Effects of Peroxyl Radicals on the Structural Characteristics and Fatty Acid Composition of High-Density Lipoprotein from Duck Egg Yolk
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials and Reagents
2.2. Preparation of High-Density Lipoprotein (HDL) from Duck Egg Yolk
2.3. Preparation of Oxidized HDL
2.4. SDS-PAGE Analysis
2.5. Measurements of Protein Carbonyl and Free Sulfhydryl
2.6. FTIR and CD Analysis
2.7. Intrinsic Fluorescence Spectroscopy Analysis and Surface Hydrophobicity
2.8. Determination of Solubility and Turbidity
2.9. Particle Size Distribution and Zeta Potential
2.10. Analysis of Fatty Acid Composition
2.11. Statistics Analysis
3. Results and Discussion
3.1. SDS-PAGE Analysis of HDL
3.2. Carbonyl and Free Sulfhydryl Content of HDL
3.3. Fourier-Transform Infrared Spectroscopy (FTIR) and Circular Dichroism (CD) Analysis of HDL
3.4. Analysis of Endogenous Fluorescence and Surface Hydrophobicity
3.5. Solubility and Turbidity Measurements
3.6. Characterization of Particle Size and Zeta Potential
3.7. Analysis of Fatty Acid Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marc, A. Composition and extraction of egg components. In Bioactive Egg Compounds; Huopalahti, R., López-Fandiño, R., Anton, M., Schade, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–13. [Google Scholar] [CrossRef]
- Lee, R.F.; Walker, A.; Reish, D.J. Characterization of lipovitellin in eggs of the polychaete Neanthes arenaceodentata. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2005, 140, 381–386. [Google Scholar] [CrossRef]
- Kurisaki, J.I.; Yamauchi, K.; Isshiki, H.; Ogiwara, S. Differences between α- and β-Lipovitellin from hen egg yolk. J. Agric. Chem. Soc. Jpn. 2006, 45, 699–704. [Google Scholar] [CrossRef]
- Bernardi, G.; Cook, W.H. Separation and characterization of the two high density lipoproteins of egg yolk, α- and β-lipovitellin. BBA—Biochim. Biophys. Acta 1960, 44, 96–105. [Google Scholar] [CrossRef]
- Anderson, T.A.; Levitt, D.G.; Banaszak, L.J. The structural basis of lipid interactions in lipovitellin, a soluble lipoprotein. Structure 1998, 6, 895–909. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Qiu, N.; Geng, F.; Keast, R.; Li, B.; Zheng, X. N-glycoproteomic analysis of duck egg yolk proteins: Implications for biofunctions and evolution. Int. J. Biol. Macromol. 2020, 151, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Strixner, T.; Sterr, J.; Kulozik, U.; Gebhardt, R. Structural study on hen-egg yolk high density lipoprotein (HDL) granules. Food Biophys. 2014, 9, 314–321. [Google Scholar] [CrossRef]
- Banaszak, L.; Sharrock, W.; Timmins, P. Structure and function of a lipoprotein: Lipovitellin. Annu. Rev. Biophys. Biophys. Chem. 1991, 20, 221–246. [Google Scholar] [CrossRef] [PubMed]
- Groche, D.; Rashkovetsky, L.G.; Falchuk, K.H.; Auld, D.S. Subunit composition of the zinc proteins α- and β-lipovitellin from chicken. J. Protein Chem. 2000, 19, 379–387. [Google Scholar] [CrossRef]
- Estévez, M.; Luna, C. Dietary protein oxidation: A silent threat to human health? Crit. Rev. Food Sci. Nutr. 2017, 57, 3781–3793. [Google Scholar] [CrossRef]
