Development of Simultaneous Analytical Method for Imidazolinone Herbicides from Livestock Products by UHPLC-MSMS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrument
2.2. Reagents and Materials
2.3. Preparation of Standard Solution
2.4. Sample Preparation
2.5. Validation of the Method
3. Results
3.1. Optimization of the QuEChERS Procedure
3.1.1. Optimization of the Extraction Solution and Salts
3.1.2. Optimization of the Purification Adsorbent
3.2. Matrix Effect
3.3. Method Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saito-Shida, S.; Nemoto, S.; Akiyama, H. Quantitative and Confirmatory Analysis of Pesticide Residues in Cereal Grains and Legumes by Liquid Chromatography–Quadrupole-Time-of-Flight Mass Spectrometry. Foods 2021, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef] [PubMed]
- Noh, H.H.; Jo, S.H.; Shin, H.W.; Kim, D.J.; Ham, Y.J.; Kim, J.Y.; Kim, D.B.; Kwon, H.Y.; Kyung, K.S. Dissipation and Residue Pattern of Dinotefuran, Fluazinam, Indoxacarb, and Thiacloprid in Fresh and Processed Persimmon Using LC-MS/MS. Foods 2022, 11, 416. [Google Scholar] [CrossRef] [PubMed]
- Loewy, R.M.; Monza, L.B.; Kirs, V.E.; Savini, M.C. Pesticide distribution in an agricultural environment in Argentina. J. Environ. Sci. Health Part B 2011, 46, 662–670. [Google Scholar]
- Bedi, J.S.; Gill, J.P.S.; Kaur, P.; Aulakh, R.S. Pesticide Residues in Milk and Their Relationship with Pesticide Contamination of Feedstuffs Supplied to Dairy Cattle in Punjab (India). J. Anim. Feed Sci. 2018, 27, 18–25. [Google Scholar] [CrossRef]
- Kumar, A.; Thakur, A.; Sharma, V.; Koundal, S. Pesticide Residues in Animal Feed: Status, Safety, and Scope. J. Anim. Feed Sci. Technol. 2019, 7, 73–80. [Google Scholar]
- Nag, S.K.; Raikwar, M.K. Persistent Organochlorine Pesticide Residues in animal Feed. Environ. Monit. Assess. 2010, 174, 327–335. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Fan, D. Degradation and metabolism of imazapyr in soils under aerobic and anaerobic conditions. Int. J. Environ. Anal. Chem. 2006, 86, 541–551. [Google Scholar] [CrossRef]
- Korea Health Industry Promotion Agency. National Nutrition Statistics. Available online: https://www.khidi.or.kr/kps/dhraStat/result2?menuId=MENU01653&year=2019 (accessed on 23 May 2022).
- Turner, J.A. Pesticide Manual, 18th ed.; British Crop Production Council: Hampshire, UK, 2018; pp. 625–636. [Google Scholar]
- Mohammadkazem, R. Environmetnal Fate of Imidazolinone Herbicides and Their Enantiomers in Soil and Water. Ph.D. Thesis, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia, 2007. [Google Scholar]
- The Japan Food Chemical Research Foundation. Table of MRLs for Agricultural Chemicals. Search Engine for MRLs of Agricultural Chemicals in Foods. Available online: https://ffcr.or.jp/ (accessed on 23 May 2022).
- Codex Alimentarius Commission. Pesticide Database-Maximum Residue Limits. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/en/ (accessed on 23 May 2022).
