Hygroscopic Properties of Three Cassava (Manihot esculenta Crantz) Starch Products: Application of BET and GAB Models
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods
- v—adsorption, g H2O/100 g d.m.;
- vm—maximal adsorption value corresponding to the complete coverage of the surface with a monomolecular layer of the adsorbate, g H2O/100 g d.m.;
- cBET—energy constant BET, describing the difference between the chemical potential of crude adsorbate molecules and those in the first adsorption layer, kJ/mol;
- aw—water activity at the adsorption temperature [23].
- v—adsorption, g H2O/100 g d.m.;
- vm—maximal adsorption value corresponding to the complete coverage of the surface with a monomolecular layer of the adsorbate, g H2O/100 g d.m.;
- cGAB—energy constant GAB, describing the difference between the chemical potential of adsorbate molecules in the first adsorption layer and higher layers, kJ/mol;
- k—constant correcting properties of multilayer molecules compared to the liquid phase;
- aw—water activity at the adsorption temperature [23].
- asp—specific sorption area, m2/g;
- N—Avogadro number, 6.023 × 1023 molecules/mol;
- M—molecular weight of water, 18 g/mol;
- ω—water cross-section area, 1.05 × 10−19 m2/molecule [24].
- V—molar volume of the liquid, g/mol;
- σ—surface tension of the liquid, N/m;
- R—universal gas constant, J/(mol K);
- T—temperature, K;
- rc—capillary radius, nm [24].
2.3. Statistical Analysis
- N—number of data;
- ve—experimental equilibrium water content, g H2O/100 g d.m.;
3. Results and Discussion
4. Conclusions
- Native cassava starch significantly differs from potato starch in terms of hygroscopicity described by the parameters of the BET model, despite similar particle size characteristics.
- Modification of cassava starch, both through fermentation and granulation, significantly modifies its physical and hygroscopic parameters.
- Modification of physical/chemical properties, and consequently hygroscopic properties of cassava starches, opens avenues for its more comprehensive and targeted use in both the food and pharmaceutical industries.
- Modification of cassava starch may contribute to the rational management of the food or pharmaceutical production processes, considering the diverse needs of these industries and consumers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aryee, F.N.A.; Oduro, I.; Ellis, W.O.; Afuakwa, J.J. The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Control 2006, 17, 916–922. [Google Scholar] [CrossRef]
- Hongbété, F.; Mestres, C.; Akissoé, N.; Pons, B.; Hounhouigan, D.J.; Cornet, D.; Nago, C.M. Effects of cultivar and harvesting conditions (age, season) on the texture and taste of boiled cassava roots. Food Chem. 2011, 126, 127–133. [Google Scholar] [CrossRef]
- Nwokocha, L.; Aviara, N.A.; Senan, C.; Williams, P.A. A comparative study of some properties of cassava (Manihot esculenta, Crantz) and cocoyam (Colocasia esculenta, Linn) starches. Carbohydr. Polym. 2009, 76, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Léotard, G.; Duputié, A.; Kjellberg, F.; Douzery, E.J.; Debain, C.; de Granville, J.J.; McKey, D. Phylogeography and the origin of cassava: New insights from the northern rim of the Amazonian basin. Mol. Phylogenet. Evol. 2009, 53, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, E.G.B.; Cardoso, E.M.G.; Dourado, D.P.; Reina, E.; Muraishi, C.T. Performance of two cassava varieties submitted to different spacings, grown in the Cerrado region. Appl. Res. Agrotechnol. 2014, 7, 39–46. [Google Scholar] [CrossRef] [Green Version]
- CONAB (Companhia Nacional de Abastecimento). Perspectiva Para a Agropecuária; Companhia Nacional de Abastecimento: Brasília, Brazil, 2017; Volume 2, pp. 1–155.
- FAOSTAT—Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/ (accessed on 8 July 2020).
