The Effects of Purple Corn Pigment on Growth Performance, Blood Biochemical Indices, Meat Quality, Muscle Amino Acids, and Fatty Acids of Growing Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Management
2.2. Chemical Composition
2.3. Growth Performance
2.4. Blood Biochemical Indices
2.5. Meat Quality
2.6. Amino Acids and Fatty Acids
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Blood Biochemical Indices
3.3. Meat Quality
3.4. Amino Acid Contents
3.5. Fatty Acid Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- del Bosque, C.I.E.; Grahl, S.; Nolte, T.; Mörlein, D. Meat quality parameters, sensory properties and consumer acceptance of chicken meat from dual-purpose crossbreeds fed with regional faba beans. Foods 2022, 11, 1074. [Google Scholar] [CrossRef] [PubMed]
- North, M.K.; Zotte, A.D.; Hoffman, L.C. The use of dietary flavonoids in meat production: A review. Anim. Feed Sci. Technol. 2019, 257, 114291. [Google Scholar] [CrossRef]
- Rakesh, S.U.; Patil, P.R.; Mane, S.R. Use of natural antioxidants to scavenge free radicals: A major cause of diseases. Int. J. PharmTech Res. 2010, 2, 1074–1081. [Google Scholar]
- Diaz-Sanchez, S.; D’Souza, D.; Biswas, D.; Hanning, I. Botanical alternatives to antibiotics for use in organic poultry production. Poult. Sci. 2015, 94, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Umeno, A.; Horie, M.; Murotomi, K.; Nakajima, Y.; Youshida, Y. Antioxdative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 2016, 21, 708. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Kwak, H.S.; Joo, J.Y.; Kang, J.; Lee, Y. Effects of partial replacement of pork meat with chicken or duck meat on the texture, flavor, and consumer acceptance of sausage. J. Food Qual. 2018, 2018, 6972848. [Google Scholar] [CrossRef] [Green Version]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T. Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult. Sci. 2013, 92, 2059–2069. [Google Scholar] [CrossRef]
- Roberto, M.; Antonio, F.; Luciana, M.; Paula, S. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar]
- Kšonžeková, P.; Mariychuk, R.; Eliašová, A.; Mudroñová, D.; Csank, T.; Király, J.; Marcinčáková, D.; Pistl, J.; Tkáčiková, L. In vitro study of biological activities of anthocyanin-rich berry extracts on porcine intestinal epithelial cells. J. Sci. Food Agric. 2016, 96, 1093–1100. [Google Scholar] [CrossRef]
- Tian, X.Z.; Paengkoum, P.; Paengkoum, S.; Chumpawadee, S.; Ban, C.; Thongpea, S. Short communication: Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. J. Dairy Sci. 2019, 102, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.Z.; Li, J.X.; Luo, Q.Y.; Zhou, D.; Long, Q.M.; Wang, X.; Lu, Q.; Wen, G.L. Effects of purple corn anthocyanin on blood biochemical indexes, ruminal fluid fermentation, and rumen microbiota in goats. Front. Vet. Sci. 2021, 8, 715710. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Z.; Xin, H.L.; Paengkoum, P.; Siwaporn, P.; Ban, C.; Sorasak, T. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats. J. Anim. Sci. 2019, 97, 1384–1397. [Google Scholar] [CrossRef] [PubMed]
