Effects of Inherent Lactic Acid Bacteria on Inhibition of Angiotensin I-Converting Enzyme and Antioxidant Activities in Dry-Cured Meat Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Assay of ACE Inhibitory Activity in the Products
2.3. Assay of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging (RS) Activity in the Products
2.4. Hydrophilic Oxygen Radical Absorbance Capacity (H-ORAC) of the Products
2.5. Determination of pH, Free Peptides, and Imidazole Dipeptides in the Meat Products
2.6. Bacterial Communities in the Products
2.7. Bacterial Counts and Identification of the Colonies Formed from the Products
2.8. Statistical Analysis
3. Results
3.1. Bioactivities of the Dry-Cured Meat Products
3.2. pH and Peptide Content of the Dry-Cured Meat Products
3.3. Bacterial Communities in the Dry-Cured Meat Products
3.4. LAB Count and Identification of the Forming Colony from the Dry-Cured Meat Products
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahhmed, A.M.; Muguruma, M. A review of meat protein hydrolysates and hypertension. Meat Sci. 2010, 86, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Gallego, M.; Reig, M.; Aristoy, M.C.; Mora, L. Recent progress in enzymatic release of peptides in foods of animal origin and assessment of bioactivity. J. Agric. Food Chem. 2020, 68, 12842–12855. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Reig, M.; Aristoy, M.C.; Mora, L. Generation of bioactive peptides during food processing. Food Chem. 2018, 267, 395–404. [Google Scholar] [CrossRef] [PubMed]
- López-García, G.; Dublan-García, O.; Arizmendi-Cotero, D.; Gómez-Oliván, L.M. Antioxidant and antimicrobial peptides derived from food proteins. Molecules 2022, 27, 1343. [Google Scholar] [CrossRef]
- Geiker, N.R.W.; Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and human health-current knowledge and research gaps. Foods 2021, 10, 1556. [Google Scholar] [CrossRef]
- Mora, L.; Escudero, E.; Aristoy, M.C.; Toldrá, F. A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sausages. Int. J. Food Microbiol. 2015, 212, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Takeda, S.; Matsufuji, H.; Nakade, K.; Takenoyama, S.; Ahhmed, A.; Sakata, R.; Kawahara, S.; Muguruma, M. Investigation of lactic acid bacterial strains for meat fermentation and the product’s antioxidant and angiotensin-I-converting-enzyme inhibitory activities. Anim. Sci. J. 2017, 88, 507–516. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, P.; Xie, Y.; Yang, P.; Zheng, S.; Tian, Y.; Li, J.; Feng, D. DNA damage protection and antioxidant activities of peptides isolated from sour meat co-fermented by P. pentosaceus SWU73571 and L. curvatus LAB26. CyTA-J. Food 2020, 18, 375–382. [Google Scholar] [CrossRef]
- Mora, L.; Escudero, E.; Toldrá, F. Characterization of the peptide profile in Spanish Teruel, Italian Parma and Belgian dry-cured hams and its potential bioactivity. Food Res. Int. 2016, 89, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Gallego, M.; Mora, L.; Escudero, E.; Toldrá, F. Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. Int. J. Food Microbiol. 2018, 276, 71–78. [Google Scholar] [CrossRef]
- Toldrá, F.; Gallego, M.; Reig, M.; Aristoy, M.C.; Mora, L. Bioactive peptides generated in the processing of dry-cured ham. Food Chem. 2020, 321, 126689. [Google Scholar] [CrossRef] [PubMed]
- Halagarda, M.; Wójciak, K.M. Health and safety aspects of traditional European meat products. A review. Meat Sci. 2022, 184, 108623. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zhong, G.; Yang, J.; Zhao, L.; Sun, D.; Tian, Y.; Li, R.; Rong, L. Metagenomic and metabolomic profiling reveals the correlation between the microbiota and flavor compounds and nutrients in fermented sausages. Food Chem. 2022, 375, 131645. [Google Scholar] [CrossRef]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Cheung, H.S.; Wang, F.L.; Ondetti, M.A.; Sabo, E.F.; Cushman, D.W. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence. J. Biol. Chem. 1980, 255, 401–407. [Google Scholar] [CrossRef]