- Dias, L.T.; Leonel, M. Phisico-chemical characteristics of cassava flours from different regions of Brazil. Ciência Agrotecnologia 2006, 30, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Falade, K.O.; Akingbala, J.O. Utilization of Cassava for Food. Food Rev. Int. 2010, 27, 51–83. [Google Scholar] [CrossRef]
- An, D.; Yang, J.; Zhang, P. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genom. 2012, 13, 64. [Google Scholar] [CrossRef] [Green Version]
- Cooke, R.D.; Rickard, J.E.; Thompson, A.K. The Storage of Tropical Root and Tuber Cropscassava, Yam and Edible Aroids. Exp. Agric. 1988, 24, 457–470. [Google Scholar] [CrossRef]
- Adebowale, A.A.; Sanni, L.O.; Onitilo, M.O. Chemical composition and pasting properties of tapioca grits from different cassava varieties and roasting methods. Afr. J. Agric. Food Secur. 2019, 7, 1–6. [Google Scholar]
- Chisté, R.C.; Silva, P.A.; Lopes, A.S.; da Silva Pena, R. Sorption isotherms of tapioca flour. Int. J. Food Sci. Technol. 2012, 47, 870–874. [Google Scholar] [CrossRef]
- Iwu, M.M. Food as Medicine: Functional Food Plants of Africa; Taylor & Francis: Abingdon, UK, 2017; Chapter 4; pp. 63–85. [Google Scholar] [CrossRef]
- Breuninger, W.F.; Piyachomkwan, K.; Sriroth, K. Tapioca/Cassava Starch: Production and Use. In Starch: Chemistry and Technology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Domaradzki, M.; Korpal, W. Diety eliminacyjne w alergiach pokarmowych. Inżynieria Przetwórstwa Spożywczego 2017, 121, 5–8. [Google Scholar]
- Kolawole, O.P.; Agbetoye, L.A.S.; Ogunlowo, A.S. Evaluation of cassava mash dewatering methods. J. Bioinform. Seq. Anal. 2011, 3, 23–30. [Google Scholar] [CrossRef]
- Charoenthai, N.; Sanga-ngam, T.; Puttipipatkhachorn, S. Use of modified tapioca starches as pharmaceutical excipients. Pharm. Sci. Asia 2018, 45, 195–204. [Google Scholar] [CrossRef]
- Charles, A.L.; Chang, Y.H.; Ko, W.C.; Sriroth, K.; Huang, T.C. Influence of amylopectin structure and amylose content on the gelling properties of five cultivars of cassava starches. J. Agric. Food Chem. 2005, 53, 2717–2725. [Google Scholar] [CrossRef] [PubMed]
- Oriol, E.; Raimbault, M.; Roussos, S.; Viniegra-Gonzales, G. Water and water activity in the solid state fermentation of cassava starch by Aspergillus niger. Appl. Microbiol. Biotechnol. 1988, 27, 498–503. [Google Scholar] [CrossRef]
- Van der Werf, L.; Chapuis, A.; Courtois, F. A global sorption equation for raw and processed cassava based on a review and compilation of sorption properties. Dry. Technol. 2022, 1–14. [Google Scholar] [CrossRef]
- Ocieczek, A.; Skotnicka, M.; Baranowska, K. Sorptive properties of modified maize starch as indicators of their quality. Int. Agrophys. 2017, 31, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Figura, L.O.; Teixeira, A.A. Food Physics. Physical Properties—Measurement and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Paderewski, M. Procesy Adsorpcyjne w Inżynierii Chemicznej, 1st ed.; WNT: Warsaw, Poland, 1999. [Google Scholar]
- Rizvi, S.S.H. Thermodynamic Properties of Food in Dehydration. In Engineering Properties of Foods, 3rd ed.; Rao, M.A., Rizvi, S.S.H., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2005; pp. 223–309. [Google Scholar] [CrossRef]