- Amer, S.A.; Al-Khalaifah, H.S.; Gouda, A.; Osman, A.; Goda, N.I.A.; Mohammed, H.A.; Darwish, M.I.M.; Hassan, A.M.; Mohamed, S.K.A. Potential effects of anthocyanin-rich roselle (Hibiscus sabdariffa L.) extract on the growth, intestinal histomorphology, blood biochemical parameters, and the immune status of broiler chickens. Antioxidants 2022, 11, 544. [Google Scholar] [CrossRef] [PubMed]
- Hajrawati, H.; Malaka, R.; Fatma, F.; Hakim, M.R.; Novita, N.; Suharyanto, S. Evaluation of physicochemical properties and antioxidant activity of chicken meatballs by substitution of tapioca flour with purple sweet potato. Adv. Biol. Sci. Res. 2022, 20, 349–355. [Google Scholar]
- Tian, X.Z.; Lu, Q.; Paengkoum, P.; Paengkoum, S. Short communication: Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage. J. Dairy Sci. 2020, 103, 7808–7812. [Google Scholar] [CrossRef]
- Jian, H.; Zu, P.; Rao, Y.; Li, W.; Mou, T.; Lin, J.; Zhang, F. Comparative analysis of melanin deposition between chishui silky fowl and taihe silky fowl. J. Appl. Anim. Res. 2021, 49, 366–373. [Google Scholar] [CrossRef]
- Farahat, M.H.; Abdallah, F.M.; Ali, H.A.; Hernandez-Santana, A. Effect of dietary supplementation of grape seed extract on the growth performance, lipid profile, antioxidant status and immune response of broiler chickens. Animal 2016, 11, 771–777. [Google Scholar] [CrossRef]
- Tian, X.; Li, J.; Luo, Q.; Wang, X.; Wang, T.; Zhou, D.; Xie, L.; Ban, C.; Lu, Q. Effects of purple corn anthocyanin on growth performance, meat quality, muscle antioxidant status, and fatty acid profiles in goats. Foods 2022, 11, 1255. [Google Scholar] [CrossRef]
- Chinese Standard NY/T 33-2004; Feeding Standard of Chicken. The Standard Press of PR China: Beijing, China, 2004. (In Chinese)
- AOAC. Official Methods of Analysis, 15th ed.; Association Official Analytical Chemistry: Arlington, VA, USA, 1990. [Google Scholar]
- Chinese Standard GB 5009. 124-2016; National Food Safety Standard-Determination of Amino Acids in Food. The Standard Press of PR China: Beijing, China, 2016. (In Chinese)
- Omar, A.E.; Al-Khalaifah, H.S.; Mohamed, W.A.M.; Gharib, H.S.A.; Osman, A.; Al-Gabri, N.A.; Amer, S.A. Effects of phenolic-rich onion (Allium cepa L.) extract on the growth performance, behavior, intestinal histology, amino acid digestibility, antioxidant activity, and the immune status of broiler chickens. Front. Vet. Sci. 2020, 7, 582612. [Google Scholar] [CrossRef]
- Chinese standard GB 5009.168-2016; National Food Safety Standard-Determination of Fatty Acids in Food. The Standard Press of PR China: Beijing, China, 2016. (In Chinese)
- Changxing, L.; Chenling, M.; Alagawany, M.; Jianhua, L.; Dongfang, D.; Gaichao, W.; Wenyin, Z.; Sted, S.F.; Arain, M.A.; Saeed, M.; et al. Health benefits and potential applications of anthocyanins in poultry feed industry. World Poult. Sci. J. 2018, 74, 251–264. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.; Ye, J.; Zhang, S.; Jiang, S. Effects of dietary supplementation with bilberry extract on growth performance, immune function, antioxidant capacity, and meat quality of yellow-feathered chickens. Animals 2021, 11, 1989. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, S.; Viveros, A.; Rebole, A.; Rica, B.D.; Brenes, A. Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Food Res. Int. 2015, 73, 197–203. [Google Scholar] [CrossRef]