- Estevez, M.; Xiong, Y. Intake of oxidized proteins and amino acids and causative oxidative stress and disease: Recent scientific evidences and hypotheses. J. Food Sci. 2019, 84, 387–396. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci. Rep. 2021, 11, 20707. [Google Scholar] [CrossRef] [PubMed]
- Nosratpour, M.; Farhoosh, R.; Sharif, A. Quantitative indices of the oxidizability of fatty acid compositions. Eur. J. Lipid Sci. Technol. 2017, 119, 1700203. [Google Scholar] [CrossRef]
- Gruffat, D.; Bauchart, D.; Thomas, A.; Parafita, E.; Durand, D. Fatty acid composition and oxidation in beef muscles as affected by ageing times and cooking methods. Food Chem. 2021, 343, 128476. [Google Scholar] [CrossRef] [PubMed]
- Dikalov, S.I.; Mason, R.P. Spin trapping of polyunsaturated fatty acid-derived peroxyl radicals: Reassignment to alkoxyl radical adducts. Free Radic. Biol. Med. 2001, 30, 187–197. [Google Scholar] [CrossRef]
- Morita, M.; Naito, Y.; Yoshikawa, T.; Niki, E. Inhibition of plasma lipid oxidation induced by peroxyl radicals, peroxynitrite, hypochlorite, 15-lipoxygenase, and singlet oxygen by clinical drugs. Bioorg. Med. Chem. Lett. 2016, 26, 5411–5417. [Google Scholar] [CrossRef]
- Miyazawa, T. Lipid hydroperoxides in nutrition, health, and diseases. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2021, 97, 161–196. [Google Scholar] [CrossRef]
- Mao, X.; Wang, D.; Sun, L.; Zhang, J.; Wu, Q. Effect of peroxyl-radicals-induced oxidative modification in the physicochemical and emulsifying properties of walnut protein. J. Am. Oil Chem. Soc. 2021, 98, 903–910. [Google Scholar] [CrossRef]
- Zhu, Z.; Mao, X.; Wu, Q.; Zhang, J.; Deng, X. Effects of oxidative modification of peroxyl radicals on the structure and foamability of chickpea protein isolates. J. Food Sci. 2021, 86, 824–833. [Google Scholar] [CrossRef]
- Morgan, J.N.; Armstrong, D.J. Quantification of cholesterol oxidation products in egg yolk powder spray-dried with direct heating. J. Food Sci. 1992, 57, 43–45. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, J.; Zhou, X.; Khan, I.A.; Bassey, A.P.; Huang, M. Comparison of two kinds of peroxyl radical pretreatment at chicken myofibrillar proteins glycation on the formation of Nε-carboxymethyllysine and Nε-carboxyethyllysine. Food Chem. 2021, 353, 129487. [Google Scholar] [CrossRef]
- Wei, W.; Lin, Q.; Hua, Y.; Yue, W.; Ying, L.; Fu, X.; Xiao, H. Study on mechanism of soy protein oxidation induced by lipid peroxidation products. Adv. J. Food Sci. Technol. 2013, 5, 46–53. [Google Scholar] [CrossRef]
- Bao, Z.; Kang, D.; Xu, X.; Sun, N.; Lin, S. Variation in the structure and emulsification of egg yolk high-density lipoprotein by lipid peroxide. J. Food Biochem. 2019, 43, 13019. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, J.; Wang, Y.; Wu, D.; Liang, D.; Ye, H.; Cai, Z.; Ma, M.; Geng, F. Effects of high-intensity ultrasonic (HIU) treatment on the functional properties and assemblage structure of egg yolk. Ultrason. Sonochem. 2020, 60, 104767. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, C.S.; Oliveira, R.; Bento, F.; Geraldo, D.; Rodrigues, J.V.; Marcos, J.C. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Anal. Biochem. 2014, 458, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, T.; Toma, S.J.; Nakai, S. Determination of sh- and ss-groups in some food proteins using ellman’s reagent. J. Food Sci. 1974, 39, 49–51. [Google Scholar] [CrossRef]