- Andrade, R.D.; Lemus, R.M.; Pérez, C.C. Models of sorption isotherms for food: Uses and limitations. Vitae 2011, 18, 325–334. [Google Scholar]
- Ocieczek, A.; Schur, J. Ocena wpływu wybranych dodatków na właściwości sorpcyjne miękiszu pieczywa pszennego. ŻYWNOŚĆ Nauka Technol. Jakość 2015, 1, 143–154. [Google Scholar] [CrossRef]
- Lewicki, P.P. A three-parameter equation for food moisture sorption isotherms. J. Food Process Eng. 1998, 21, 127–144. [Google Scholar] [CrossRef]
- Pałacha, Z.; Sas, A. Właściwości sorpcyjne wybranych gatunków ryżu. Acta Agrophys. 2016, 23, 681–694. [Google Scholar]
- Erbas, M.; Ertugay, M.F.; Certel, M. Moisture adsorption behaviour of semolina and farina. J. Food Eng. 2005, 69, 191–198. [Google Scholar] [CrossRef]
- Ocieczek, A.; Mesinger, D. Porównawcza charakterystyka właściwości sorpcyjnych popularnych rodzajów skrobi z zastosowaniem modelu BET w rozwinięciu analitycznym i numerycznym. Przemysł Chem. 2020, 99, 1000–1004. [Google Scholar] [CrossRef]
- Czapski, J. Wybrane Własności Produktów Żywnościowych. In Opakowania Żywności; Czerniawski, B., Michniewicz, J., Eds.; Agro Food Technology: Czeladź, Poland, 1998. [Google Scholar]
- Sandle, T. The Important of Water Activity for Risk Assessing Pharmaceutical Products. J. Pharm. Microbiol. 2016, 2, 1. [Google Scholar]
- Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A. Moisture sorption isotherm characteristics of food products: A review. Food Bioprod. Process. 2002, 80, 118–128. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0960308502703052 (accessed on 7 February 2008). [CrossRef]
- Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A. Water sorption isotherms of starch powders Part 1: Mathematical description of experimental data. J. Food Eng. 2004, 61, 297–307. [Google Scholar] [CrossRef]
- Furmaniak, S.; Terzyk, A.P.; Gauden, P.A. The general mechanism of water sorption of foodstuffs—Importance of the multitemperature fitting of data and the hierarchy of models. J. Food Eng. 2007, 82, 528–535. [Google Scholar] [CrossRef]
- Suriyatem, R.; Rachtanapun, P. Prediction modeling for moisture sorption isotherms of rice starch/carboxymethyl cellulose from durion rind blend films. Appl. Mech. Mater. 2013, 431, 32–36. [Google Scholar] [CrossRef]
- Newman, A.; Zografi, G. An examination of water vapor sorption by multicomponent crystalline and amorphous solids and its effects on their solid-state properties. J. Pharm. Sci. 2019, 108, 1061–1680. [Google Scholar] [CrossRef]
- Peleg, M. Models of sigmoid equilibrium moisture sorption isotherms with and without the monolayer hypothesis. Food Eng. Rev. 2020, 21, 1–13. [Google Scholar] [CrossRef]
- Ikhu-Omoregbe, D.I.O. Comparison of the sorption isotherm characteristics of two cassava products. Int. J. Food Prop. 2006, 9, 167–177. [Google Scholar] [CrossRef]
- Stępień, A.; Witczak, M.; Witczak, T. Moisture sorption characteristics of food powders containing freeze dried avocado, maltodextrin and inulin. Int. J. Biol. Macromol. 2020, 149, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Karel, M. Water Activity and Food Preservation. In Physical Principles of Food Preservation. Principles of Food Science. Part 2; Karel, M., Fennema, O.R., Lund, D.B., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1975. [Google Scholar]
