Characterization of Key Odor-Active Compounds in Sun-Dried Black Tea by Sensory and Instrumental-Directed Flavor Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Reagents and Chemicals
2.3. HS–SPME Procedures
2.4. GC–O and GC–MS Analysis
2.5. Quantitation of Odor-Active Compounds and OVA Calculation
2.6. Aroma Recombination and Omission Test
2.7. Descriptive Sensory Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. GC–MS Results for Sun-Dried Black Tea
3.2. Odor-Active Compounds Determination Using GC–O
3.3. Quantitation of Odor-Active Compounds and OVA Calculation
3.4. Aroma Recombination and Omission Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SBT | Sun-dried black tea |
HS–SPME | Headspace solid–phase microextraction |
GC–O | Gas chromatography–olfactometry |
GC–MS | Gas chromatography–mass spectrometry |
OAV | Odor activity value |
References
- Wang, W.; Ma, J.; Shi, Y.; Zhu, Y.; Lin, Z.; Lv, H. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC–O), odor activity value (OAV), and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, H.; Dai, W.; Guo, L.; Tan, J.; Zhang, Y.; Yu, Y.; Shao, C.; Peng, Q.; Lin, Z. Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Sep. Purif. Technol. 2016, 164, 146–154. [Google Scholar] [CrossRef]
- Ho, C.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.; Zhang, Y.; Dai, W.; Guo, L.; Tan, J.; Peng, Q.; et al. Identification and quantification of key odorants in the world’s four most famous black teas. Food Res. Int. 2019, 121, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y. Innovative processing technology of Pu-erh sun-dried black tea. Newsl. Seric. Tea 2017, 5, 34–35. (In Chinese) [Google Scholar]
- Jin, H.; Chen, B.; Bao, Z.; Li, K.; Luo, Z. Analysis and evaluation of product characteristic of Pu-erh sun-dried black tea. Food Res. Dev. 2016, 37, 44–47. (In Chinese) [Google Scholar]
- Wang, C.; Zhang, C.; Kong, Y.; Peng, X.; Li, C.; Liu, S.; Du, L.; Xiao, D.; Xu, Y. A comparative study of volatile components in Dianhong teas from fresh leaves of four tea cultivars by using chromatography–mass spectrometry, multivariate data analysis, and descriptive sensory analysis. Food Res. Int. 2017, 100, 267–275. [Google Scholar] [CrossRef]
- Lv, S.; Wu, Y.; Wang, C.; Gao, X.; Li, J.; Zhang, W.; Meng, Q. Comparative Study of Volatile Components in Sun-Dried and Baked Black Teas in Yunnan Province. Food Sci. 2016, 37, 62–67. (In Chinese) [Google Scholar]
- He, C.; Guo, X.; Yang, Y.; Xie, Y.; Ju, F.; Guo, W. Characterization of the aromatic profile in “zijuan” and “pu-erh” green teas by headspace solid–phase microextraction coupled with GC-O and GC-MS. Anal. Methods. 2016, 8, 4727–4735. [Google Scholar] [CrossRef]