- Jang, J.; Kim, H.J.; Ko, A.Y.; Lee, E.H.; Joo, Y.J.; Kim, J.H.; Chang, M.I.; Rhee, G.S. Development of an Official Analytical Method for Determination of Imazapyr in Agricultural commodities using HPLC-UVD. Korean J. Pestic. Sci. 2015, 19, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Helling, C.S.; Doherty, M.A. Improved Method for the Analysis of Imazapyr in Soil. Pestic. Sci. 1995, 45, 21–26. [Google Scholar] [CrossRef]
- Dugdale, T.M.; Butler, K.L.; Finlay, M.J.; Liu, Z.; Rees, D.B.; Clements, D. Residues and Dissipation of the Herbicide Imazapyr after Operational Use in Irrigation Water. Int. J. Environ. Res. Public Health 2020, 17, 2421. [Google Scholar] [CrossRef] [Green Version]
- Kemmerich, M.; Bernardi, G.; Adaime, M.B.; Zanella, R.; Prestes, O.D. A Simple and Efficient Method for Imidazolinone Herbicides Determination in Soil by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2015, 1412, 82–89. [Google Scholar] [CrossRef]
- Mahyoub, I.B.; Fathiah, M.Z.; Muhamad, S.M.; Mohamed, K.A.; Jodeh, S.W.; Monzir, S.A. A Simple method for Determination and Characteriation of Imidazolinone Herbicide (Imazapyr/Imazapic) Residues in Clearfield Rice Soil. Appl. Ecol. Environ. Res. 2017, 15, 891–903. [Google Scholar] [CrossRef]
- Mohammadkazem, R.; Nigel, S.; Danielle, O.; Rai, K.; Gurjeet, G.; Christopher, P. Improved extraction and clean-up of Imidazolinone Herbicides from Soil soulutions using Different Solid-Phase Sorbents. J. Chromatogr. A 2009, 1216, 5092–5100. [Google Scholar]
- Martins, G.L.; Friggi, C.A.; Prestes, O.D.; Vicari, M.C.; Friggi, D.A.; Adaime, M.B.; Zanella, R. Simultaneous LC-MS/MS Determination of Imidazolinone Herbicides Together with Other Multiclass Pesticide Residues in Soil. Clean-Soil Air Water 2014, 42, 1441–1449. [Google Scholar] [CrossRef]
- SANTE Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed; SANTE/12682/2019, Implemented by 01.01.2020; European Commission Directorate General for Health and Food Safety Brussels: Brussels, Belgium, 2020.
- Guidelines on Performance Criteria for Methods of Analysis for the Determination of Pesticide Residues in Food and Feed. Available online: http://www.fao.org/fao-who-codexalimentarius/thematic-areas/pesticides/en/ (accessed on 23 May 2022).
- Bresnahan, G.A.; Koskinen, W.C.; Dexter, A.G.; Lueschen, W.E. Influenece of Soil pH-Sorption Interactions on Imazethapyr Carry-over. J. Agric. Food Chem. 2000, 48, 1929–1934. [Google Scholar] [CrossRef]
- Pace, P.F.; Senseman, S.A.; Ketchersid, M.L.; Cralle, H.T. Supercritical fluid Extraction and Solid-Phase Extraction of AC 263, 222 and Imazethapyr form Three Texas Soils. Arch. Environ. Contam. Toxicol. 1999, 37, 440–444. [Google Scholar] [CrossRef]