- Górnicki, K.; Kaleta, A.; Trajer, J. Modelling of dried apple rehydration indices using ANN. Int. Agrophys. 2019, 33, 285–296. [Google Scholar] [CrossRef]
- Pérez-Alonso, C.; Fabela-Morón, M.F.; Guadarrama-Lezama, A.Y.; Barrera-Pichardo, J.F.; Alamilla-Beltrán, L.; Rodríguez-Huezo, M.E. Interrelationship between the structural features and rehydration properties of spray dried mano chilli sauce microcapsules. Rev. Mex. Ing. Química 2009, 8, 187–196. [Google Scholar]
- Cassini, A.S.; Marczak, L.D.F.; Noreña, C.P.Z. Water adsorption isotherms of texturized soy protein. J. Food Eng. 2006, 77, 194–199. [Google Scholar] [CrossRef]
- Atkins, P.W. Chemia Fizyczna; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003. [Google Scholar]
- Timmermann, E.O.; Chirife, J.; Iglesias, H.A. Water sorption isotherms of food and foodstuffs: BET Or GAB parameters? J. Food Eng. 2001, 48, 19–31. [Google Scholar] [CrossRef]
- Timmermann, E.O. Multilayer sorption parameters: BET or GAB values? Colloids Surf. A Physicochem. Eng. Asp. 2003, 220, 235–260. [Google Scholar] [CrossRef] [Green Version]
- Dooshima, I.B.; Mbanengen, S.F.; Julius, I.; Julius, A. Moisture Adsorption Studies on Soy—Mumu Supplemented with Moringa Leaf Powder. Adv. Biosci. Bioeng. 2016, 4, 67–73. [Google Scholar] [CrossRef]
- Lewicki, P.P. The applicabillity of the GAB model to food water sorption isotherms. Int. J. Food Sci. Technol. 1997, 32, 553–557. [Google Scholar] [CrossRef]
- Stępniewska, S.; Cacak-Pietrzak, G. Skrobia żytnia—Budowa, właściwości i metody badań. Przegląd Zbożowo-Młynarski 2018, 62, 25–29. [Google Scholar]
- Diosady, L.L.; Rizvi, S.S.H.; Cai, W.; Jagdeo, D.J. Moisture sorption isotherms of canola meals, and applications to packing. J. Food Sci. 1996, 61, 204–208. [Google Scholar] [CrossRef]
- Caurie, M. The derivation of the GAB adsorption equation from the BDDT adsorption theory. Int. J. Food Sci. Technol. 2006, 41, 173–179. [Google Scholar] [CrossRef]
- Chirife, J.; Iglesias, H.A. Estimation of precision of isosteric heat of sorption determined from the temperature dependence of food isotherms. LWT 1992, 25, 83–84. [Google Scholar]
- Ocieczek, A.; Mesinger, D.; Kamińska, D. Porównanie Właściwości Sorpcyjnych Wybranych Typów Kaszek Dla Dzieci w Kontekście Szacowania Ich Stabilności Przechowalniczej. In Żywność w XXI Wieku. Od Producent do Konsumenta; Gałkowska, D., Kowalski, S., Zięć, G., Eds.; Polskie Towarzystwo Technologów Żywności: Warsaw, Poland, 2021. [Google Scholar]
- Barbosa-Cánovas, G.V.; Fontana, A.J., Jr.; Schmidt, S.J.; Labuza, T.P. Water Activity in Foods. Fundamentals and Applications; Blackwell Publishing and the Institute of Food Technologists: Hoboken, NJ, USA, 2007. [Google Scholar]
Characteristics of Value Distribution | Parameter | |||||
---|---|---|---|---|---|---|
Min. | Max. | Mean ± SD | D[n, 0.1] | D[n, 0.5] | D[n, 0.9] | |
Native starch (NS) (particles counted n = 214,733) (optic used: 10×) | ||||||
diameter, µm | 1.1 | 145.3 | 12.7 ± 7.8 | 4.1 | 11.5 | 21.8 |
circularity | 0.036 | 1.000 | 0.871 ± 0.147 | 0.666 | 0.922 | 0.990 |
convexity | 0.338 | 1.000 | 0.983 ± 0.041 | 0.917 | 0.986 | 0.997 |
elongation | 0.000 | 0.968 | 0.196 ± 0.153 | 0.025 | 0.162 | 0.416 |
shape coefficient | 0.032 | 1.000 | 0.804 ± 0.153 | 0.582 | 0.834 | 0.971 |
solidity | 0.089 | 1.000 | 0.974 ± 0.051 | 0.881 | 0.975 | 0.998 |
