Boiling, Blanching, and Stir-Frying Markedly Reduce Pesticide Residues in Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Vegetable Samples Cooking Processes
2.3. Cooking Processes
2.4. Sample Preparation
2.5. GC-MS/MS Analysis
2.6. Calibration and Quantification
2.7. Statistical Analysis
3. Results
3.1. GC-MS/MS Method Validation
3.2. Effects of Cooking on Pesticide Residue Removal in Chinese Kale Samples
3.3. Effects of Cooking on Pesticide Residue Removal in Yard Long Bean Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EU | European Union |
FDA | Food and Drug Administration |
GC-MS | Gas chromatography-Mass spectrometer |
GCB | graphited carbon black |
MS | Mass spectrometer |
MRL | maximum residue limits |
QuEChERS | Quick Easy Cheap Effective Rugged and Safe |
References
- Reiler, E.; Jørs, E.; Bælum, J.; Huici, O.; Caero, M.M.A.; Cedergreen, N. The influence of tomato processing on residues of organochlorine and organophosphate insecticides and their associated dietary risk. Sci. Total Environ. 2015, 527–528, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Clostre, F.; Letourmy, P.; Thuries, L.; Lesueur-Jannoyer, M. Effect of home food processing on chlordecone (organochlorine) content in vegetables. Sci. Total Environ. 2014, 490, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Harnpicharnchai, K.; Chaiear, N.; Charerntanyarak, L. Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam Subdistrict, Khon Kaen, Thailand. Southeast Asian J. Trop. Med. Publ. Health 2013, 44, 1088–1097. [Google Scholar]
- Ronn, M.; Lind, L.; van Bavel, B.; Salihovic, S.; Michaelsson, K.; Lind, P.M. Circulating levels of persistent organic pollutants associate in divergent ways to fat mass measured by DXA in humans. Chemosphere 2011, 85, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Salerno, C.; Sacco, S.; Panella, M.; Berchialla, P.; Vanhaecht, K.; Palin, L.A. Cancer risk among farmers in the Province of Vercelli (Italy) from 2002 to 2005: An ecological study. Ann. Di Ig. Med. Prev. E Di Comunita 2014, 26, 255–263. [Google Scholar]
- Uysal, M.; Bozcuk, H.; Karakilinc, H.; Goksu, S.; Tatli, A.M.; Gunduz, S.; Arslan, D.; Coskun, H.S.; Savas, B. Pesticides and cancer: The first incidence study conducted in Turkey. J. Environ. Pathol. Toxicol. Oncol. 2013, 32, 245–249. [Google Scholar] [CrossRef]
- Jardim, A.N.; Mello, D.C.; Goes, F.C.; Junior EF, F.; Caldas, E.D. Pesticide residues in cashew apple, guava, kaki and peach: GC-muECD, GC-FPD and LC-MS/MS multiresidue method validation, analysis and cumulative acute risk assessment. Food Chem. 2014, 164, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Jensen, B.H.; Petersen, A.; Christensen, T. Probabilistic assessment of the cumulative dietary acute exposure of the population of Denmark to organophosphorus and carbamate pesticides. Food Addit. Contam. Part A 2009, 26, 1038–1048. [Google Scholar] [CrossRef]
- Lozowicka, B. Health risk for children and adults consuming apples with pesticide residue. Sci. Total Environ. 2015, 502, 184–198. [Google Scholar] [CrossRef]
- Nougadère, A.; Sirot, V.; Kadar, A.; Fastier, A.; Truchot, E.; Vergnet, C.; Hommet, F.; Baylé, J.; Gros, P.; Leblanc, J.-C. Total diet study on pesticide residues in France: Levels in food as consumed and chronic dietary risk to consumers. Environ. Int. 2012, 45, 135–150. [Google Scholar] [CrossRef]
- Wanwimolruk, S.; Kanchanamayoon, O.; Boonpangrak, S.; Prachayasittikul, V. Food safety in Thailand 1: It is safe to eat watermelon and durian in Thailand. Environ. Health. Prev. Med. 2015, 20, 204–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanwimolruk, S.; Phopin, K.; Boonpangrak, S.; Prachayasittikul, V. Food safety in Thailand 4: Comparison of pesticide residues found in three commonly consumed vegetables purchased from local markets and supermarkets in Thailand. PeerJ 2016, 4, e2432. [Google Scholar] [CrossRef] [PubMed]
- Phopin, K.; Wanwimolruk, S.; Prachayasittikul, V. Food safety in Thailand 3: Pesticide Residues detected in Mangosteen (Garcinia mangostana L.), Queen of Fruits. J. Sci. Food Agr. 2017, 97, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Wanwimolruk, S.; Kanchanamayoon, O.; Phopin, K.; Prachayasittikul, V. Food Safety in Thailand 2: Pesticide residues found in Chinese kale (Brassica oleracea), a commonly consumed vegetable in Asian countries. Sci. Total Environ. 2015, 532, 447–455. [Google Scholar] [CrossRef]
- Paramasivam, M.; Banerjee, H. Dissipation of flubendiamide residues in/on cabbage (Brassica oleracea L.). Environ. Monit. Assess 2013, 185, 1577–1581. [Google Scholar] [CrossRef]