- Laganà, A.; Fago, G.; Marino, A.; Penazzi, V.M. Liquid Chromatography Mass Spectrometry Tandem for Multiresidue Determination of Seleted Post-emergence Herbicides after Soil Column Extraction. Anal. Chimica Acta 2000, 415, 41–56. [Google Scholar] [CrossRef]
- De Oliveira Arias, J.L.; Rombaldi, C.; Caldas, S.S.; Primel, E.G. Alternative Sorbents for the Dispersive Solid-phase Extracction step in Quick, Easy, Cheap, Effective, Rugged and Safe method for Extraction of Pesticides from Rice paddy Soil with Determination by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A. 2014, 1360, 66–75. [Google Scholar] [CrossRef]
- D’Ascenzo, G.; Gentili, A.; Marchese, S.; Marino, A.; Perret, D. Rapid and simple method for extraction and determination of imidazolinone herbicides in soil. Analusis 1998, 26, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Hajeb, P.; Zhu, L.; Bossi, R.; Vorkamp, K. Sample Preparation Techniques for Suspect and Non-target Screening of Emerging Contaminants. Chemosphere 2022, 287, 132306. [Google Scholar] [CrossRef]
Compound | Cas No. | Molecular Weight (g/mol) | pKa | Log Pow | Vapor Pressure (mPa) | Solubility (g/L) | MRL (mg/kg) | Structure | |
---|---|---|---|---|---|---|---|---|---|
CODEX | Japan | ||||||||
Imazapyr | 81334-34-1 | 261.3 | 3.6 11.0 1.9 | 0.11 | <0.013 | Acetone 33.9 Methanol 1.05 Water 11.3 | 0.05 (meat) 0.01 (chicken) 0.01 (milk) 0.01 (egg) | 0.05 (pork, beef) 0.01 (chicken) 0.01 (milk) 0.01 (egg) | |
Imazamox | 114311-32-9 | 305.3 | 2.3 10.8 3.3 | −0.9 (pH 7) −0.3 (pH 4) | 6.3 × 10−8 | Acetone 29.3 Methanol 67 Water 4.16 | 0.01(meat) 0.01 (chicken) 0.01 (milk) 0.01 (egg) | 0.05 (pork) 0.03 (beef) 0.01 (chicken) 0.03 (milk) 0.01 (egg) | |
Imazapic | 104098-48-8 | 275.3 | 11.1 3.6 2.0 | 0.393 | <0.01 | Acetone 18.9 Water 2.15 | 0.1 (meat) 0.1 (chicken) 0.1 (milk) 0.01 (egg) | 0.1 (pork) 0.1 (beef) 0.1 (chicken) 0.1 (milk) 0.01 (egg) | |
Imazethapyr | 81335-77-5 | 289.3 | 2.1 3.9 | 1.2 (pH 9) 1.49 (pH 7) 1.04 (pH 5) | <0.013 | Acetone 48.2 Methanol 105 Water 1.4 | 0.05 (meat) 0.01 (chicken) 0.01 (milk) 0.01 (egg) | 0.1 (pork) 0.1 (beef) 0.1 (chicken) 0.1 (milk) 0.1 (egg) | |
Imazaquin | 81335-37-7 | 311.3 | 3.45 11.03 | −1.32 (pH 10) −1.09 (pH7) 0.833 (pH 4) | 2 × 10−9 | Acetone 3.69 Methanol 5.77 Water 102 | Not set | Not set | |
Imazamethabenz (free acid) | 89318-82-1 | 274.3 | - | 1.9 | <0.013 | Water 0.074 | Not set | Not set | |
Imazamethabenz -methyl | 81405-85-8 | 288.3 | 3.1 | 1.9 | 0.0021 | Acetone 180 Methanol 244 Water 2.2 | Not set | Not set |
Compound Name | RT (min) | Ionization | Precursor Ion > Product Ion (CE, eV) | |||
---|---|---|---|---|---|---|
Quantifier Ion | CE | Qualifier Ion | CE | |||
Imazapyr | 5.419 | [M+H]+ | 262.0 > 217.05 | −20 | 262.0 > 220.05 | −18 |
Imazamox | 5.959 | [M+H]+ | 306.0 > 261.10 | −21 | 306.0 > 246.05 | −25 |
Imazapic | 6.136 | [M+H]+ | 276.0 > 231.10 | −21 | 276.0 > 163.05 | −26 |
