Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Preparation of Protein Isolates by Alkaline-Acid Extraction Process
2.3. Extraction Efficiency Calculation
2.4. Determination of Physicochemical Properties
2.4.1. Color Attributes
2.4.2. Bulk Density
2.5. Protein Content Determination
2.6. Electrophoresis Profile of Peru and Thai SI Protein Isolates
2.7. Determination of Functional Properties
2.7.1. Protein Solubility
2.7.2. Water and Oil Holding Capacity
2.7.3. Emulsifying Activity and Stability
2.7.4. Foaming Capacity and Foam Stability
2.8. In Vitro Digestibility
2.9. Statistical Analysis
3. Results and Discussion
3.1. Extraction Efficiency of Thai and Peru SI Protein Isolates
3.2. Physicochemical Properties of Protein Isolates
3.3. Functional Properties of Thai and Peru SI Protein Isolates
3.3.1. Solubility
3.3.2. Water and Oil Holding Properties of Thai and Peru SI Protein Isolates
3.3.3. Emulsifying Properties of Thai and Peru SI Protein Isolates
3.3.4. Foaming Properties of Thai and Peru SI Protein Isolates
3.3.5. Functional Properties of Plant-Based Proteins
3.4. In Vitro Digestibility of Peru and Thai SI Protein Isolates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Shen, L.; Li, J.; Lv, L.; Zhang, L.; Bai, R.; Zheng, T.; Zhang, Q. Comparison of functional and structural properties of ginkgo seed protein dried by spray and freeze process. J. Food Sci. Technol. 2021, 58, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Curtain, F.; Grafenauer, S. Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, L.F.; Rosada, L.M.; Jiménez, Á. Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas Y Aceites 2011, 62, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Rawdkuen, S.; Murdayanti, D.; Ketnawa, S.; Phongthai, S. Chemical properties and nutritional factors of pressed-cake from tea and sacha inchi seeds. Food Biosci. 2016, 15, 64–71. [Google Scholar] [CrossRef]
- Rodríguez, G.; Squeo, G.; Estivi, L.; Berru, S.Q.; Buleje, D.; Caponio, F.; Brandolini, A.; Hidalgo, A. Changes in stability, tocopherols, fatty acids and antioxidant capacity of sacha inchi (Plukenetia volubilis) oil during French fries deep-frying. Food Chem. 2021, 340, 127942. [Google Scholar] [CrossRef]
- Du, M.; Xie, J.; Gong, B.; Xu, X.; Tang, W.; Li, X.; Li, C.; Xie, M. Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocoll. 2018, 76, 131–140. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Olejnik, A.; Białas, W.; Rybicka, I.; Zielińska-Dawidziak, M.; Siger, A.; Kubiak, P.; Lewandowicz, G. The Nutritional Value and Biological Activity of Concentrated Protein Fraction of Potato Juice. Nutrients 2019, 11, 1523. [Google Scholar] [CrossRef] [Green Version]
- Tuśnio, A.; Pastuszewska, B.; Święch, E.; Taciak, M. Response of young pigs to feeding potato protein and potato fibre-nutritional, physiological and biochemical parameters. J. Anim. Feed. Sci. 2011, 20, 361–378. [Google Scholar] [CrossRef] [Green Version]
- Pratap Singh, A.; Mandal, R.; Shojaei, M.; Singh, A.; Kowalczewski, P.Ł.; Ligaj, M.; Pawlicz, J.; Jarzębski, M. Novel Drying Methods for Sustainable Upcycling of Brewers’ Spent Grains as a Plant Protein Source. Sustainability 2020, 12, 3660. [Google Scholar] [CrossRef]
- McCarthy, A.L.; O’Callaghan, Y.C.; Piggott, C.O.; FitzGerald, R.J.; O’Brien, N.M. Brewers’ spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: A review. Proc. Nutr. Soc. 2013, 72, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, E.E.; Görgüç, A.; Gençdağ, E.; Yılmaz, F.M. Physicochemical, functional and emulsifying properties of plant protein powder from industrial sesame processing waste as affected by spray and freeze drying. LWT 2022, 154, 112646. [Google Scholar] [CrossRef]