- Kanchanamayoon, O.; Buddhaprom, J.; Wanwimolruk, S.; Boonpangrak, S.; Phopin, K.; Prachayasittikul, V. Food safety in Thailand 6: Pesticide residues found in yardlong bean and cucumber. In Proceedings of the 10th Thailand Congress of Nutrition, Bangkok, Thailand, 18–20 October 2016. [Google Scholar]
- Sandoval-Insausti, H.; Chiu, Y.-H.; Wang, Y.-X.; Hart, J.E.; Bhupathiraju, S.N.; Mínguez-Alarcón, L.; Ding, M.; Willett, W.C.; Laden, F.; Chavarro, J.E. Intake of fruits and vegetables according to pesticide residue status in relation to all-cause and disease-specific mortality: Results from three prospective cohort studies. Environ. Int. 2022, 159, 107024. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Sandoval-Insausti, H.; Ley, S.H.; Bhupathiraju, S.N.; Hauser, R.; Rimm, E.B.; Manson, J.E.; Sun, Q.; Chavarro, J.E. Association between intake of fruits and vegetables by pesticide residue status and coronary heart disease risk. Environ. Int. 2019, 132, 105113. [Google Scholar] [CrossRef]
- Abou-Arab, A.A.K. Behavior of pesticides in tomatoes during commercial and home preparation. Food Chem. 1999, 65, 509–514. [Google Scholar] [CrossRef]
- Keikotlhaile, B.M.; Spanoghe, P.; Steurbaut, W. Effects of food processing on pesticide residues in fruits and vegetables: A meta-analysis approach. Food Chem. Toxicol. 2010, 48, 1–6. [Google Scholar] [CrossRef]
- Medina, M.B.; Resnik, S.L.; Munitz, M.S. Optimization of a rice cooking method using response surface methodology with desirability function approach to minimize pesticide concentration. Food Chem. 2021, 352, 129364. [Google Scholar] [CrossRef]
- Chavarri, M.J.; Herrera, A.; Ariño, A. The decrease in pesticides in fruit and vegetables during commercial processing. Int. J. Food Sci. Technol. 2005, 40, 205–211. [Google Scholar] [CrossRef]
- Chung, S.W. How effective are common household preparations on removing pesticide residues from fruit and vegetables? A review. J. Sci. Food Agric. 2018, 98, 2857–2870. [Google Scholar] [CrossRef] [PubMed]
- Elkins, E.R. Effect of commercial processing on pesticide residues in selected fruits and vegetables. J. Assoc. Off. Anal. Chem. 1989, 72, 533–535. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, N.; Bahramifar, N.; Esmaili-Sari, A. Residue content of carbaryl applied on greenhouse cucumbers and its reduction by duration of a pre-harvest interval and post-harvest household processing. J. Sci. Food Agric. 2010, 90, 2249–2253. [Google Scholar] [CrossRef] [PubMed]
- Holland, P.T.; Hamilton, D.; Ohlin, B.; Skidmore, M.W. Effects of storage and processing on pesticide residues in plant products. Pure Appl. Chem. 1994, 66, 335–356. [Google Scholar] [CrossRef]
- Ishfaq, B.; Sameen, A.; Pasha, I.; Shahid, M.; Abrar, M. Evaluation of cookery methods in reduction of pesticide residues and quality attributes of okra fruit (Abelmoschus esculentus L.). Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Shakoori, A.; Yazdanpanah, H.; Kobarfard, F.; Shojaee, M.H.; Salamzadeh, J. The Effects of House Cooking Process on Residue Concentrations of 41 Multi-Class Pesticides in Rice. Iran. J. Pharm. Sci. 2018, 17, 571–584. [Google Scholar]
- Huan, Z.; Xu, Z.; Jiang, W.; Chen, Z.; Luo, J. Effect of Chinese traditional cooking on eight pesticides residue during cowpea processing. Food Chem. 2015, 170, 118–122. [Google Scholar] [CrossRef]
- Yigit, N.; Velioglu, Y.S. Effects of processing and storage on pesticide residues in foods. Crit. Rev. Food Sci. Nutr. 2020, 60, 3622–3641. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, J. Effects of the cooking modes on commonly used pesticides residue in vegetables and their chronic dietary exposure risk in South China. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2020, 37, 121–130. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehotay, S.J. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehotay, S.J.; Son, K.A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A 2010, 1217, 2548–2560. [Google Scholar] [CrossRef] [PubMed]
- Paya, P.; Anastassiades, M.; Mack, D.; Sigalova, I.; Tasdelen, B.; Oliva, J.; Barba, A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem. 2007, 389, 1697–1714. [Google Scholar] [CrossRef]
- Duff, M.; Voglino, M. Rapid and Robust Multi-Residue Pesticides Analysis Using the Bruker 320-MSGC Triple Quadru-Pole Mass Spectrometer. Bruker Application Note #CA-270128. 2012. Available online: www.bruker.com/chemicalanalysis (accessed on 2 March 2022).