- Zeng, Q.; Zeng, W.; Jin, Y.; Sheng, L. Construction and evaluation of ovalbumin-pullulan nanogels as a potential delivery carrier for curcumin. Food Chem. 2022, 367, 130716. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, M.; Ma, M. Emulsifying properties of ovalbumin: Improvement and mechanism by phosphorylation in the presence of sodium tripolyphosphate. Food Hydrocoll. 2016, 60, 29–37. [Google Scholar] [CrossRef]
- Li, P.; Jin, Y.; Sheng, L. Impact of microwave assisted phosphorylation on the physicochemistry and rehydration behaviour of egg white powder. Food Hydrocoll. 2020, 100, 105380. [Google Scholar] [CrossRef]
- Hirasawa, T.; Kikuchi, M.; Shigeta, K.; Takasaki, S.; Sato, Y.; Sato, T.; Ogura, J.; Onodera, K.; Fukuhara, N.; Onishi, Y.; et al. High-throughput liquid chromatography/electrospray ionization–tandem mass spectrometry method using in-source collision-induced dissociation for simultaneous quantification of imatinib, dasatinib, bosutinib, nilotinib, and ibrutinib in human plasma. Biomed. Chromatogr. 2021, 35, 5124. [Google Scholar] [CrossRef]
- Grimsrud, P.A.; Xie, H.; Griffin, T.J.; Bernlohr, D.A. Oxidative Stress and Covalent Modification of Protein with Bioactive Aldehydes. J. Biol. Chem. 2008, 283, 21837–21841. [Google Scholar] [CrossRef] [Green Version]
- Bao, Z.J.; Wu, J.P.P.; Cheng, Y.; Chi, Y.J. Effects of lipid peroxide on the structure and gel properties of ovalbumin. Process Biochem. 2017, 57, 124–130. [Google Scholar] [CrossRef]
- Cheng, Y.; Chi, Y.; Geng, X.; Chi, Y. Effect of 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) induced oxidation on the physicochemical properties, in vitro digestibility, and nutritional value of egg white protein. LWT 2021, 143, 11103. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Li, X.; Wang, P.; Yu, X.; Fu, Q.; Gao, S. Effect of AAPH oxidation on digestion characteristics of seed watermelon (Citrullus lanatus var) kernels protein isolates. Food Sci. Hum. Wellness 2020, 9, 402–410. [Google Scholar] [CrossRef]
- Headlam, H.A.; Davies, M.J. Markers of protein oxidation: Different oxidants give rise to variable yields of bound and released carbonyl products. Free. Radic. Biol. Med. 2004, 36, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R.; Levine, R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003, 25, 207–218. [Google Scholar] [CrossRef]
- Van Bergen, L.A.; Roos, G.; de Proft, F. From thiol to sulfonic acid: Modeling the oxidation pathway of protein thiols by hydrogen peroxide. J. Phys. Chem. 2014, 118, 6078–6084. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, F.; Zhao, M.; Yang, B.; Cui, C. Physicochemical changes of myofibrillar proteins during processing of Cantonese sausage in relation to their aggregation behaviour and in vitro digestibility. Food Chem. 2011, 129, 472–478. [Google Scholar] [CrossRef]