- Gao, X.; Lv, S.; Wu, Y.; Li, J.; Zhang, W.; Meng, W.; Wang, C.; Meng, Q. Volatile components of essential oils extracted from Pu-erh ripe tea by different extraction methods. Inter. J. Food Prop. 2017, 20, S240–S253. [Google Scholar] [CrossRef] [Green Version]
- Das, P.R.; Kim, Y.; Hong, S.; Eun, J. Profiling of volatile and non-phenolic metabolites–Amino acids, organic acids, and sugars of green tea extracts obtained by different extraction techniques. Food Chem. 2019, 296, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Amanpour, A.; Guclu, G.; Kelebek, H.; Selli, S. Characterization of key aroma compounds in fresh and roasted terebinth fruits using aroma extract dilution analysis and GC–MS-Olfactometry. Microchem. J. 2019, 145, 96–104. [Google Scholar] [CrossRef]
- Yang, Z.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Du, L.; Wang, C.; Zhang, C.; Ma, L.; Xu, Y.; Xiao, D. Characterization of the volatile and sensory profile of instant Pu-erh tea using GC × GC–TOFMS and descriptive sensory analysis. Microchem. J. 2019, 146, 986–996. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, F.; Wang, L.; Niu, Y.; Chen, H.; Wang, H.; Xiao, Z. Characterization of the key aroma volatile compounds in cranberry (Vaccinium macrocarpon Ait.) using gas chromatography-olfactometry (GC–O) and odor activity value (OAV). J. Agric. Food Chem. 2019, 64, 4990–4999. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wang, P.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, R. Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC–MS, GC–O, odor threshold and sensory analysis: An insight at the molecular level. Food Chem. 2019, 275, 143–153. [Google Scholar] [CrossRef]
- Kaseleht, K.; Leitner, E.; Paalme, T. Determining aroma-active compounds in Kama flour using SPME-GC-MS and GC–Olfactometry. Flavor. Frag. J. 2010, 26, 122–128. [Google Scholar] [CrossRef]
- Giannetti, V.; Mariani, M.B.; Torrelli, P.; Marini, F. Flavour component analysis by HS-SPME/GC–MS and chemometric modeling to characterize Pilsner-style Lager craft beers. Microchem. J. 2019, 149, 103991. [Google Scholar] [CrossRef]
- Rigling, M.; Fraatz, M.; Trögel, S.; Sun, J.; Zorn, H.; Zhang, Y. Aroma investigation of Chios Mastic Gum (Pistacia lentiscus Variety Chia) using headspace gas chromatography combined with olfactory detection and chiral analysis. J. Agric. Food Chem. 2019, 67, 13420–13429. [Google Scholar] [CrossRef]
- ISO 8586-1; Sensory Analysis-General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
- He, C.; Li, Z.; Liu, H.; Zhang, H.; Wang, L.; Chen, H. Characterization of the key aroma compounds in Semnostachya menglaensis Tsui by gas chromatography–olfactometry, odor activity values, aroma recombination, and omission analysis. Food Res. Int. 2020, 131, 108948. [Google Scholar] [CrossRef]