- Adebiyi, A.P.; Aluko, R.E. Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chem. 2011, 128, 902–908. [Google Scholar] [CrossRef]
- Mune, M.A.M.; Minka, S.R.; Mbome, I.L. Optimising functional properties during preparation of cowpea protein concentrate. Food Chem. 2014, 154, 32–37. [Google Scholar] [CrossRef]
- Khalesi, M.; FitzGerald, R.J. In Vitro Digestibility and Antioxidant Activity of Plant Protein Isolate and Milk Protein Concentrate Blends. Catalysts 2021, 11, 787. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Rodzi, N.; Pinijsuwan, S. Characterization of sacha inchi protein hydrolysates produced by crude papain and Calotropis proteases. LWT 2018, 98, 18–24. [Google Scholar] [CrossRef]
- Sathe, S.K.; Kshirsagar, H.H.; Sharma, G.M. Solubilization, fractionation, and electrophoretic characterization of Inca peanut (Plukenetia volubilis L.) proteins. Plant Foods Hum. Nutr. 2012, 67, 247–255. [Google Scholar] [CrossRef]
- Namsoo, K.; Kim, Y.; Nam, Y. Characteristics and Functional Properties of Protein Isolates from Various Peanut (Arachis hypogaea L.) Cultivars. J. Food Sci. 2006, 57, 406–410. [Google Scholar]
- Kaur, M.; Singh, N. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chem. 2005, 91, 403–411. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Association of analytical communities: Gai-thersburg, MD, USA, 2000. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Kumar, K.S.; Ganesan, K.; Selvaraj, K.; Rao, P.S. Studies on the functional properties of protein concentrate of Kappaphycus alvarezii (Doty) Doty–An edible seaweed. Food Chem. 2014, 153, 353–360. [Google Scholar] [CrossRef]
- Robinson, H.W.; Hodgen, C.G. The biuret reaction in the determination of serum protein. I. A study of the condition necessary for the production of the stable color which bears a quantitative relationship to the protein concentration. J. Biol. Chem. 1940, 135, 707–725. [Google Scholar] [CrossRef]
- Mercado, J.; Elías Peñafiel, C.; Pascual, G. Protein isolated from cake of sacha inchi (Plukenetia volubilis L.) and evaluation of its techno-functionals properties. An. Científicos 2015, 76, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, G.F.; Tello, J.; Zevallos-Concha, A.; Baquerizo, L.; Caballero, L. Nitrogen balance after a single oral consumption of sacha inchi (Plukenetia volúbilis L.) protein compared to soy protein: A randomized study in humans. Toxicol. Mech. Methods 2018, 28, 140–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulloa, J.A.; Rosas-Ulloa, P.; Ulloa-Rangel, B.E. Physicochemical and functional properties of a protein isolate produced from safflower (Carthamus tinctorius L.) meal by ultrafiltration. J. Sci. Food Agric. 2011, 91, 572–577. [Google Scholar] [CrossRef]
- Wani, I.A.; Sogi, D.S.; Shivhare, U.S.; Gill, B.S. Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Food Res. Int. 2015, 76, 11–18. [Google Scholar] [CrossRef]
- Sathe, S.K.; Hamaker, B.R.; Sze-Tao, K.W.C.; Venkatachalam, M. Isolation, purification, and biochemical characterization of a novel water soluble protein from Inca peanut (Plukenetia volubilis L.). J. Agric. Food Chem. 2002, 50, 4906–4908. [Google Scholar] [CrossRef]
- Ghribi, A.M.; Gafsi, I.M.; Sila, A.; Blecker, C.; Danthine, S.; Attia, H.; Bougatef, A.; Besbes, S. Effects of enzymatic hydrolysis on conformational and functional properties of chickpea protein isolate. Food Chem. 2015, 187, 322–330. [Google Scholar] [CrossRef]