- Dong, F.; Chen, X.; Liu, X.; Xu, J.; Li, Y.; Shan, W.; Zheng, Y. Simultaneous determination of five pyrazole fungicides in cereals, vegetables and fruits using liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2012, 1262, 98–106. [Google Scholar] [CrossRef]
- Koesukwiwat, U.; Lehotay, S.J.; Leepipatpiboon, N. Fast, low-pressure gas chromatography triple quadrupole tandem mass spectrometry for analysis of 150 pesticide residues in fruits and vegetables. J. Chromatogr. A. 2011, 1218, 7039–7050. [Google Scholar] [CrossRef]
- European Commission. EU-Pesticides Database (Document on the Internet). Kale. 2016. Available online: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=product.resultat&language=EN&selectedID=144 (accessed on 29 July 2017).
- Thailand, C.L. The Central Lab Thai Pesticide Multi-Residues Testing on: Kale (Document on the Internet). 2014. Available online: https://www.centrallabthai.com/web/uploadfiles/pdf/MRLs/EU/Vegetables&Fruits/EU_MRLs_Kale.pdf (accessed on 15 February 2022).
- Rani, M.; Saini, S.; Kumari, B. Persistence and effect of processing on chlorpyriphos residues in tomato (Lycopersicon esculantum Mill.). Ecotoxicol. Environ. Saf. 2013, 95, 247–252. [Google Scholar] [CrossRef]
- Wanwimolruk, S.; Duangsuwan, W.; Phopin, K.; Boonpangrak, S. Food safety in Thailand 5: The effect of washing pesticide residues found in cabbages and tomatoes. J. Consum. Prot. Food Saf. 2017, 12, 209–221. [Google Scholar] [CrossRef]
- Bajwa, U.; Sandhu, K.S. Effect of handling and processing on pesticide residues in food- a review. J. Food Sci. Technol. 2014, 51, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Watanabe, S.; ITO, K. Residue of synthetic pyrethroid insecticide fenvalerate in vegetables and its fate in the process of cooking. Kanagawa-ken Eisei Kenkyusho Kenkyu Hokoku 1988, 18, 43–45. [Google Scholar]
- Sharma, I.D.; Nath, A.; Dubey, J.K. Persistence of mancozeb (Dithane M 45) in some vegetables and efficacy of decontamination processes. J. Food Sci. Technol. 1994, 31, 215–218. [Google Scholar]
- Radwan, M.A.; Abu-Elamayem, M.M.; Shiboob, M.H.; Abdel-Aal, A. Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing. Food Chem. Toxicol. 2005, 43, 553–557. [Google Scholar]
- Nath, G.; Jat, N.R.; Srivastava, B.P. Effect of washing, cooking and dehydration on the removal of some insecticides from Okra (Abelmoschus esculentus Moench.). J. Food Sci. Technol. 1975, 12, 127–130. [Google Scholar]
- Wen, K.; Kawanishi, Y.; Kiyota, N.; Okamoto, K.; Nishihara, T.; Kondo, M. Behavior of pesticides during cooking treatments. Eisei Kagaku 1985, 31, 256–259. [Google Scholar] [CrossRef]