- Niu, Y.; Zhu, Q.; Xiao, Z. Characterization of perceptual interactions among ester aroma compounds found in Chinese Moutai Baijiu by gas chromatography-olfactometry, odor Intensity, olfactory threshold and odor activity value. Food Res. Int. 2020, 131, 108986. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, L.; Xiao, Z.; Niu, Y. Characterization of the key aroma compounds in mulberry fruits by application of gas chromatography–olfactometry (GC–O), odor activity value (OAV), gas chromatography-mass spectrometry (GC–MS) and flame photometric detection (FPD). Food Chem. 2018, 245, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fan, S.; Yan, Y.; Yang, L.; Chen, S.; Xu, Y. Characterization of potent odorants causing a pickle-like off-odor in Moutai-aroma type Baijiu by comparative aroma extract dilution analysis, quantitative measurements, aroma addition, and omission studies. J. Agric. Food Chem. 2020, 68, 1666–1677. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Yang, R.; Zheng, T.; Zhao, M.; Ma, L.; Yan, L. Comparison of volatile profiles and bioactive components of sun-dried Pu-erh tea leaves from ancient tea plants on Bulang Mountain measured by GC-MS and HPLC. J. Zhejiang Univ.-Sci. B. 2019, 20, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Magagna, F.; Cordero, C.; Cagliero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B.; Bicchi, C. Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography–Mass spectrometry combined with high concentration capacity sample preparation techniques: Toward a fully automated sensomic assessment. Food Chem. 2017, 225, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, Y.; Li, M.; Wang, Y.; Zhang, L.; Wan, X.; Yang, X. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef]
- Seisonen, S.; Kivima, E.; Vene, K. Characterisation of the aroma profiles of different honeys and corresponding flowers using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food Chem. 2015, 169, 34–40. [Google Scholar] [CrossRef]
- Silvis, I.C.J.; Luning, P.A.; Klose, N.; Jansen, M.; van Ruth, S.M. Similarities and differences of the volatile profiles of six spices explored by proton transfer reaction mass spectrometry. Food Chem. 2019, 271, 318–327. [Google Scholar] [CrossRef]
- Joshi, R.; Gulati, A. Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea. Food Chem. 2015, 167, 290–298. [Google Scholar] [CrossRef]
- Sheibani, E.; Duncan, S.E.; Kuhn, D.D.; Dietrich, A.M.; O’Keefe, S.F. SDE and SPME analysis of flavor compounds in Jin Xuan oolong tea. J. Food Sci. 2016, 81, C348–C358. [Google Scholar] [CrossRef]