- Dorta, E.; Ávila, F.; Fuentes-Lemus, E.; Fuentealba, D.; López-Alarcón, C. Oxidation of myofibrillar proteins induced by peroxyl radicals: Role of oxidizable amino acids. Food Res. Int. 2019, 126, 108580. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Davies, M.J. Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta 2001, 1504, 196–219. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Xiong, Y.L. Comparative time-course of lipid and myofibrillar protein oxidation in different biphasic systems under hydroxyl radical stress. Food Chem. 2018, 243, 231–238. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, J.; Shi, Y.; Wang, Y.; Cheng, L.; Liu, L.; Wang, N.; Li, H.; Wu, D.; Geng, F. Molecular aggregation and property changes of egg yolk low-density lipoprotein induced by ethanol and high-density ultrasound. Ultrason. Sonochem. 2020, 63, 104933. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Hu, Q.; Wang, T.; Xue, J.; Luo, Y. Characterization of high density lipoprotein from egg yolk and its ability to form nanocomplexes with chitosan as natural delivery vehicles. Food Hydrocoll. 2018, 77, 204–211. [Google Scholar] [CrossRef]
- Wu, X.; Li, F.; Wu, W. Effects of oxidative modification by 13-hydroperoxyoctadecadienoic acid on the structure and functional properties of rice protein. Food Res. Int. 2020, 132, 109096. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zong, W.; Liu, R.; Chai, J.; Liu, Y. Micro-environmental influences on the fluorescence of tryptophan. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 76, 142–145. [Google Scholar] [CrossRef]
- Ji, J.A.; Zhang, B.; Cheng, W.; Wang, Y.J. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: Mechanisms and stabilization. J. Pharm. Sci. 2009, 98, 4485–4500. [Google Scholar] [CrossRef]
- Hidalgo, F.J.; Kinsella, J.E. Changes induced in beta-lactoglobulin B following interactions with linoleic acid 13-hydroperoxide. J. Agric. Food Chem. 2002, 37, 860–866. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Zhou, M.; Yi, S.; Ye, B.; Mi, H.; Li, J.; Wang, J.; Li, X. Effect of oxidation modification induced by peroxyl radicals on the physicochemical and gel characteristics of grass carp myofibrillar protein. J. Food Meas. Charact. 2021, 15, 5572–5583. [Google Scholar] [CrossRef]
- Ye, L.; Liao, Y.; Zhao, M.; Sun, W. Effect of protein oxidation on the conformational properties of peanut protein isolate. J. Chem. 2013, 2013, 423254. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Vickram, A.S.; Sridharan, T.B. Oxidation driven surface hydrophobicity in human seminal plasma results in protein structural changes. J. Mol. Liq. 2020, 316, 113900. [Google Scholar] [CrossRef]
- Grune, T.; Jung, T.; Merker, K.; Davies, K.J.A. Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 2004, 36, 2519–2530. [Google Scholar] [CrossRef]