- Nagayama, T. Behavior of Residual Organophosphorus Pesticides in Foodstuffs during Leaching or Cooking. J. Agric. Food Chem. 1996, 44, 2388–2393. [Google Scholar] [CrossRef]
- Soliman, K.M. Changes in concentration of pesticide residues in potatoes during washing and home preparation. Food Chem. Toxicol. 2001, 39, 887–891. [Google Scholar] [CrossRef]
Pesticides | Pesticide Residues Found (ppb) | ||
---|---|---|---|
Control (Uncooked) | Boiled | % Removal | |
Carbamates | |||
Carbofuran | 6.9 ± 1.2 | 4.5 ± 0.9 ** | 35 |
Fenobucarb | 2787 ± 527 | 2208 ± 447 * | 21 |
Indoxacarb | 120 ± 25 | 35 ± 7 *** | 71 |
Organophosphates | |||
Chlorpyrifos | 1222 ± 145 | 1223 ± 311 | 0 |
Diazinon | 1840 ± 380 | 25 ± 12,517 ** | 32 |
Profenofos | 5235 ± 602 | 4278 ± 619 * | 18 |
Pyrethroids | |||
λ-Cyhalothrin | 73 ± 10 | 32 ± 4 *** | 55 |
Cypermethrin | 169 ± 23 | 74 ± 9 *** | 56 |
Deltamethrin | 255 ± 47 | 87 ± 14 *** | 66 |
Fenvalerate | 33 ± 4 | 12 ± 2 *** | 62 |
Flumethrin | 201 ± 42 | 182 ± 46 | 9 |
Other | |||
Alachlor | 7.7 ± 1.3 | 3.2 ± 0.7 *** | 59 |
Flutolanil | 0.5 ± 0.1 | 0.4 ± 0.1 | 14 |
Mefenacet | 0.8 ± 0.2 | 0.8 ± 0.1 | 4 |
Mepronil | 464 ± 60 | 470 ± 121 | −1.3 |
Metalaxyl | 1171 ± 196 | 567 ± 110 *** | 52 |
Pesticides | Pesticide Residues Found (ppb) | % Removal | |
---|---|---|---|
Control (Uncooked) | Blanched | ||
Carbamates | |||
Carbofuran | 5.9 ± 1.2 | 1.8 ± 0.1 ** | 69 |
Fenobucarb | 1629 ± 336 | 860 ± 156 ** | 47 |
Indoxacarb | 97 ± 18 | 75 ± 8 | 22 |
Organophosphates | |||
Chlorpyrifos | 1258 ± 258 | 1005 ± 198 | 20 |
Diazinon | 1067 ± 204 | 1128 ± 205 | −5.7 |
Profenofos | 4015 ± 739 | 4029 ± 987 | −0.3 |
Pyrethroids | |||
λ-Cyhalothrin | 70 ± 11 | 44 ± 9 ** | 37 |
Cypermethrin | 228 ± 32 | 136 ± 23 ** | 40 |
Deltamethrin | 392 ± 58 | 215 ± 44 ** | 45 |
Fenvalerate | 42 ± 6 | 27 ± 5 ** | 37 |
Flumethrin | 122 ± 20 | 78 ± 14 ** | 36 |
Other | |||
Alachlor | 6.3 ± 1.2 | 0.0 ± 0 *** | 100 |
Flutolanil | 0.4 ± 0.1 | 0.4 ± 0.1 | 0 |
Mefenacet | 0.6 ± 0.1 | 0.6 ± 0.1 | 0 |
Mepronil | 192 ± 35 | 206 ± 33 | −7.3 |
Metalaxyl | 953 ± 192 | 198 ± 33 *** | 79 |
Pesticides | Pesticide Residues Found (ppb) | % Removal | |
---|---|---|---|
Control (Uncooked) | Stir-Fried | ||
Carbamate | |||
Carbofuran | 10.6 ± 2.0 | 8.0 ± 1.4 * | 25 |
Fenobucarb | 2862 ± 507 | 2123 ± 367 * | 26 |
Indoxacarb | 95 ± 16 | 62 ± 12 ** | 35 |
Organophosphates | |||
Chlorpyrifos | 1524 ± 149 | 1049 ± 181 ** | 31 |
Diazinon | 2638 ± 373 | 1530 ± 311 *** | 42 |
Profenofos | 6071 ± 750 | 3635 ± 728 *** | 40 |
Pyrethroids | |||
λ-Cyhalothrin | 91 ± 16 | 36 ± 7 *** | 60 |