Starch granulate (SG) (particles counted n = 86) (optic used: 2.5×) | ||||||
diameter, µm | 1297.6 | 3330.9 | 2465.6 ± 330.4 | 1283.0 | 1847.7 | 1862.4 |
circularity | 0.417 | 0.965 | 0.801 ± 0.138 | 0.578 | 0.842 | 0.942 |
convexity | 0.774 | 0.990 | 0.929 ± 0.057 | 0.843 | 0.946 | 0.982 |
elongation | 0.001 | 0.515 | 0.131 ± 0.128 | 0.028 | 0.079 | 0.356 |
shape coefficient | 0.485 | 0.999 | 0.869 ± 0.128 | 0.642 | 0.920 | 0.970 |
solidity | 0.810 | 0.998 | 0.963 ± 0.038 | 0.904 | 0.976 | 0.992 |
Fermented starch (FS) (particles counted n = 317,432) (optic used: 10×) | ||||||
diameter, µm | 1.1 | 380.8 | 13.3 ± 6.9 | 6.9 | 12.3 | 19.9 |
circularity | 0.028 | 1.000 | 0.895 ± 0.145 | 0.697 | 0.959 | 0.993 |
convexity | 0.329 | 1.000 | 0.984 ± 0.040 | 0.916 | 0.986 | 0.997 |
elongation | 0.000 | 0.977 | 0.159 ± 0.145 | 0.019 | 0.104 | 0.376 |
shape coefficient | 0.023 | 1.000 | 0.841 ± 0.145 | 0.622 | 0.893 | 0.978 |
solidity | 0.177 | 1.000 | 0.976 ± 0.052 | 0.883 | 0.978 | 0.998 |
Product | Water Content [g H2O/100 g d.m.] | SD | Water Activity [−] | SD |
---|---|---|---|---|
Native starch (NS) | 14.347 | 0.552 | 0.492 | 0.005 |
Starch granulate (SG) | 10.108 | 0.081 | 0.380 | 0.001 |
Fermented starch (FS) | 13.524 | 0.232 | 0.457 | 0.001 |
Parameter | Native Starch (NS) | Starch Granulate (SG) | Fermented Starch (FS) | |||
---|---|---|---|---|---|---|
Value | Error | Value | Error | Value | Error | |
cBET | 0.8620 | 0.2610 | 1.1832 | 0.3646 | 0.9694 | 0.2741 |
vm | 9.3989 | 3.7904 | 4.6637 | 2.0328 | 7.5257 | 2.9108 |
RMS | 10.11 | 13.70 | 8.88 | |||
RSS | 6.6325 | 1.4869 | 4.7435 | 1.2574 | 5.7693 | 1.3868 |
Parameter | Native Starch (NS) | Starch Granulate (SG) | Fermented Starch (FS) | |||
---|---|---|---|---|---|---|
Value | Error | Value | Error | Value | Error | |
cGAB | 38.2050 | 4.6761 | 21.6854 | 1.8444 | 38.3936 | 4.0099 |
k | 0.5732 | 0.0129 | 0.6535 | 0.0079 | 0.6182 | 0.0089 |
vm | 11.1898 | 0.2784 | 8.7150 | 0.1690 | 10.3235 | 0.1913 |
RMS | 7.71 | 9.64 | 7.23 | |||
RSS | 0.9842 | 0.3508 | 0.3867 | 0.2199 | 0.5681 | 0.2665 |
Product | Specific Sorption Area (m2/g d.m.) | Total Volume of Capillaries (mm3/100 g d.m.) | Capillary Radius Filled at aw = 0.7 (nm) |
---|---|---|---|
Native starch (NS) | 393.1 | 122.4 | 2.18 |
Starch granulate (SG) | 306.2 | 109.3 | 1.84 |
Fermented starch (FS) | 362.7 | 121.6 | 2.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocieczek, A.; Mesinger, D.; Toczek, H. Hygroscopic Properties of Three Cassava (Manihot esculenta Crantz) Starch Products: Application of BET and GAB Models. Foods 2022, 11, 1966. https://doi.org/10.3390/foods11131966
Ocieczek A, Mesinger D, Toczek H. Hygroscopic Properties of Three Cassava (Manihot esculenta Crantz) Starch Products: Application of BET and GAB Models. Foods. 2022; 11(13):1966. https://doi.org/10.3390/foods11131966
Chicago/Turabian StyleOcieczek, Aneta, Dominika Mesinger, and Henryk Toczek. 2022. "Hygroscopic Properties of Three Cassava (Manihot esculenta Crantz) Starch Products: Application of BET and GAB Models" Foods 11, no. 13: 1966. https://doi.org/10.3390/foods11131966
APA StyleOcieczek, A., Mesinger, D., & Toczek, H. (2022). Hygroscopic Properties of Three Cassava (Manihot esculenta Crantz) Starch Products: Application of BET and GAB Models. Foods, 11(13), 1966. https://doi.org/10.3390/foods11131966