- Schiavone, A.; Guo, K.; Tassone, S.; Gasco, L.; Hernandez, E.; Denti, R.; Zoccarato, I. Effects of a natural extract of breastnut wood on digestibility, performance traits, and nitrogen balance of broiler chicks. Poult. Sci. 2008, 87, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Sihvo, H.K.; Immonen, K.; Puolanne, E. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. Vet. Pathol. 2014, 51, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Starčević, K.; Krstulović, L.; Brozić, D.; Maurić, M.; Stojević, Z.; Mikulec, Ž.; Bajić, M.; Mašek, T. Production performance, meat composition and oxidative susceptibility in broiler chicken fed with different phenolic compounds. J. Sci. Food Agric. 2015, 95, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Csernus, B.; Biró, S.; Babinszky, L.; Komlósi, I.; Jávor, A.; Stündl, L.; Remenyik, J.; Bai, P.; Oláh, J.; Pesti-Asbóth, G.; et al. Effect of carotenoids, oligosaccharides and anthocyanins on growth performance, immunological parameters and intestinal morphology in broiler chickens challenged with Escherichia coli lipopolysaccharide. Animals 2020, 10, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Wang, X.; Li, J.; Luo, Q.; Ban, C.; Lu, Q. The Effects of selenium on rumen fermentation parameters and microbial metagenome in goats. Fermentation 2022, 8, 240. [Google Scholar] [CrossRef]
- Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 2012, 17, 311–321. [Google Scholar] [CrossRef]
- Lin, L.Z.; Sun, J.; Chen, P.; Harnly, J. UHPLC-PDA-ESI/HRMS/MSn analysis of anthocyanins, flavonol glycosides, and hydroxvcinnamic acid derivatives in red mustard greens (Brassica juncea Coss variety). J. Agric. Food Chem. 2011, 59, 12059–12072. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.Z.; Lu, Q.; Zhao, S.G.; Li, J.X.; Luo, Q.Y.; Wang, X.; Zhang, Y.D.; Zheng, N. Purple corn anthocyanin affects lipid mechanism, flavor compound profiles, and related gene expression of longissimus thoracis et lumborum muscle in goats. Animals 2021, 11, 2407. [Google Scholar] [CrossRef]
- Chamorro, S.; Viveros, A.; Centeno, C.; Romero, C.; Arija, I.; Brenes, A. Effects of dietary grape seed extract on growth performance, amino acid digestibility and plasma lipids and mineral content in broiler chicks. Animal 2013, 7, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Han, X.; Tan, H.; Huang, W.; You, Y.; Zhan, J. Blueberry extract improves obesity through regulation of the gut microbiota and bile acids via pathways involving FXR and TGR5. iScience 2019, 19, 676–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, C.E.; Karas, R.H.; Kuvin, J.T. High-density lipoprotein cholesterol and coronary heart disease. Cardiol. Rev. 2004, 12, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.L.; Xu, Y.; Zhang, Y.Y.; Lu, Y.H. Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food Funct. 2013, 4, 1602. [Google Scholar] [CrossRef] [PubMed]