- Mirzaei, H.; Regnier, F. Protein:protein aggregation induced by protein oxidation. J. Chromatogr. B 2008, 873, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Berton-Carabin, C.C.; Schröder, A.; Rovalino-Cordova, A.; Schroën, K.; Sagis, L. Protein and lipid oxidation affect the viscoelasticity of whey protein layers at the oil–water interface. Eur. J. Lipid Sci. Technol. 2016, 118, 1630–1643. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Huang, Y.; Hua, Y.; Qiu, A. Soybean protein aggregation induced by lipoxygenase catalyzed linoleic acid oxidation. Food Res. Int. 2006, 39, 240–249. [Google Scholar] [CrossRef]
- Duan, X.; Li, M.; Shao, J.; Chen, H.; Xu, X.; Jin, Z.; Liu, X. Effect of oxidative modification on structural and foaming properties of egg white protein. Food Hydrocoll. 2018, 75, 223–228. [Google Scholar] [CrossRef]
- Ferraris, S.; Cazzola, M.; Peretti, V.; Stella, B.; Spriano, S. Zeta potential measurements on solid surfaces for in vitro biomaterials testing: Surface charge, reactivity upon contact with fluids and protein absorption. Front. Bioeng. Biotechnol. 2018, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Jiao, M.; Zhao, M.; Sun, W. In vitro gastrointestinal digest of catechin-modified β-conglycinin oxidized by lipoxygenase-catalyzed linoleic acid peroxidation. Food Chem. 2019, 280, 154–163. [Google Scholar] [CrossRef]
- Kazemian Bazkiaee, F.; Ebrahimi, A.; Hosseini, S.M.; Shojaee Aliabadi, S.; Farhoodi, M.; Rahmatzadeh, B.; Sheikhi, Z. Evaluating the protective effect of edible coatings on lipid oxidation, fatty acid composition, aflatoxins levels of roasted peanut kernels. J. Food Meas. Charact. 2020, 14, 1025–1038. [Google Scholar] [CrossRef]
- Xiong, Y.L.; Guo, A. Animal and plant protein oxidation: Chemical and functional property significance. Foods 2020, 10, 40. [Google Scholar] [CrossRef]
Secondary Structure | Control | 0.05 mM | 0.25 mM | 1.25 mM | 6.25 mM | 12.5 mM |
---|---|---|---|---|---|---|
α-Helix | 29.40 ± 1.20 | 21.70 ± 0.85 | 23.20 ± 0.85 | 24.05 ± 0.89 | 26.70 ± 0.28 | 27.30 ± 0.90 |
β-Sheet | 31.45 ± 2.51 | 33.9 ± 2.40 | 23.15 ± 2.26 | 21.38 ± 3.46 | 14.50 ± 1.34 | 12.80 ± 1.23 |
β-Turn | 13.73 ± 1.10 | 18.25 ± 0.53 | 23.65 ± 2.05 | 24.43 ± 6.40 | 26.33 ± 2.56 | 26.70 ± 2.78 |
Random | 25.43 ± 0.28 | 26.15 ± 0.99 | 30.00 ± 1.06 | 30.20 ± 1.03 | 32.50 ± 0.25 | 33.20 ± 0.44 |
Fatty Acid (μg/g) | H0 | H1 | H2 | H3 | H4 | H5 |
---|---|---|---|---|---|---|
Caprylic acid (C8:0) | 2.33 ± 0.487 a | 2.56 ± 0.487 a | 1.90 ± 0.128 b | 0.68 ± 0.390 d | 0.24 ± 0.024 e | 1.06 ± 0.084 c |
Decanoic acid (C10:0) | 0.41 ± 0.022 a | 0.24 ± 0.089 c | 0.32 ± 0.015 b | 0.09 ± 0.013 e | 0.13 ± 0.006 d | 0.22 ± 0.009 c |
Dodecanoic acid (C12:0) | 0.39 ± 0.019 a | 0.20 ± 0.017 d | 0.27 ± 0.005 b,c | 0.05 ± 0.004 e | 0.23 ± 0.017 c,d | 0.27 ± 0.013 d |
Tetradecanoic acid (C14:0) | 2.98 ± 0.290 c | 3.49 ± 0.16 b | 3.80 ± 0.090 b | 3.50 ± 0.104 b | 8.63 ± 0.175 a | 9.11 ± 0.28 a |
Myristelaidic acid (C14:1, n-9, cis) | 2.56 ± 0.140 c | 3.62 ± 0.202 b | 4.12 ± 0.101 a | 0.104 ± 0.002 d | ND | ND |
Pentadecanoic acid (C15:0) | 0.81 ± 0.061 c | 0.431 ± 0.016 d | 0.229 ± 0.024 e | 0.226 ± 0.010 e | 1.97 ± 0.031 b | 2.30 ± 0.1130 a |