- Nissen, S.H.; Schmidt, J.M.; Gregersen, S.; Hammershøj, M.; Møller, A.H.; Danielsen, M.; Stødkilde, L.; Nebel, C.; Dalsgaard, T.K. Increased solubility and functional properties of precipitated Alfalfa protein concentrate subjected to pH shift processes. Food Hydrocoll. 2021, 119, 106874. [Google Scholar] [CrossRef]
- Elsohaimy, S.; Refaay, T.; Zaytoun, M. Physicochemical and functional properties of quinoa protein isolate. Ann. Agric. Sci. 2015, 60, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Physicochemical and functional properties of protein isolate produced from Australian chia seeds. Food Chem. 2016, 212, 648–656. [Google Scholar] [CrossRef]
- Toews, R.; Wang, N. Physicochemical and functional properties of protein concentrates from pulses. Food Res. Int. 2013, 52, 445–451. [Google Scholar] [CrossRef]
- Wani, I.A.; Sogi, D.S.; Gill, B.S. Physico-chemical and functional properties of native and hydrolysed protein isolates from Indian black gram (Phaseolus mungo L.) cultivars. LWT-Food Sci. Technol. 2015, 60, 848–854. [Google Scholar] [CrossRef]
- Jeżowski, P.; Polcyn, K.; Tomkowiak, A.; Rybicka, I.; Radzikowska, D. Technological and antioxidant properties of proteins obtained from waste potato juice. Open Life Sci. 2020, 15, 379–388. [Google Scholar] [CrossRef]
- Guan, X.; Yao, H.; Chen, Z.; Shan, L.; Zhang, M. Some functional properties of oat bran protein concentrate modified by trypsin. Food Chem. 2007, 101, 163–170. [Google Scholar] [CrossRef]
- Shevkani, K.; Kaur, A.; Kumar, S.; Singh, N. Cowpea protein isolates: Functional properties and application in gluten-free rice muffins. LWT-Food Sci. Technol. 2015, 63, 927–933. [Google Scholar] [CrossRef]
- Moure, A.; Sineiro, J.; Domínguez, H.; Parajó, J.C. Functionality of oilseed protein products: A review. Food Res. Int. 2006, 39, 945–963. [Google Scholar] [CrossRef]
- Yuliana, M.; Truong, C.T.; Huynh, L.H.; Ho, Q.P.; Ju, Y.-H. Isolation and characterization of protein isolated from defatted cashew nut shell: Influence of pH and NaCl on solubility and functional properties. LWT. 2014, 55, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Zeng, M.; Qin, F.; He, Z.; Chen, J. Physicochemical and functional properties of protein extracts from Torreya grandis seeds. Food Chem. 2017, 227, 453–460. [Google Scholar] [CrossRef]
- Wouters, A.G.B.; Rombouts, I.; Fierens, E.; Brijs, K.; Delcour, J.A. Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Compr. Rev. Food Sci. Food Saf. 2016, 15, 786–800. [Google Scholar] [CrossRef] [Green Version]
- Joshi, M.; Timilsena, Y.; Adhikari, B. Global production, processing and utilization of lentil: A review. J. Integrat. Agri. 2017, 16, 2898–2913. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Chen, Y.; Kaur, A.; Yu, L. Pulse proteins: Secondary structure, functionality and applications. J. Food Sci. Technol. 2019, 56, 2787–2798. [Google Scholar] [CrossRef] [PubMed]
- Gerzhova, A.; Mondor, M.; Benali, M.; Aider, M. Study of the functional properties of canola protein concentrates and isolates extracted by electro-activated solutions as non-invasive extraction method. Food Bioscie. 2015, 12, 128–138. [Google Scholar] [CrossRef]
- Bolontrade, A.J.; Scilingo, A.A.; Añón, M.C. Amaranth proteins foaming properties: Adsorption kinetics and foam formation—Part 1. Colloids Surf. B. 2013, 105, 319–327. [Google Scholar] [CrossRef]