- Du, L.; Li, J.; Li, W.; Li, Y.; Li, T.; Xiao, D. Characterization of volatile compounds of Pu-erh tea using solid–phase microextraction and simultaneous distillation–extraction coupled with gas chromatography–mass spectrometry. Food Res. Int. 2014, 57, 61–70. [Google Scholar] [CrossRef]
- Wang, Z.; Han, B.; Jing, W.; Yi, Z.; Zhang, Y.; Ren, D.; Yi, L. Effects of different steeping temperatures on the leaching of aroma components in black tea by SPME–GC–MS coupled with chemometric method. J. AOAC. Int. 2019, 102, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lee, J.; Chung, J.; Baik, J.; So, S.; Park, S. Discrimination of teas with different degrees of fermentation by SPME–GC analysis of the characteristic volatile flavour compounds. Food Chem. 2008, 109, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Selli, S.; Cayhan, G.G. Analysis of volatile compounds of wild gilthead sea bream (Sparus aurata) by simultaneous distillation–extraction (SDE) and GC–MS. Microchem. J. 2009, 93, 232–235. [Google Scholar] [CrossRef]
No. | Time (min) | RI | Odor-Active Compounds | Odor Descriptors | Aroma Intensity | Frequency | Identification |
---|---|---|---|---|---|---|---|
1 | 3.84 | 800 | Hexanal | Green, grass | 3.55 ± 1.23 | 14 | MS/RI/Odor/STD |
2 | 5.325 | 851 | 2-Hexenal | Green, fruity | 3.00 ± 1.54 | 13 | MS/RI/Odor/STD |
3 | 8.92 | 960 | Benzaldehyde | Almond-like | 3.00 ± 1.71 | 11 | MS/RI/Odor/STD |
4 | 9.69 | 982 | 1-Octen-3-ol | Mushroom-like | 2.73 ± 2.00 | 9 | MS/RI/Odor/STD |
5 | 10.05 | 992 | 2-Pentyl-furan | Fruity | 3.55 ± 0.089 | 12 | MS/RI/Odor/STD |
6 | 11.02 | 1015 | Hexanoic acid | Unpleasant odor | 2.64 ± 1.72 | 8 | MS/RI/Odor/STD |
7 | 11.56 | 1027 | D-Limonene | Lemon-like | 3.82 ± 1.58 | 11 | MS/RI/Odor/STD |
8 | 12.43 | 1046 | Benzeneacetaldehyde | Sweet, rose-like | 4.00 ± 1.76 | 12 | MS/RI/Odor/STD |
9 | 13.64 | 1072 | Linalool oxide I | Floral, woody | 7.82 ± 0.057 | 18 | MS/RI/Odor/STD |
10 | 14.39 | 1089 | Linalool oxide II | Floral, woody | 8.45 ± 0.78 | 18 | MS/RI/Odor/STD |
11 | 15.13 | 1105 | Linalool | Floral, citrus-like | 8.64 ± 0.98 | 18 | MS/RI/Odor/STD |
12 | 15.75 | 1119 | Phenylethyl alcohol | Sweet, rose-like | 5.64 ± 0.77 | 16 | MS/RI/Odor/STD |
13 | 17.90 | 1168 | L-Borneol | Woody | 2.09 ± 1.83 | 7 | MS/RI/Odor/STD |
14 | 18.47 | 1181 | Epoxylinalol | Floral, woody | 7.91 ± 0.79 | 18 | MS/RI/Odor/STD |
15 | 19.13 | 1196 | α-Terpineol | Floral, fruity | 4.27 ± 2.34 | 10 | MS/RI/Odor/STD |
16 | 19.29 | 1199 | Methyl salicylate | Mint, wintergreen-like | 6.82 ± 1.11 | 18 | MS/RI/Odor/STD |
17 | 19.43 | 1202 | Safranal | Herbaceous, sweet | 2.36 ± 2.53 | 6 | MS/RI/Odor/STD |
18 | 20.38 | 1222 | β-Cyclocitral | Mint, fruity | 3.09 ± 1.56 | 10 | MS/RI/Odor/STD |
19 | 20.92 | 1234 | (Z)-Geraniol | Rose-like | 3.64 ± 1.49 | 12 | MS/RI/Odor/STD |