Pentadecenoic acid (C15:1, n-10) | 0.159 ± 0.015 b | 0.15 ± 0.010 b | 0.08 ± 0.006 c | 0.225 ± 0.019 a | 0.22 ± 0.020 a | 0.235 ± 0.016 a |
Hexadecanoic acid (C16:00) | 118.78 ± 1.052 a | 77.15 ± 2.55 b | 5.97 ± 1.954 c | 34.63 ± 0.354 d | 73.23 ± 2.31 b | 65.50 ± 1.65 e |
Palmitoleic acid (C16:1, n-9, trans) | 6.71 ± 0.166 a | 3.29 ± 0.161 b | 1.98 ± 0.209 c | 1.07 ± 0.406 d | 4.45 ± 38.62 e | 3.79 ± 0.034 f |
Palmitelaidic acid (C16:1, n-9, cis) | 2.57 ± 0.522 a | 3.59 ± 0.216 b | 3.54 ± 0.146 b | 4.97 ± 0.242 c | 5.77 ± 0.289 d | 6.04 ± 0.133 d |
Heptadecanoic acid (C17:0) | 0.99 ± 0.091 a | 110 ± 0.039 a | 0.85 ± 0.026 b | 0.74 ± 0.060 b | 2.36 ± 0.041 c | 2.93 ± 0.018 d |
Heptadecenoic acid (C17:1, n-10, cis) | 0.91 ± 0.207 a | 0.88 ± 0.221 a | 0.59 ± 0.150 a,b | 0.51 ± 0.090 b | 3.11 ± 0.015 c | 3.54 ± 0.148 d |
Heptadecenoic acid (C17:1, n-10, trans) | 1.81 ± 0.083 a | 1.03 ± 0.068 b | 0.46 ± 0.058 c | 0.374 ± 0.033 c | ND | ND |
Octadecanoic acid (C18:0) | 18.45 ± 0.257 c | 23.84 ± 0.457 a | 21.56 ± 0.498 b | 16.67 ± 1.178 d | 20.956 ± 0.772 b | 17.51 ± 0.544 c,d |
Oleic acid (C18:1, n-9) | 157.73 ± 5.79 a | 118.81 ± 4.478 b | 82.32 ± 3.910 c | 52.86 ± 2.183 d | 129.72 ± 5.49 e | 92.720 ± 0.928 f |
Vaccenic acid (C18:1, n-9, cis) | 217.58 ± 3.204 a | 163.61 ± 5.307 b | 113.88 ± 6.446 c | 71.40 ± 1.641 d | 171.81 ± 5.77 b | 123.503 ± 4.73 c |
Elaidic acid (C18:1, n-9, cis) | 28.19 ± 1.479 a | 17.79 ± 0.999 b | 14.36 ± 1.099 c | 7.11 ± 0.271 d | 6.43 ± 0.086 d | 6.948 ± 0.244 d |
Vaccenic acid (C18:1, n-9, trans) | 0.03 ± 0.328 a | 18.60 ± 1.388 b | 14.72 ± 1.514 c | 7.11 ± 0.241 d | 7.07 ± 0.393 d | 7.08 ± 0.269 d |
Petroselinic acid (C18:1, n-6) | 0.73 ± 0.097 a,b | 0.91 ± 0.034 a | 0.81 ± 0.061 a | 0.50 ± 0.092 b | 1.50 ± 0.266 c | 2.193 ± 0.124 d |
Linoleic acid (C18:2, n-6, cis) | 21.71 ± 0.354 a | 13.80 ± 0.315 b | 11.16 ± 0.315 c | 3.49 ± 0.213 d | 2.48 ± 0.446 e | 19.22 ± 0.558 f |
gamma-Linolenic acid (C18:3, n-3, cis) | 8.23 ± 0.117 a | 6.45 ± 0.412 b | 4.91 ± 0.148 c | 0.27 ± 0.004 d | 0.65 ± 0.015 d | 0.392 ± 0.012 d |
alpha-Linolenic acid (C18:3, n-3, cis) | 0.99 ± 0.069 a | 0.605 ± 0.047 b | 0.463 ± 0.027 c | 0.081 ± 0.34 d | 0.89 ± 0.050 e | 0.489 ± 0.008 c |
Nonadecenoic acid (C19:1, n-10, trans) | 0.617 ± 0.096 a | 0.54 ± 0.067 a | 0.22 ± 0.003 b | 0.13 ± 0.013 b,c | 0.15 ± 0.027 b,c | 0.07 ± 0.003 c |
Eicosenoic acid (C20:1, n-11, cis) | 18.49 ± 0.519 a | 16.26 ± 0.451 b | 11.02 ± 0.580 d | 11.32 ± 0.386 d | 15.32 ± 0.239 c | 11.02 ± 0.060 d |
Arachidic acid (C20:0) | 2.31 ± 0.531 a,b | 2.67 ± 0.408 a,c | 1.95 ± 0.289 a,d | 1.72 ± 1.66 a,d | 3.15 ± 0.409 c | 1.27 ± 0.258 d |
Eicosadienoic acid (C20:2, n-11, cis) | 3.29 ± 0.230 a | 2.80 ± 0.194 | 1.69 ± 0.042 c | 1.59 ± 0.052 c | 2.42 ± 0.071 d | 1.53 ± 0.091 c |
Arachidonic acid (C20:4) | 185.14 ± 3.364 a | 165.10 ± 3.728 b | 110.46 ± 2.710 c | 29.73 ± 0.923 d | 48.85 ± 0.817 e | 28.86 ± 0.823 d |
Eicosatrienoic acid (C20:3, n-11, cis) | 6.48 ± 0.111 a | 4.642 ± 0.192 b | 2.95 ± 0.136 c | 1.639 ± 0.035 d | 3.13 ± 0.014 c | 1.996 ± 0.043 e |