- Nasoetion, M.H.; Atmomarsono, U.; Sunarti, D.; Suthama, N. Growth performance and lipid profile of broilers fed different levels of purple sweet potato extract and raised under different stocking densities. Livest. Res. Rural Dev. 2019, 31, 97. [Google Scholar]
- Khumpeerawat, P.; Doungjinda, M.; Phasuk, Y. Factors affecting gene expression associated with the skin color of black-bone chicken in thailand. Poult. Sci. 2021, 100, 101440. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Wang, Z.G.; Pan, X.J.; Peng, Z.Q.; Zhao, R.Q.; Zhou, G.H. Methionine and selenium yeast supplementation of the maternal diets affects color, water-holding capacity, and oxidative stability of their male offspring meat at the early stage. Poult. Sci. 2009, 88, 1096–1101. [Google Scholar] [CrossRef]
- Zhou, Y.; Ruan, Z.; Li, X.L.; Mi, S.M.; Yin, Y.L. Eucommia ulmoides Oliver leaf polyphenol supplementation improves meat quality and regulates myofiber type in finishing pigs. J. Anim. Sci. 2016, 94, 164–168. [Google Scholar] [CrossRef]
- Lee, S.H.; Joo, S.T.; Ryu, Y.C. Skeletal muscle fiber type and myofibrillar proteins in relation to meat quality. Meat Sci. 2010, 86, 166–170. [Google Scholar] [CrossRef]
- Zdanowska-Ssiadek, A.; Lipińska-Palka, P.; Damaziak, K.; Michalczuk, M.; Marchewka, J. Antioxidant effects of phytogenic herbal-vegetable mixtures additives used in chicken feed on breast meat quality. Anim. Sci. Pap. Rep. 2019, 36, 393–408. [Google Scholar]
- Pastsart, U.; Pimpa, O. Growth performance, meat quality, meat oxidation and intestinal bacterial contents of broilers fed with Garcinia mangostana peel extract. Indian J. Anim. Res. 2021, 1, 6. [Google Scholar] [CrossRef]
- Pripis-Nicolau, L.; Revel, G.D.; Bertrand, A.; Maujean, A. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions. J. Agric. Food Chem. 2000, 48, 3761–3766. [Google Scholar] [CrossRef]
- Mouritsen, O.G.; Duelund, L.; Petersen, M.A.; Mikael, A.; Hartmann, A.L.; Frøst, M.B. Umami taste, free amino acid composition, and volatile compounds of brown seaweeds. J. Appl. Phycol. 2019, 31, 1213–1232. [Google Scholar] [CrossRef]
- Vaithiyanathan, S.; Naveena, B.M.; Muthukumar, M.; Girish, P.S.; Kondaiah, N. Effect of dipping in pomegranate (Punica granatum) fruit juice phenolic solution on the shelf life of chicken meat under refrigerated storage (4 °C). Meat Sci. 2011, 88, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M. Oxidative damage to poultry: From farm to fork. Poult. Sci. 2015, 94, 1368–1378. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, D.; Jin, Y.; Zhao, J.; Wang, H. In vitro and in vivo inhibitory effect of anthocyanin-rich bilberry extract on α-glucosidase and α-amylase. LWT Food Sci. Technol. 2021, 145, 111484. [Google Scholar] [CrossRef]
- Tian, X.Z.; Paengkoum, P.; Paengkoum, S.; Thongpe, S.; Ban, C. Comparison of forage yield, silage fermentative quality, anthocyanin stability, antioxidant activity, and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover and sticky corn stover. J. Integr. Agric. 2018, 17, 2082–2095. [Google Scholar] [CrossRef] [Green Version]