20 | 21.05 | 1237 | (3Z)-3-Hexenyl 2-methylbutanoate | Fruity | 2.27 ± 1.48 | 8 | MS/RI/Odor/STD |
21 | 22.19 | 1261 | Geraniol | Rose-like | 7.36 ± 1.55 | 18 | MS/RI/Odor/STD |
22 | 22.35 | 1264 | (E)-2-Decenal | Orange-like | 1.09 ± 1.93 | 4 | MS/RI/Odor/STD |
23 | 23.62 | 1291 | 1-Methyl-naphthalene | Earthy-like | 3.36 ± 1.92 | 10 | MS/RI/Odor/STD |
24 | 23.82 | 1295 | Theaspirane | Woody, Fruity | 4.91 ± 0.51 | 13 | MS/RI/Odor/STD |
25 | 27.51 | 1377 | Geranic acid | Sweet, woody | 1.18 ± 1.69 | 4 | MS/RI/Odor/STD |
26 | 27.67 | 1381 | (E)-β-Damascenone | Rose-like, sweet | 9.64 ± 0.48 | 17 | MS/RI/Odor/STD |
27 | 27.87 | 1385 | n-Hexyl caproate | Sweet, fruity | 3.36 ± 2.01 | 10 | MS/RI/Odor/STD |
28 | 29.02 | 1412 | Caryophyllene | Floral, woody | 3.09 ± 1.97 | 10 | MS/RI/Odor/STD |
29 | 29.51 | 1425 | α-Ionone | Woody, violet-like | 6.36 ± 0.98 | 15 | MS/RI/Odor/STD |
30 | 29.94 | 1435 | Dihydro-β-ionone | Woody, violet-like | 7.55 ± 0.99 | 16 | MS/RI/Odor/STD |
31 | 30.63 | 1453 | Geranyl acetone | Rose-like, green | 5.64 ± 0.97 | 15 | MS/RI/Odor/STD |
32 | 31.93 | 1485 | β-Ionone | Woody, violet-like | 9.91 ± 0.29 | 18 | MS/RI/Odor/STD |
33 | 33.00 | 1513 | Butylated hydroxytoluene | Unpleasant odor | 3.27 ± 0.75 | 13 | MS/RI/Odor/STD |
34 | 33.60 | 1528 | Dihydroactinidiolide | Unpleasant odor | 4.36 ± 1.49 | 16 | MS/RI/Odor/STD |
35 | 35.08 | 1566 | (E)-Nerolidol | Rose-like | 5.45 ± 1.87 | 16 | MS/RI/Odor/STD |
36 | 27.22 | 1348 | Unknown1 | Floral, sweet | 4.03 ± 0.92 | 13 | ---- |
37 | 29.25 | 1417 | Unknown2 | Fruity, sweet | 3.29 ± 0.44 | 12 | ---- |
No. | Time (min) | RI | Odor-Active Compounds | The Range of Concentration (µg/kg) | Average Concentration (µg/kg) | OTs (µg/kg) | Literature a | The Range of OAV | Average OAV | Identification |
---|---|---|---|---|---|---|---|---|---|---|
1 | 27.67 | 1381 | (E)-β-Damascenone | 58.86–238.97 | 123.08 ± 46.69 | 0.002 | [1,2] | 29427.88–119483.38 | 61538.79 ± 23342.77 | MS/RI/Odor/STD |
2 | 31.93 | 1485 | β-Ionone | 244.72–409.08 | 292.96 ± 43.00 | 0.007 | [3] | 34960.64–58440.00 | 41851.78 ± 6143.54 | MS/RI/Odor/STD |
3 | 29.94 | 1435 | Dihydro-β-ionone | 12.39–42.08 | 24.86 ± 7.32 | 0.001 | [4] | 12385.95–42081.44 | 24856.37 ± 7322.65 | MS/RI/Odor/STD |
4 | 15.13 | 1105 | Linalool | 900.49–3196.25 | 2124.78 ± 696.93 | 6 | [5] | 150.08–532.71 | 354.13 ± 116.16 | MS/RI/Odor/STD |
5 | 29.51 | 1425 | α-Ionone | 38.70–113.52 | 67.47 ± 20.43 | 0.4 | [6] | 96.75–283.81 | 168.68 ± 51.07 | MS/RI/Odor/STD |
6 | 22.19 | 1261 | Geraniol | 79.47–1324.51 | 523.28 ± 459.73 | 3.2 | [3] | 24.83–413.91 | 163.53 ± 143.67 | MS/RI/Odor/STD |
7 | 15.75 | 1119 | Phenylethyl alcohol | 205.78–773.33 | 362.70 ± 167.55 | 4.9 | [7] | 42.00–157.82 | 74.02 ± 34.19 | MS/RI/Odor/STD |