Eicosapentaenoic acid (C20:5, n-8, cis) | 14.50 ± 1.281 a | 10.67 ± 0.510 b | 6.052 ± 0.158 c | 1.37 ± 0.056 d | 0.553 ± 0.010 d | 0.251 ± 0.008 d |
Heneicosanoic acid (C21:0) | 1.93 ± 0.184 a | 1.28 ± 0.020 b | 0.853 ± 0.023 c | 1.28 ± 0.112 b | 0.498 ± 0.036 d | 0.418 ± 0.072 d |
Docosanoic acid (C22:0) | 8.11 ± 0.433 a | 6.37 ± 0.500 b | 4.21 ± 0.212 c | 7.63 ± 0.291 a | 10.29 ± 0.492 d | 6.45 ± 0.090 b |
Erucic acid (C22:1, n-13) | 2.126 ± 0.081 a | 1.909 ± 0.056 b | 1.13 ± 0.088 c | 1.55 ± 0.101 d | 2.23 ± 0.085 a | 1.53 ± 0.054 d |
Docosadienoic acid (C22:2, n-13, cis) | 2.00 ± 0.124 a | 1.49 ± 0.085 b | 0.912 ± 0.038 c | 0.43 ± 0.008 d | 0.221 ± 0.036 e | 0.18 ± 0.010 e |
Docosic acid traenoic acid (C22:4) | 22.93 ± 0.850 a | 17.58 ± 1.088 b | 11.439 ± 0.350 c | 7.50 ± 0.354 d | 9.88 ± 0.347 e | 6.15 ± 0.054 f |
Docosapentaenoic acid (C22:5, n-7, cis) | 11.17 ± 0.240 a | 8.76 ± 0.616 b | 5.293 ± 0.158 c | 3.434 ± 0.099 d | 2.69 ± 0.175 e | 1.29 ± 0.085 f |
Docosapentaenoic acid (C22:5, n-7, cis) | 89.89 ± 0.310 a | 72.55 ± 3.176 b | 48.19 ± 1.436 c | 23.28 ± 0.196 d | 33.28 ± 0.463 e | 19.03 ± 0.588 f |
Docosahexaenoic acid (C22:6, n-4, cis) | 41.465 ± 0.911 a | 32.299 ± 0.992 b | 20.95 ± 0.390 c | 8.58 ± 0.123 d | 10.24 ± 0.159 e | 5.39 ± 0.062 f |
Tetracosanoic acid (C24:0) | 0.73 ± 0.068 a | 0.60 ± 0.032 b | 0.50 ± 0.006 c | 0.61 ± 0.012 b | 0.67 ± 0.016 a,b | 0.610 ± 0.026 b |
Nervonic acid (C24:1, n-15) | 4.31 ± 0.129 a | 3.354 ± 0.125 b | 1.88 ± 0.160 c | 3.32 ± 0.121 b | 5.68 ± 0.140 d | 3.66 ± 0.126 e |
SFA | 158.20 ± 3.497 a | 119.93 ± 4.703 b,c | 96.137 ± 3.271 c | 67.82 ± 2.693 d | 122.35 ± 4.328 b | 107.65 ± 3.160 c |
MUFA | 472.00 ± 12.862 a | 354.33 ± 13.782 b | 251.12 ± 14.532 c | 162.54 ± 5.842 d | 353.45 ± 12.861 b | 262.33 ± 5.902 c |
PUFA | 407.80 ± 7.960 a | 336.75 ± 11.354 b | 224.45 ± 5.908 c | 81.39 ± 2.064 e | 137.64 ± 2.602 d | 84.77 ± 2.344 e |
Total FA | 1038.01 ± 24.320 a | 811.01 ± 29.839 b | 571.72 ± 23.711 c | 311.75 ± 10.600 e | 613.44 ± 19.791 c | 454.75 ± 11.407 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Zeng, Q.; Yang, X.; Pi, J.; Ma, M.; Du, J. Effects of Peroxyl Radicals on the Structural Characteristics and Fatty Acid Composition of High-Density Lipoprotein from Duck Egg Yolk. Foods 2022, 11, 1634. https://doi.org/10.3390/foods11111634
Sun J, Zeng Q, Yang X, Pi J, Ma M, Du J. Effects of Peroxyl Radicals on the Structural Characteristics and Fatty Acid Composition of High-Density Lipoprotein from Duck Egg Yolk. Foods. 2022; 11(11):1634. https://doi.org/10.3390/foods11111634
Chicago/Turabian StyleSun, Jing, Qi Zeng, Xue Yang, Jinsong Pi, Meihu Ma, and Jinping Du. 2022. "Effects of Peroxyl Radicals on the Structural Characteristics and Fatty Acid Composition of High-Density Lipoprotein from Duck Egg Yolk" Foods 11, no. 11: 1634. https://doi.org/10.3390/foods11111634
APA StyleSun, J., Zeng, Q., Yang, X., Pi, J., Ma, M., & Du, J. (2022). Effects of Peroxyl Radicals on the Structural Characteristics and Fatty Acid Composition of High-Density Lipoprotein from Duck Egg Yolk. Foods, 11(11), 1634. https://doi.org/10.3390/foods11111634