- Dancs, G.; Kondrák, M.; Bánfalvi, Z. The effects of enhanced methionine synthesis on amino acid and anthocyanin content of potato tubers. BMC Plant Biol. 2008, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhou, X.; Liu, Y. Characterization and evaluation of umami taste: A review. TrAC Trends Anal. Chem. 2020, 172, 115876. [Google Scholar] [CrossRef]
- Haščík, P.; Pavelková, A.; Tkáová, J.; Čuboň, J.; Kačániová, M.; Habánová, M.; Mlyneková, E. The amino acid profile of broiler chicken meat after dietary administration of bee products and probiotics. Biologia 2020, 75, 1899–1908. [Google Scholar] [CrossRef]
- Turcu, R.P.; Panaite, T.D.; Untea, A.E.; Vlaicu, P.A.; Mironeasa, S. Effects of grape seed oil supplementation to broilers diets on growth performance, meat fatty acids, health lipid indices and lipid oxidation parameters. Agriculture 2021, 11, 404. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Mahfuz, S.; Long, S.; Wu, D.; Gao, J.; Piao, X. Supplementation of mixed organic acids improves growth performance, meat quality, gut morphology and volatile fatty acids of broiler chicken. Animals 2021, 11, 3020. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Jose, M.; Silva, L.R.; Pereira, L.L.; Santo, I.A.; Lannes, S.C.S.; Silva, M.V.D. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Hernández, I.; Alegre, L.; Breusegem, F.V.; Munné-Bosch, S. How relevant are flavonoids as antioxidants in plants. Trends Plant Sci. 2009, 14, 125–132. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S.; Abushelaibi, A.; Alam, A. Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: A detailed review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1125–1140. [Google Scholar] [CrossRef]
- Maqsood, S.; Benjakul, S. Comparative studies of four different phenolic compounds on in vitro antioxidative activity and the preventive effect on lipid oxidation of fish oil emulsion and fish mince. Food Chem. 2010, 119, 123–132. [Google Scholar] [CrossRef]
- Seeram, N.P.; Nair, M.G. Inhibition of lipid peroxidation and structure−activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. J. Agric. Food Chem. 2002, 50, 5308–5312. [Google Scholar] [CrossRef]
- Tian, X.Z.; Wang, X.; Ban, C.; Luo, Q.Y.; Li, J.X.; Lu, Q. Effect of purple corn anthocyanin on antioxidant activity, volatile compound and sensory property in milk during storage and light prevention. Front. Nutr. 2022, 9, 862689. [Google Scholar] [CrossRef]
- Boschetn, E.; Bordoni, A.; Meluzzi, A.; Castellini, C.; Bosco, A.D.; Sirri, F. Fatty acid composition of chicken breast meat is dependent on genotype-related variation of FADS, and FADS2 gene expression and desaturating activity. Animal 2016, 10, 700–708. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Li, X.; Xu, Y.; Jiang, W. The anti-obesogenic effects of dietary berry fruits: A review. Food Res. Int. 2021, 147, 110539. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Z.; Li, J.X.; Luo, Q.Y.; Wang, X.; Xiao, M.M.; Zhou, D.; Lu, Q.; Chen, X. Effect of supplementation with selenium-yeast on muscle antioxidant activity, meat quality, fatty acids and amino acids in goats. Front. Vet. Sci. 2022, 8, 813672. [Google Scholar] [CrossRef] [PubMed]