8 | 22.35 | 1264 | (E)-2-Decenal | 0.00–147.92 | 25.56 ± 52.14 | 0.4 | [8] | 0.00–369.80 | 63.89 ± 130.35 | MS/RI/Odor/STD |
9 | 19.29 | 1199 | Methyl salicylate | 212.96–1418.74 | 786.55 ± 409.55 | 16 | [9] | 13.31–88.67 | 49.16 ± 25.60 | MS/RI/Odor/STD |
10 | 12.43 | 1046 | Benzeneacetaldehyde | 0.00–680.02 | 259.48 ± 204.12 | 6.3 | [10] | 0.00–107.94 | 41.19 ± 32.40 | MS/RI/Odor/STD |
11 | 35.08 | 1566 | (E)-Nerolidol | 0.00–284.47 | 207.37 ± 79.16 | 10 | [11] | 0.00–28.45 | 20.74 ± 7.92 | MS/RI/Odor/STD |
12 | 14.39 | 1089 | Linalool oxide II | 853.47–1853.65 | 1113.75 ± 302.78 | 60 | [10] | 11.22–30.89 | 18.56 ± 5.05 | MS/RI/Odor/STD |
13 | 9.69 | 982 | 1-Octen-3-ol | 0.00–178.23 | 23.52 ± 49.27 | 1.5 | [10] | 0.00–118.82 | 15.68 ± 32.84 | MS/RI/Odor/STD |
14 | 23.62 | 1291 | 1-Methyl-naphthalene | 0.00–298.42 | 86.97 ± 94.37 | 7.5 | [11] | 0.00–39.79 | 11.60 ± 12.58 | MS/RI/Odor/STD |
15 | 20.38 | 1222 | β-Cyclocitral | 0.00–123.52 | 57.92 ± 36.36 | 5 | [12] | 0.00–24.70 | 11.58 ± 7.27 | MS/RI/Odor/STD |
16 | 3.845 | 800 | Hexanal | 23.65–164.09 | 77.13 ± 41.29 | 10 | [10] | 2.36–16.41 | 7.71 ± 4.13 | MS/RI/Odor/STD |
17 | 10.05 | 992 | 2-Pentyl-furan | 17.29–69.98 | 42.43 ± 15.31 | 6 | [13] | 2.88–11.66 | 7.07 ± 2.55 | MS/RI/Odor/STD |
18 | 13.64 | 1072 | Linalool oxide I | 352.21–1000.30 | 509.49 ± 170.87 | 100 | [10] | 3.52–10.00 | 5.09 ± 1.71 | MS/RI/Odor/STD |
19 | 11.56 | 1027 | D-Limonene | 0.00–82.23 | 34.64 ± 22.01 | 10 | [6] | 0.00–8.22 | 3.46 ± 2.20 | MS/RI/Odor/STD |
20 | 19.13 | 1196 | α-Terpineol | 0.00–113.30 | 52.36 ± 35.11 | 20.8 | [14] | 0.00–5.45 | 2.52 ± 1.69 | MS/RI/Odor/STD |
21 | 30.63 | 1453 | Geranyl acetone | 59.66–131.61 | 107.28 ± 20.18 | 60 | [6] | 0.99–2.19 | 1.79 ± 0.34 | MS/RI/Odor/STD |
22 | 5.32 | 851 | 2-Hexenal | 0.00–140.54 | 65.95 ± 45.45 | 90 | [10] | 0.00–1.56 | 0.73 ± 0.51 | MS/RI/Odor/STD |
23 | 33.61 | 1528 | Dihydroactinidiolide | 0.00–356.32 | 199.13 ± 93.87 | 500 | [10] | 0.00–0.71 | 0.40 ± 0.19 | MS/RI/Odor/STD |
24 | 17.9 | 1168 | L-Borneol | 0.00–82.63 | 27.69 ± 26.93 | 80 | [15] | 0.00–1.032 | 0.35 ± 0.34 | MS/RI/Odor/STD |
25 | 18.47 | 1181 | Epoxylinalol | 0.00–1626.95 | 973.71 ± 371.22 | 3000 | [10] | 0.17–0.54 | 0.32 ± 0.12 | MS/RI/Odor/STD |
26 | 23.82 | 1295 | Theaspirane | 41.06–184.22 | 102.94 ± 35.94 | 1000 | [11] | 0.04–0.18 | 0.10 ± 0.04 | MS/RI/Odor/STD |
27 | 19.43 | 1202 | Safranal | 0.00–256.32 | 79.54 ± 103.00 | 1000 | [11] | 0.00–0.26 | 0.08 ± 0.10 | MS/RI/Odor/STD |
28 | 8.92 | 960 | Benzaldehyde | 0.00–156.01 | 47.00 ± 45.35 | 750.89 | [10] | 0.00–0.21 | 0.06 ± 0.06 | MS/RI/Odor/STD |
29 | 11.02 | 1015 | Hexanoic acid | 0.00–148.17 | 50.05 ± 41.92 | 890 | [10] | 0.00–0.17 | 0.06 ± 0.05 | MS/RI/Odor/STD |