- Saatchi, A.; Kiani, H.; Labbafi, M. A new functional protein-polysaccharide conjugate based on protein concentrate from sesame processing by-products: Functional and physico-chemical properties. Int. J. Biol. Macromol 2019, 122, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Porras Saavedra, J.; Güémes-Vera, N.; Soto, J.L.; Martínez, M.; Yañez-Fernández, J. Comparative study of functional properties of protein isolates obtained from three Lupinus species. Adv. Biores. 2013, 4, 106–116. [Google Scholar]
- Kumar, M.; Tomar, M.; Potkule, J.; Reetu, D.; Punia, S.; Dhakane-Lad, J.; Dhumal, S.; Pradhan, P.; Nehru, B.; Anitha, T.; et al. Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocolloid. 2022, 123, 106986. [Google Scholar] [CrossRef]
- Sreerama, Y.N.; Sashikala, V.B.; Pratape, V.M.; Singh, V. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem. 2012, 131, 462–468. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, N.; Rana, J.C.; Sharma, S.K. Diversity in seed and flour properties in field pea (Pisum sativum) germplasm. Food Chem. 2010, 122, 518–525. [Google Scholar] [CrossRef]
- Zare, F.; Orsat, V.; Boye, J. Functional, physical and sensory properties of pulse ingredients incorporated into orange and apple juice beverages. J. Food Res. 2015, 4, 143. [Google Scholar] [CrossRef]
- Chirinos, R.; Pedreschi, R.; Campos, D. Enzyme-assisted hydrolysates from sacha inchi (Plukenetia volubilis) protein with in vitro antioxidant and antihypertensive properties. J. Food Proc.Preserv. 2020, 44, e14969. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I.; Hu, X. In Vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing. Food Res. Int. 2017, 92, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Quinteros, M.; Vilcacundo, R.; Carpio, C.; Carrillo, W. Digestibility and anti-inflammatory activity in vitro of sacha inchi (Plukenetia volubilis L.) proteins. Asian J. Pharm. Clin. Res. 2016, 9, 303–306. [Google Scholar]
Parameters | Thai Sacha Inchi | Peru Sacha Inchi |
---|---|---|
Protein content (%, N × 6.25) | 90.7 ± 0.4 b | 93.3 ± 0.8 a |
Extraction yield (%) | 5.0 ± 0.7 b | 7.0 ± 0.1 a |
Protein recovery (%) | 49.2 ± 7.5 b | 59.3 ± 2.5 a |
Purity (fold) | 1.6 ± 0.03 a | 1.5 ± 0.1 a |
Physicochemical Properties | Thai Sacha Inchi | Peru Sacha Inchi |
---|---|---|
Sacha inchi oil press-cake protein isolate | ||
Bulk density (g/mL) | 0.71 ± 0.02 a | 0.73 ± 0.1 a |
L* | 37.1 ± 1.5 b | 44.2 ± 2.8 a |
a* | 3.7 ± 0.1 a | 0.9 ± 0.1 b |
b* | 14.2 ± 0.2 a | 10.0 ± 0.6 b |
ΔE | 0.7 ± 0.02 b | 1.7 ± 0.6 a |
Whiteness | 35.4 ± 1.2 b | 43.3 ± 2.2 a |
Water holding capacity (g/g) | 3.1 ± 0.1 a | 3.0 ± 0.1 a |
Oil holding capacity (g/g) | 2.8 ± 0.1 a | 2.9 ± 0.2 a |
Emulsifying activity (%) | 56.3 ± 5.9 a | 49.5 ± 1.4 b |
Emulsion stability (%) | 94.2 ± 3.1 a | 80.3 ± 3.9 b |
Foaming capacity (%) | 46.7 ± 4.6 b | 73.3 ± 6.7 a |
Foaming stability (%) | 51.1 ± 3.9 b | 68.9 ± 3.9 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawdkuen, S.; D’Amico, S.; Schoenlechner, R. Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. Foods 2022, 11, 1869. https://doi.org/10.3390/foods11131869
Rawdkuen S, D’Amico S, Schoenlechner R. Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. Foods. 2022; 11(13):1869. https://doi.org/10.3390/foods11131869
Chicago/Turabian StyleRawdkuen, Saroat, Stefano D’Amico, and Regine Schoenlechner. 2022. "Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes" Foods 11, no. 13: 1869. https://doi.org/10.3390/foods11131869
APA StyleRawdkuen, S., D’Amico, S., & Schoenlechner, R. (2022). Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. Foods, 11(13), 1869. https://doi.org/10.3390/foods11131869