- Frasao, B.; Rosario, A.; Rodrigues, B.L.; Bitti, H.A.; Conte-Junior, C.A. Impact of juara (Euterpe edulis) fruit waste extracts on the quality of conventional and antibiotic-free broiler meat. Poult. Sci. 2021, 100, 101232. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Chemical Composition, % of DM |
---|---|
Corn | 61.50 |
Soybean meal | 26.19 |
Soybean oil | 1.05 |
Limestone | 7.86 |
Fishmeal | 0.10 |
Salt | 0.30 |
Premix 1 | 3.00 |
Total | 100 |
Nutrient levels | |
Dry matter, % of the as-fed diet | 93.35 |
Metabolizable energy, MJ/kg 2 | 12.12 |
Crude protein | 16.02 |
Calcium | 3.25 |
Total phosphorus | 0.45 |
Available phosphorus | 0.19 |
Lysine | 0.87 |
Methionine | 0.42 |
Methionine + cystine | 0.72 |
Items | PCP Supplemental Levels, mg/kg | SEM | |||
---|---|---|---|---|---|
0 | 80 | 160 | 240 | ||
ADFI, g/d | 67.35 b | 73.05 a | 72.29 a | 71.45 a,b | 1.4959 |
Initial weight, g | 919.36 | 940.11 | 946.48 | 934.49 | 13.4118 |
Final weight, g | 1654.56 c | 1764.79 a | 1757.29 a,b | 1713.01 b | 17.0474 |
Body weight change, g | 735.20 b | 824.68 a | 810.80 a | 778.51 a,b | 20.6924 |
ADG, g/d | 9.80 b | 11.00 a | 10.81 a | 10.38 a,b | 0.2759 |
F/G | 7.24 | 6.77 | 6.78 | 7.02 | 0.1869 |
Items | PCP Supplemental Levels, mg/kg | SEM | |||
---|---|---|---|---|---|
0 | 80 | 160 | 240 | ||
Antioxidant parameters | |||||
TAC, U/mL | 6.01 b | 9.46 a | 8.51 a | 8.50 a | 0.6312 |
SOD, U/mL | 17.41 c | 19.49 a | 18.59 a,b | 17.76 b,c | 0.3752 |
GSH-Px, U/mL | 170.61 c | 217.57 a | 214.99 a | 194.70 b | 6.6481 |
CAT, U/mL | 7.24 b | 9.27 a | 7.79 a,b | 7.27 b | 0.5697 |
MDA, nmol/mL | 9.67 | 6.74 | 8.36 | 8.68 | 1.0956 |
Lipid metabolism parameters | |||||
T-CHO, mmol/L | 2.40 | 1.44 | 1.61 | 1.98 | 0.4195 |
TG, mmol/L | 0.73 | 1.29 | 1.65 | 1.10 | 0.8672 |
HDL-C, mmol/L | 2.29 b | 2.98 a | 2.35 b | 2.43 b | 0.1340 |
LDL-C, mmol/L | 1.28 | 2.04 | 1.25 | 1.60 | 0.4827 |
Immune parameters | |||||
TP, μg/L | 44.66 | 47.69 | 46.14 | 45.96 | 2.1965 |
Alb, g/L | 14.79 b | 17.25 a | 18.55 a | 18.58 a | 0.7389 |
Items | PCP Supplemental Levels, mg/kg | SEM | |||
---|---|---|---|---|---|
0 | 80 | 160 | 240 | ||
pH 45 min | 5.65 | 4.98 | 5.88 | 4.93 | 0.9068 |
pH 24 h | 4.94 | 4.87 | 5.73 | 4.90 | 0.8502 |
Meat color 45 min, L* | 89.63 | 89.66 | 89.00 | 89.72 | 0.5767 |
Meat color 24 h, L* | 89.51 | 89.18 | 90.00 | 90.00 | 0.4775 |
Drip loss, % | 12.47 a | 11.13 b | 10.47 b | 10.94 b | 0.6356 |
Water loss rate, % | 13.80 a | 10.03 a,b | 8.22 b | 8.06 b | 1.3755 |
Shear force, N | 15.99 | 17.86 | 12.70 | 11.86 | 2.5865 |
Items, % | PCP Supplemental Levels, mg/kg | SEM | |||
---|---|---|---|---|---|
0 | 80 | 160 | 240 | ||
Asp | 7.41 c | 7.87 b | 7.90 b | 8.03 a | 0.0317 |
Thr | 3.53 c | 3.73 b | 3.77 b | 3.86 a | 0.0144 |
Ser | 2.99 b | 3.23 a | 3.19 a | 3.24 a | 0.0136 |
Glu | 11.65 b | 12.67 a | 12.62 a | 12.69 a | 0.0517 |
Gly | 3.40 c | 3.45 b | 3.49 b | 3.68 a | 0.0144 |
Ala | 4.46 c | 4.71 b | 4.72 b | 4.82 a | 0.0210 |
Val | 3.93 c | 4.13 b | 4.14 b | 4.25 a | 0.0162 |
Met | 2.03 c | 2.10 b | 2.20 a | 1.97 d | 0.0092 |
Ile | 3.59 c | 3.87 a,b | 3.85 b | 3.93 a | 0.0209 |