Imazethapyr | 6.720 | [M+H]+ | 290.0 > 245.10 | −21 | 290.0 > 177.10 | −30 |
Imazaquin | 7.141 | [M+H]+ | 312.0 > 267.10 | −22 | 312.0 > 199.05 | −29 |
Imazamethabenz (free acid) | 5.882 | [M+H]+ | 275.1 > 144.05 | −36 | 275.1 > 229.15 | −20 |
Imazamethabenz -methyl | 6.782 | [M+H]+ | 290.0 > 230.15 | −20 | 290.0 > 145.05 | −36 |
Compound Name | First Extraction | Add Acid Material | |
---|---|---|---|
0.1 M Ammonium Acetate | 0.1 M Potassium Phosphate | 6N HCl | |
Imazapyr | 0.7 | 85.0 | 96.2 |
Imazamox | 3.1 | 88.2 | 97.1 |
Imazapic | 2.1 | 93.4 | 98.4 |
Imazethapyr | 4.1 | 92.8 | 94.9 |
Imazaquin | 5.0 | 93.1 | 100.9 |
Imazamethabenz (free acid) | 5.0 | 89.5 | 92.0 |
Imazamethabenz -methyl | 6.3 | 90.5 | 98.7 |
Compound Name | Matrix Effect (% ME) | ||||
---|---|---|---|---|---|
Egg | Milk | Beef | Pork | Chicken | |
Imazapyr | 1.99 | −4.70 | −0.77 | 7.11 | −0.27 |
Imazamox | 3.13 | −3.41 | 1.39 | 1.67 | 1.73 |
Imazapic | −1.76 | −3.72 | −1.03 | 1.63 | −0.63 |
Imazethapyr | −4.72 | −5.09 | −1.18 | 0.52 | −2.00 |
Imazaquin | −0.90 | −2.12 | −0.92 | 0.53 | 0.66 |
Imazamethabenz (free acid) | −6.56 | −3.70 | −3.12 | 3.01 | −6.02 |
Imazamethabenz-methyl | −2.71 | −3.38 | 0.42 | 5.70 | 0.10 |
Compound Name | Limit of Detection (mg/kg) | Limit of Quantification (mg/kg) | Linearity (R2) | ||||
---|---|---|---|---|---|---|---|
Egg | Milk | Beef | Pork | Chicken | |||
Imazapyr | 0.0005 | 0.01 | 0.9999 | 0.9999 | 0.9998 | 0.9999 | 0.9999 |
Imazamox | 0.0005 | 0.01 | 0.9999 | 0.9999 | 0.9998 | 0.9999 | 0.9999 |
Imazapic | 0.0005 | 0.01 | 0.9999 | 0.9998 | 0.9999 | 0.9999 | 0.9998 |
Imazethapyr | 0.0005 | 0.01 | 0.9998 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
Imazaquin | 0.0005 | 0.01 | 0.9999 | 0.9999 | 0.9998 | 0.9998 | 0.9999 |
Imazamethabenz (free acid) | 0.0005 | 0.01 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
Imazamethabenz-methyl | 0.0005 | 0.01 | 0.9996 | 0.9996 | 0.9999 | 0.9999 | 0.9998 |
Concentration (mg/kg) | Repeatability | Trueness (Range of Mean % Recovery) |
---|---|---|
35 | 50–120 | |
30 | 60–120 | |
20 | 70–120 | |
15 | 70–110 | |
10 | 70–110 |
Compound Name | Fortification Level (μg/kg) | Recovery (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Egg | Milk | Beef | Pork | Chicken | ||||||||||||
Aver 1 | STDEV 2 | % RSD 3 | Aver 1 | STDEV 2 | % RSD 3 | Aver 1 | STDEV 2 | % RSD 3 | Aver 1 | STDEV 2 | % RSD 3 | Aver 1 | STDEV 2 | % RSD 3 | ||
Imazapyr | 10 | 82.7 | 2.4 | 2.9 | 106.2 | 3.3 | 3.1 | 108.0 | 5.7 | 5.2 | 93.3 | 7.0 | 7.5 | 102.4 | 5.5 | 5.3 |
100 | 92.3 | 1.1 | 1.2 | 94.5 | 1.8 | 1.9 | 94.7 | 1.5 | 1.6 | 89.2 | 1.4 | 1.6 | 91.3 | 1.4 | 1.6 | |
500 | 95.4 | 1.4 | 1.4 | 98.5 | 1.4 | 1.4 | 103.8 | 2.2 | 2.2 | 98.5 | 2.7 | 2.8 | 95.8 | 1.3 | 1.4 | |
Imazamox | 10 | 89.2 | 4.9 | 5.5 | 105.2 | 5.6 | 5.3 | 106.6 | 3.3 | 3.1 | 107.5 | 7.0 | 6.5 | 104.3 | 5.0 | 4.8 |