Cypermethrin | 212 ± 29 | 154 ± 31 ** | 28 |
Deltamethrin | 342 ± 66 | 178 ± 32 ** | 48 |
Fenvalerate | 35 ± 6 | 25 ± 5 ** | 30 |
Flumethrin | 168 ± 30 | 345 ± 80 | −105 |
Other | |||
Alachlor | 9.7 ± 2.0 | 4.8 ± 1.0 *** | 51 |
Flutolanil | 0.6 ± 0.1 | 0.3 ± 0.1 *** | 51 |
Mefenacet | 0.7 ± 0.2 | 0.5 ± 0.1 | 32 |
Mepronil | 285 ± 41 | 254 ± 51 | 11 |
Metalaxyl | 1379 ± 222 | 939 ± 19 ** | 32 |
Pesticides | Pesticide Residues Found (ppb) | |||
---|---|---|---|---|
Control (Uncooked) | Boiled | Blanched | Stir-Fried | |
Organophosphates | ||||
Chlorpyrifos | 4.3 ± 0.7 | 2.7 ± 0.5 *** (37%) a | 3.2 ± 0.6 * (27%) | 3.5 ± 0.6 (19%) |
Dimethoate | 156 ± 32 | 119 ± 19 (24%) | 126 ± 26 (20%) | 183 ± 30 (−17%) |
Profenofos | 1.5 ± 0.1 | 1.4 ± 0.2 (6%) | 1.6 ± 0.3 (−7%) | 1.4 ± 0.3 (6%) |
Other | ||||
Flumethrin | 128 ± 25 | 47 ± 8 *** (63%) | 52 ± 10 *** (59%) | 84 ± 10 *** (34%) |
Captan | 4335 ± 446 | 0.0 ± 0.0 *** (100%) | 851 ± 542 *** (80%) | 1603 ± 263 *** (63%) |
Chemical Class | Pesticide | Found In | Log p # | |
---|---|---|---|---|
Chinese Kale | Yard Long Bean | |||
Carbamates | Carbofuran | ✓ | 1.8 | |
Fenobucarb | ✓ | 2.8 | ||
Indoxacarb | ✓ | 4.7 | ||
Organophosphates | Chlorpyrifos | ✓ | ✓ | 4.7 |
Diazinon | ✓ | 3.7 | ||
Dimethoate | ✓ | 0.75 | ||
Profenofos | ✓ | ✓ | 1.7 | |
Pyrethroids | Cypermethrin | ✓ | 5.6 | |
Deltamethrin | ✓ | 4.6 | ||
Fenvalerate | ✓ | 5.0 | ||
Flumethrin | ✓ | ✓ | 7.6 | |
λ-Cyhalothrin | ✓ | 6.8 | ||
Others | Captan | ✓ | 2.5 | |
Metalaxyl | ✓ | 1.8 | ||
Flutolanil | ✓ | 3.2 | ||
Mepronil | ✓ | 3.7 | ||
Alachlor | ✓ | 3.1 | ||
Mefenacet | ✓ | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phopin, K.; Wanwimolruk, S.; Norkaew, C.; Buddhaprom, J.; Isarankura-Na-Ayudhya, C. Boiling, Blanching, and Stir-Frying Markedly Reduce Pesticide Residues in Vegetables. Foods 2022, 11, 1463. https://doi.org/10.3390/foods11101463
Phopin K, Wanwimolruk S, Norkaew C, Buddhaprom J, Isarankura-Na-Ayudhya C. Boiling, Blanching, and Stir-Frying Markedly Reduce Pesticide Residues in Vegetables. Foods. 2022; 11(10):1463. https://doi.org/10.3390/foods11101463
Chicago/Turabian StylePhopin, Kamonrat, Sompon Wanwimolruk, Chosita Norkaew, Jaruwat Buddhaprom, and Chartchalerm Isarankura-Na-Ayudhya. 2022. "Boiling, Blanching, and Stir-Frying Markedly Reduce Pesticide Residues in Vegetables" Foods 11, no. 10: 1463. https://doi.org/10.3390/foods11101463
APA StylePhopin, K., Wanwimolruk, S., Norkaew, C., Buddhaprom, J., & Isarankura-Na-Ayudhya, C. (2022). Boiling, Blanching, and Stir-Frying Markedly Reduce Pesticide Residues in Vegetables. Foods, 11(10), 1463. https://doi.org/10.3390/foods11101463