Leu | 6.13 c | 6.50 b | 6.53 b | 6.62 a | 0.0251 |
Tyr | 2.70 c | 2.88 b | 2.90 a,b | 2.94 a | 0.0130 |
Phe | 3.96 c | 4.14 b | 4.20 a | 4.25 a | 0.0180 |
His | 3.36 c | 3.36 c | 3.65 b | 3.78 a | 0.0162 |
Lys | 6.87 b | 7.36 a | 7.37 a | 7.46 a | 0.0315 |
Arg | 4.94 c | 5.23 b | 5.24 b | 5.36 a | 0.0245 |
Pro | 2.71 c | 2.83 b | 2.85 b | 2.96 a | 0.0161 |
EAA | 30.02 c | 31.84 b | 32.05 a,b | 32.31 a | 0.1309 |
UAA | 33.58 c | 35.72 b | 35.84 b | 36.41 a | 0.1482 |
Items, % | PCP Supplemental Levels, mg/kg | SEM | |||
---|---|---|---|---|---|
0 | 80 | 160 | 240 | ||
C12:0 | 0.054 a | 0.027 b | 0.029 b | 0.041 a,b | 0.0041 |
C14:0 | 1.005 a | 0.674 d | 0.755 c | 0.875 b | 0.0019 |
C14:1 | 0.228 a | 0.148 c | 0.180 b | 0.232 a | 0.0014 |
C15:0 | 0.097 a | 0.070 c | 0.066 d | 0.076 b | 0.0005 |
C16:0 | 27.799 b | 26.358 c | 28.977 a | 27.852 b | 0.0219 |
C16:1 | 5.595 a | 4.815 d | 5.440 b | 5.406 c | 0.0027 |
C17:0 | 0.215 a | 0.030 d | 0.054 c | 0.104 b | 0.0026 |
C18:0 | 7.759 b | 7.604 d | 8.065 a | 7.716 c | 0.0030 |
C18:1n9t | 0.169 c | 0.182 b | 0.193 a | 0.186 b | 0.0013 |
C18:1n9c | 35.733 d | 39.556 b | 39.850 a | 38.774 c | 0.0158 |
C18:2n6t | 0.062 | 0.055 | 0.044 | 0.074 | 0.0115 |
C18:2n6c | 17.768 b | 18.442 a | 14.349 d | 15.966 c | 0.0118 |
C20:0 | 0.063 b | 0.078 a | 0.065 b | 0.058 c | 0.0012 |
C18:3n6 | 0.114 | 0.061 | 0.062 | 0.218 | 0.0544 |
C20:1n9 | 0.178 a b | 0.279 a | 0.288 a | 0.089 b | 0.0503 |
C18:3n3 | 0.799 a | 0.684 c | 0.540 d | 0.711 b | 0.0032 |
C20:2 | 0.165 a | 0.145 b | 0.116 d | 0.129 c | 0.0012 |
C22:0 | 0.102 a | 0.052 d | 0.072 c | 0.085 b | 0.0010 |
C20:3n6 | 0.075 b | 0.028 d | 0.041 c | 0.186 a | 0.0024 |
Total SFAs | 37.150 b | 34.894 d | 38.065 a | 36.806 c | 0.0235 |
Total MUFAs | 41.868 c | 44.762 b | 45.725 a | 44.892 b | 0.1341 |
Total PUFAs | 19.103 b | 19.633 a | 15.378 d | 17.358 c | 0.0126 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Li, J.; Li, H.; Zhou, D.; Wang, X.; Tian, Y.; Qin, J.; Tian, X.; Lu, Q. The Effects of Purple Corn Pigment on Growth Performance, Blood Biochemical Indices, Meat Quality, Muscle Amino Acids, and Fatty Acids of Growing Chickens. Foods 2022, 11, 1870. https://doi.org/10.3390/foods11131870
Luo Q, Li J, Li H, Zhou D, Wang X, Tian Y, Qin J, Tian X, Lu Q. The Effects of Purple Corn Pigment on Growth Performance, Blood Biochemical Indices, Meat Quality, Muscle Amino Acids, and Fatty Acids of Growing Chickens. Foods. 2022; 11(13):1870. https://doi.org/10.3390/foods11131870
Chicago/Turabian StyleLuo, Qingyuan, Jiaxuan Li, Hui Li, Di Zhou, Xu Wang, Yayuan Tian, Jixiao Qin, Xingzhou Tian, and Qi Lu. 2022. "The Effects of Purple Corn Pigment on Growth Performance, Blood Biochemical Indices, Meat Quality, Muscle Amino Acids, and Fatty Acids of Growing Chickens" Foods 11, no. 13: 1870. https://doi.org/10.3390/foods11131870
APA StyleLuo, Q., Li, J., Li, H., Zhou, D., Wang, X., Tian, Y., Qin, J., Tian, X., & Lu, Q. (2022). The Effects of Purple Corn Pigment on Growth Performance, Blood Biochemical Indices, Meat Quality, Muscle Amino Acids, and Fatty Acids of Growing Chickens. Foods, 11(13), 1870. https://doi.org/10.3390/foods11131870