100 | 93.5 | 1.2 | 1.3 | 94.0 | 2.0 | 2.1 | 94.9 | 1.9 | 2.0 | 93.8 | 2.8 | 3.0 | 91.5 | 0.9 | 1.0 | |
500 | 96.9 | 2.7 | 2.8 | 99.4 | 1.4 | 1.4 | 104.4 | 1.7 | 1.7 | 100.6 | 2.8 | 2.8 | 96.8 | 2.2 | 2.3 | |
Imazapic | 10 | 91.5 | 2.1 | 2.3 | 87.6 | 4.6 | 5.3 | 95.5 | 4.8 | 4.8 | 99.2 | 7.5 | 7.6 | 91.1 | 1.6 | 1.7 |
100 | 95.5 | 0.9 | 0.9 | 93.8 | 1.8 | 1.9 | 91.3 | 1.7 | 1.8 | 90.8 | 0.6 | 0.7 | 90.8 | 1.5 | 1.7 | |
500 | 97.6 | 0.9 | 1.0 | 96.4 | 1.3 | 1.4 | 97.6 | 1.0 | 1.0 | 100.0 | 3.2 | 3.2 | 94.4 | 1.7 | 1.7 | |
Imazethapyr | 10 | 76.1 | 1.2 | 1.5 | 87.3 | 2.0 | 2.3 | 106.3 | 6.7 | 6.3 | 96.8 | 4.1 | 4.3 | 95.8 | 8.1 | 8.4 |
100 | 93.9 | 1.7 | 1.8 | 94.2 | 1.3 | 1.4 | 94.3 | 2 | 2.1 | 94.7 | 2.4 | 2.5 | 92.5 | 1.5 | 1.6 | |
500 | 94.6 | 1.8 | 1.9 | 96.4 | 1.4 | 1.5 | 99.0 | 1.0 | 1.0 | 102.5 | 0.9 | 0.9 | 94.8 | 1.7 | 1.7 | |
Imazaquin | 10 | 88.3 | 4.5 | 5.1 | 92.1 | 4.6 | 5.0 | 101.7 | 4.4 | 4.3 | 99.4 | 4.0 | 4.0 | 86.3 | 2.6 | 3.0 |
100 | 94.2 | 1.2 | 1.5 | 96.8 | 1.5 | 1.5 | 97.1 | 2.6 | 2.7 | 96.7 | 2.9 | 3.0 | 90.8 | 1.2 | 1.3 | |
500 | 95.3 | 2.7 | 2.8 | 99.3 | 1.0 | 1.0 | 99.5 | 3.3 | 3.3 | 101.0 | 1.4 | 1.3 | 94.4 | 1.4 | 1.5 | |
Imazamethabenz (free acid) | 10 | 103.3 | 4.0 | 3.9 | 104.4 | 2.4 | 2.3 | 107.5 | 1.5 | 1.4 | 110.6 | 5.3 | 4.8 | 106.2 | 2.3 | 2.2 |
100 | 95.0 | 1.6 | 1.7 | 96.8 | 1.5 | 1.5 | 92 | 0.7 | 0.8 | 92.1 | 1.3 | 1.4 | 90.9 | 1.2 | 1.3 | |
500 | 99.8 | 2.7 | 2.8 | 99.3 | 1.0 | 1.0 | 102.1 | 2.1 | 2.1 | 100.2 | 0.9 | 0.9 | 97.2 | 2.1 | 2.1 | |
Imazamethabenz -methyl | 10 | 89.9 | 2.3 | 2.6 | 93.4 | 2.0 | 2.2 | 102.1 | 4.3 | 4.3 | 87.6 | 3.9 | 4.4 | 84.1 | 4.1 | 4.9 |
100 | 96.5 | 0.7 | 0.7 | 94.5 | 1.4 | 1.5 | 95.5 | 1.4 | 1.4 | 93.9 | 1.9 | 2.0 | 91.4 | 1.5 | 1.6 | |
500 | 97.6 | 2.3 | 2.3 | 98.4 | 2.2 | 2.2 | 97.7 | 1.0 | 1.0 | 95.7 | 1.6 | 1.7 | 94.6 | 1.2 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, H.-M.; Jo, H.-W.; Chang, H.-R.; Moon, J.-K. Development of Simultaneous Analytical Method for Imidazolinone Herbicides from Livestock Products by UHPLC-MSMS. Foods 2022, 11, 1781. https://doi.org/10.3390/foods11121781
Heo H-M, Jo H-W, Chang H-R, Moon J-K. Development of Simultaneous Analytical Method for Imidazolinone Herbicides from Livestock Products by UHPLC-MSMS. Foods. 2022; 11(12):1781. https://doi.org/10.3390/foods11121781
Chicago/Turabian StyleHeo, Hyo-Min, Hyeong-Wook Jo, Hee-Ra Chang, and Joon-Kwan Moon. 2022. "Development of Simultaneous Analytical Method for Imidazolinone Herbicides from Livestock Products by UHPLC-MSMS" Foods 11, no. 12: 1781. https://doi.org/10.3390/foods11121781
APA StyleHeo, H. -M., Jo, H. -W., Chang, H. -R., & Moon, J. -K. (2022). Development of Simultaneous Analytical Method for Imidazolinone Herbicides from Livestock Products by UHPLC-MSMS. Foods, 11(12), 1781. https://doi.org/10.3390/foods11121781