MCC-3 | 19.04 c | 21.36 c | 9.67 |
MCC-6 | 36.61 b | 37.24 b | 9.60 |
MCC-9 | 54.77 a | 56.45 a | 9.44 |
SEM | 4.60 | 4.50 | 0.18 |
p-value | <0.05 | <0.05 | 0.42 |
Treatment 1 | Hunter color | |||
---|---|---|---|---|
L* | a* | b* | ΔE | |
Control | 94.55 a | −1.31 b | 8.80 b | - |
MCC-3 | 93.97 a | −1.35 bc | 10.55 a | 1.92 |
MCC-6 | 92.79 b | −1.63 c | 10.21 ab | 2.37 |
MCC-9 | 91.82 b | −1.02 a | 8.76 b | 2.89 |
SEM | 0.40 | 0.07 | 0.30 | 0.20 |
p-value | <0.05 | <0.05 | <0.05 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammam, A.R.A.; Kapoor, R.; Salunke, P.; Metzger, L.E. Compositional and Functional Characteristics of Feta-Type Cheese Made from Micellar Casein Concentrate. Foods 2022, 11, 24. https://doi.org/10.3390/foods11010024
Hammam ARA, Kapoor R, Salunke P, Metzger LE. Compositional and Functional Characteristics of Feta-Type Cheese Made from Micellar Casein Concentrate. Foods. 2022; 11(1):24. https://doi.org/10.3390/foods11010024
Chicago/Turabian StyleHammam, Ahmed R. A., Rohit Kapoor, Prafulla Salunke, and Lloyd E. Metzger. 2022. "Compositional and Functional Characteristics of Feta-Type Cheese Made from Micellar Casein Concentrate" Foods 11, no. 1: 24. https://doi.org/10.3390/foods11010024
APA StyleHammam, A. R. A., Kapoor, R., Salunke, P., & Metzger, L. E. (2022). Compositional and Functional Characteristics of Feta-Type Cheese Made from Micellar Casein Concentrate. Foods, 11(1), 24. https://doi.org/10.3390/foods11010024