- Watanabe, J.; Oki, T.; Takebayashi, J.; Yamasaki, K.; Takano-Ishikawa, Y.; Hino, A.; Yasui, A. Method validation by interlaboratory studies of improved hydrophilic oxygen radical absorbance capacity methods for the determination of antioxidant capacities of antioxidant solutions and food extracts. Anal. Sci. 2012, 28, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, J.; Oki, T.; Takebayashi, J.; Takano-Ishikawa, Y. Extraction efficiency of hydrophilic and lipophilic antioxidants from lyophilized foods using pressurized liquid extraction and manual extraction. J. Food Sci. 2014, 79, C1665–C1671. [Google Scholar] [CrossRef]
- Takeda, S.; Yamasaki, K.; Takeshita, M.; Kikuchi, Y.; Tsend-Ayush, C.; Dashnyam, B.; Ahhmed, A.M.; Kawahara, S.; Muguruma, M. The investigation of probiotic potential of lactic acid bacteria isolated from traditional Mongolian dairy products. Anim. Sci. J. 2011, 82, 571–579. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Franciosa, I.; Alessandria, V.; Dolci, P.; Rantsiou, K.; Cocolin, L. Sausage fermentation and starter cultures in the era of molecular biology methods. Int. J. Food Microbiol. 2018, 279, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Lauzurica, S.; De la Fuente, J.; Díaz, M.T.; Alvarez, I.; Pérez, C.; Cañeque, V. Effect of dietary supplementation of vitamin E on characteristics of lamb meat packed under modified atmosphere. Meat Sci. 2005, 70, 639–646. [Google Scholar] [CrossRef]
- Kurćubić, V.S.; Mašković, P.Z.; Vujić, J.M.; Vranić, D.V.; Vesković-Moračanin, S.M.; Okanović, Đ.G.; Lilić, S.V. Antioxidant and antimicrobial activity of Kitaibelia vitifolia extract as alternative to the added nitrite in fermented dry sausage. Meat Sci. 2014, 97, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Dávalos, A.; Miguel, M.; Bartolomé, B.; López-Fandiño, R. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Prot. 2004, 67, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Dimitrios, B. Sources of natural phenolic antioxidants. Trends Foods Sci. Technol. 2006, 17, 505–512. [Google Scholar]
- Ambrosiadis, J.; Soultos, N.; Abrahim, A.; Bloukas, J.G. Physicochemical, microbiological and sensory attributes for the characterization of Greek traditional sausages. Meat Sci. 2004, 66, 279–287. [Google Scholar]
- Han, Y.; Gao, B.; Zhao, S.; Wang, M.; Jian, L.; Han, L.; Liu, X. Simultaneous detection of carnosine and anserine by UHPLC-MS/MS and its application on biomarker analysis for differentiation of meat and bone meal. Molecules 2019, 24, 217. [Google Scholar] [CrossRef] [Green Version]
- Gil-Agustí, M.; Esteve-Romero, J.; Carda-Broch, S. Anserine and carnosine determination in meat samples by pure micellar liquid chromatography. J. Chromatogr. A 2008, 1189, 444–450. [Google Scholar] [CrossRef]
- Flores, M.; Toldrá, F. Microbial enzymatic activities for improved fermented meats. Trend. Food Sci. Technol. 2011, 22, 81–90. [Google Scholar] [CrossRef]
- Cardinali, F.; Milanović, V.; Osimani, A.; Aquilanti, L.; Taccari, M.; Garofalo, C.; Polverigiani, S.; Clementi, F.; Franciosi, E.; Tuohy, K.; et al. Microbial dynamics of model Fabriano-like fermented sausages as affected by starter cultures, nitrates and nitrites. Int. J. Food Microbiol. 2018, 278, 61–72. [Google Scholar] [PubMed]
- Talon, R.; Leroy, S.; Lebert, I. Microbial ecosystems of traditional fermented meat products: The importance of indigenous starters. Meat Sci. 2007, 77, 55–62. [Google Scholar] [CrossRef] [PubMed]
- García Fontán, M.C.; Lorenzo, J.M.; Parada, A.; Franco, I.; Carballo, J. Microbiological characteristics of “androlla,” a Spanish traditional pork sausage. Meat Sci. 2007, 24, 52–58. [Google Scholar]
- Pradoa, N.; Sampayoa, M.; Gonzáleza, P.; Lombób, F.; Díaza, J. Physicochemical, sensory and microbiological characterization of Asturian Chorizo, a traditional fermented sausage manufactured in Northern Spain. Meat Sci. 2019, 156, 118–124. [Google Scholar]
- Benito, M.J.; Martín, A.; Aranda, E.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Córdoba, M.G. Characterization and selection of autochthonous lactic acid bacteria isolated from traditional Iberian dry-fermented Salchichón and chorizo sausages. J. Food Sci. 2007, 72, M193–M201. [Google Scholar] [CrossRef]
- Benito, M.J.; Serradilla, M.J.; Ruiz-Moyano, S.; Martín, A.; Pérez-Nevado, F.; Córdoba, M.G. Rapid differentiation of lactic acid bacteria from autochthonous fermentation of Iberian dry-fermented sausages. Meat Sci. 2008, 80, 656–661. [Google Scholar] [CrossRef]
- Ammor, M.S.; Mayo, B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 2007, 76, 138–146. [Google Scholar]