30 | 20.92 | 1234 | (Z)-Geraniol | 8.79–50.56 | 31.80 ± 13.19 | 680 | [16] | 0.01–0.05 | 0.05 ± 0.02 | MS/RI/Odor/STD |
31 | 29.02 | 1412 | Caryophyllene | 0.00–229.91 | 74.78 ± 74.52 | 1500 | [17] | 0.00–0.15 | 0.05 ± 0.05 | MS/RI/Odor/STD |
32 | 33.01 | 1513 | Butylated hydroxytoluene | 22.96–66.99 | 43.58 ± 10.80 | 1000 | [9] | 0.02–0.07 | 0.04 ± 0.01 | MS/RI/Odor/STD |
33 | 27.87 | 1385 | n-Hexyl caproate | 0.00–126.64 | 75.51 ± 45.88 | 6400 | [11] | 0.00–0.02 | 0.01 ± 0.01 | MS/RI/Odor/STD |
34 | 21.05 | 1237 | (3Z)-3-Hexenyl 2-methylbutanoate | 0.00–60.83 | 32.96 ± 22.46 | 10,000 | [11] | 0.00–0.01 | <0.01 | MS/RI/Odor/STD |
35 | 27.51 | 1377 | Geranic acid | 0.00–117.92 | 25.13 ± 38.39 | 10,000 | [11] | 0.00–0.01 | <0.01 | MS/RI/Odor/STD |
Model | Odor-Active Compounds Omitted from the Recombination Sample | No. a | Significance b |
---|---|---|---|
1 | All alcohols | 10 | *** |
1-1 | Linalool | 10 | *** |
1-2 | Geraniol | 8 | ** |
1-3 | Phenylethyl alcohol | 7 | * |
1-4 | (E)-Nerolidol | 5 | |
1-5 | Linalool oxide II | 5 | |
1-6 | 1-Octen-3-ol | 5 | |
1-7 | Linalool oxide I | 4 | |
1-8 | α-Terpineol | 3 | |
2 | All ketones | 10 | *** |
2-1 | (E)-β-Damascenone | 10 | *** |
2-2 | β-Ionone | 10 | *** |
2-3 | Dihydro-β-ionone | 10 | *** |
2-4 | α-Ionone | 7 | * |
2-5 | Geranyl acetone | 2 | |
3 | All aldehydes | 8 | ** |
3-1 | (E)-2-Decenal | 7 | * |
3-2 | Benzeneacetaldehyde | 5 | |
3-3 | β-Cyclocitral | 3 | |
3-4 | Hexanal | 7 | * |
4 | All hydrocarbons | 5 | |
4-1 | 1-Methyl-naphthalene | 4 | |
4-2 | D-Limonene | 3 | |
5 | Methyl salicylate | 7 | * |
6 | 2-Pentyl-furan | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, C.; Zheng, T.; Zhao, M.; Gong, W.; Wang, Q.; Yan, L.; Zhang, W. Characterization of Key Odor-Active Compounds in Sun-Dried Black Tea by Sensory and Instrumental-Directed Flavor Analysis. Foods 2022, 11, 1740. https://doi.org/10.3390/foods11121740
Liu C, Wang C, Zheng T, Zhao M, Gong W, Wang Q, Yan L, Zhang W. Characterization of Key Odor-Active Compounds in Sun-Dried Black Tea by Sensory and Instrumental-Directed Flavor Analysis. Foods. 2022; 11(12):1740. https://doi.org/10.3390/foods11121740
Chicago/Turabian StyleLiu, Cong, Chao Wang, Tingting Zheng, Miaomiao Zhao, Wanying Gong, Qiaomei Wang, Liang Yan, and Wenjie Zhang. 2022. "Characterization of Key Odor-Active Compounds in Sun-Dried Black Tea by Sensory and Instrumental-Directed Flavor Analysis" Foods 11, no. 12: 1740. https://doi.org/10.3390/foods11121740
APA StyleLiu, C., Wang, C., Zheng, T., Zhao, M., Gong, W., Wang, Q., Yan, L., & Zhang, W. (2022). Characterization of Key Odor-Active Compounds in Sun-Dried Black Tea by Sensory and Instrumental-Directed Flavor Analysis. Foods, 11(12), 1740. https://doi.org/10.3390/foods11121740