- Palavecino Prpich, N.Z.; Camprubí, G.E.; Cayré, M.E.; Castro, M.P. Indigenous microbiota to leverage traditional dry sausage production. Int. J. Food Sci. 2021, 2021, 6696856. [Google Scholar] [CrossRef]
Meat Products | Type | Processes of Salting and Post Salting | Ripening Time | Water Activity | Origin |
---|---|---|---|---|---|
Jamon Serrano slice | Dry cured ham | Covered salting and drying | 9 months | 0.91 | Spain |
Black Forest ham slice | Dry cured ham | Soaked salting, drying, and smoking | 3 months | 0.91 | German |
Parma prosciutto slice | Dry cured ham | Covered salting and drying | 24 months | 0.91 | Italy |
Pancetta slice | Dry cured belly | Covered salting and drying | 1 week | 0.92 | Italy |
Coppa slice | Dry cured ham | Covered salting and drying | 1 month | 0.92 | Italy |
Milano salami slice | Dry cured sausage | Mixed salting and drying | 2 weeks | 0.91 | Italy |
Parma salami slice | Dry cured sausage | Mixed salting and drying | 1 week | 0.90 | Italy |
Salami with truffle slice | Dry cured sausage | Mixed salting and drying | 2 weeks | 0.92 | Italy |
Longaniza | Dry cured sausage | Mixed salting and drying | 2 weeks | 0.91 | Spain |
Salchichón slice | Dry cured sausage | Mixed salting and drying | 2 weeks | 0.89 | Spain |
Dry-Cured Meat Products | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Jamon Serrano | Black Forest ham | Parma Prosciutto | Pancetta | Coppa | Milano Salami | Parma Salami | Salami With Truffle | Longaniza | Salchichón | |
pH | 6.05 ± 0.13 de | 5.92 ± 0.10 def | 6.07 ± 0.06 cd | 6.32 ± 0.15 b | 6.70 ± 0.12 a | 5.74 ± 0.09 f | 6.68 ± 0.07 a | 5.87 ± 0.03 df | 6.04 ± 0.04 de | 6.16 ± 0.13 bc |
Total peptide * (mM) | 21.25 | 8.12 | 27.71 | 4.96 | 10.37 | 8.26 | 6.86 | 6.75 | 6.05 | 5.21 |
Carnosine (mM) | 0.12 | 0.19 | 0.20 | 0.21 | 0.18 | 0.15 | 0.17 | 0.17 | 0.14 | ND |
Anserine (mM) | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Colony-Forming Count | Dry-Cured Meat Products | |||
---|---|---|---|---|
(Log10 CFU/g) | Jamon Serrano | Parma Prosciutto | Coppa | Milano Salami |
Total bacteria | 2.21 ± 0.29 a | 3.75 ± 0.04 b | 4.61 ± 0.17 c | 4.48 ± 0.36 c |
Lactic acid bacteria | ||||
BCP agar plate | 2.27 ± 0.14 a | 3.95 ± 0.04 b | 4.21 ± 0.31 c | 4.66 ± 0.08 c |
GYP agar plate | ND | ND | 3.67 ± 0.70 a | 4.63 ± 0.30 b |
Isolated Strain Number | Coppa | Milano Salami |
---|---|---|
1 | Latilactobacillus sakei | Pediococcus pentosaceus |
2 | Latilactobacillus sakei | Pediococcus pentosaceus |
3 | Enterococcus faecalis | Pediococcus pentosaceus |
4 | Enterococcus faecalis | Pediococcus pentosaceus |
5 | Latilactobacillus sakei | Pediococcus pentosaceus |
6 | Latilactobacillus sakei | Pediococcus pentosaceus |
7 | Latilactobacillus sakei | Pediococcus pentosaceus |
8 | Latilactobacillus sakei | Pediococcus pentosaceus |
9 | Latilactobacillus sakei | Pediococcus pentosaceus |
10 | Latilactobacillus sakei | Pediococcus pentosaceus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogata, M.; Uchiyama, J.; Ahhmed, A.M.; Sakuraoka, S.; Taharaguchi, S.; Sakata, R.; Mizunoya, W.; Takeda, S. Effects of Inherent Lactic Acid Bacteria on Inhibition of Angiotensin I-Converting Enzyme and Antioxidant Activities in Dry-Cured Meat Products. Foods 2022, 11, 2123. https://doi.org/10.3390/foods11142123
Ogata M, Uchiyama J, Ahhmed AM, Sakuraoka S, Taharaguchi S, Sakata R, Mizunoya W, Takeda S. Effects of Inherent Lactic Acid Bacteria on Inhibition of Angiotensin I-Converting Enzyme and Antioxidant Activities in Dry-Cured Meat Products. Foods. 2022; 11(14):2123. https://doi.org/10.3390/foods11142123
Chicago/Turabian StyleOgata, Masaya, Jumpei Uchiyama, Abdulatef M. Ahhmed, Seiichi Sakuraoka, Satoshi Taharaguchi, Ryoichi Sakata, Wataru Mizunoya, and Shiro Takeda. 2022. "Effects of Inherent Lactic Acid Bacteria on Inhibition of Angiotensin I-Converting Enzyme and Antioxidant Activities in Dry-Cured Meat Products" Foods 11, no. 14: 2123. https://doi.org/10.3390/foods11142123
APA StyleOgata, M., Uchiyama, J., Ahhmed, A. M., Sakuraoka, S., Taharaguchi, S., Sakata, R., Mizunoya, W., & Takeda, S. (2022). Effects of Inherent Lactic Acid Bacteria on Inhibition of Angiotensin I-Converting Enzyme and Antioxidant Activities in Dry-Cured Meat Products. Foods, 11(14), 2123. https://doi.org/10.3390/foods11142123