Masking Effect of Cassia grandis Sensory Defect with Flavoured Stuffed Olives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Experimental Design
2.2.1. Carao Fruit Preparation
2.2.2. Californian-Style Black Olive Preparation Process
2.2.3. Stuffed Olives with Flavoured Hydrocolloids
2.3. Analyses
2.3.1. Sensory Analysis
2.3.2. Analysis of Volatile Compounds
2.3.3. E-Nose Measurements
2.4. Multivariate Data Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Sensory Analysis of Spanish-Style Table Olives
3.2. Volatile Compounds of Californian-Style Table Olives
3.3. E-Nose Application to Stuffed Olives with Flavoured Hydrocolloid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cáceres, A. Plantas de uso medicional en Guatemala. Univ. Guatem. 1996, 1, 115–116. [Google Scholar]
- Holdridge, L.R.; Poveda, L.J. Árboles de Costa Rica. Palmas y otras Monocotiledóneas y árboles con hojas compuestas o lobuladas. 2nd Edition. Cent. Científico Trop. San José Costa Rica 1997, 1, 280. [Google Scholar]
- Marcía, J.A.F.; Montero, I.F.; Maldonado, S.A.S.; Murillo, I.M.V.; Altamirano, S.M.C.; Bonilla, F.J.H.; Tejada, E.G.C.; Dereck, B.F.C.; Fernández, H.Z.; Gil, M.J.A. Physical-Chemical Evaluation of the Cassia grandis L. as Fortifying Egg Powder. J. Agric. Sci. 2020, 12, 277–282. [Google Scholar]
- Lafourcade, P.A.; Rodríguez Amado, J.; Escalona Arranz, J.; Fuenzalida, C. State of the art on Cassia grandis L. f. (cañandonga). Rev. Cuba. Plantas Med. 2014, 19, 21–28. [Google Scholar]
- Tillán Capó, J.; Rodríguez Chanfrau, J.; Gómez Mirabal, J.M.; Pardo Ruíz, Z.; Agüero Fernández, S. Atianemic activity of Cassia grandis L. Rev. Cuba. Farm. 2004, 38, 1. [Google Scholar]
- Casado, F.J.; Montaño, A. Influence of processing conditions on acrylamide content in black ripe olives. J. Agric. Food Chem. 2008, 56, 2021–2027. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Fernández, A.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. E-nose application for the discrimination of sterilization treatments applied to Californian-style black olive varieties. J. Sci. Food Agric. 2021, 102, 2232–2241. [Google Scholar] [CrossRef]
- Pérez-Nevado, F.; Cabrera-Bañegil, M.; Repilado, E.; Martillanes, S.; Martín-Vertedor, D. Effect of different baking treatments on the acrylamide formation and phenolic compounds in Californian-style black olives. Food Control 2018, 94, 22–29. [Google Scholar] [CrossRef]
- Conte, P.; Fadde, C.; del Caro, A.; Urgeghe, P.P.; Piga, A. Table Olives: An overview of effects of processing on nutritional and sensory quality. Foods 2020, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Casado, F.J.; Sánchez, A.H.; Montaño, A. Reduction of acrylamide content of ripe olives by selected additives. Food Chem. 2010, 119, 161–166. [Google Scholar] [CrossRef]
- Tang, S.; Avena-Bustillos, R.J.; Lear, M.; Sedej, I.; Holstege, D.M.; Friedman, M.; McHugh, T.H.; Wang, S.C. Evaluation of thermal processing variables for reducing acrylamide in canned black ripe olives. J. Food Eng. 2016, 191, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Martín-Vertedor, D.; Fernández, A.; Hernández, A.; Arias-Calderón, R.; Delgado-Adámez, J.; Pérez-Nevado, F. Acrylamide reduction after phenols addition to Californian-style black olives. Food Control 2020, 108, 106888. [Google Scholar] [CrossRef]
- Fernández, A.; Muñoz, J.M.; Martín-Tornero, E.; Martínez, M.; Martín-Vertedor, D. Acrylamide mitigation in Californian-style olives after thermal and baking treatments. J. Food Compos. Anal. 2022, 108, 104423. [Google Scholar] [CrossRef]
- Lodolini, E.M.; Cabrera-Bañegil, M.; Fernández, A.; Delgado-Adámez, J.; Ramírez, R.; Martín-Vertedor, D. Monitoring of acrylamide and phenolic compounds in table olive after high hydrostatic pressure and cooking treatments. Food Chem. 2019, 286, 250–259. [Google Scholar] [CrossRef]
- López-López, A.; Cortés-Delgado, A.; de Castro, A.; Sánchez, A.H.; Montaño, A. Changes in volatile composition during the processing and storage of black ripe olives. Food Res. Int. 2019, 125, 108568. [Google Scholar] [CrossRef]
- International Olive Council (IOC). Method for the Sensory Analysis of Table Olives COI/OT/MO/Doc. Nº 1/Rev.3; International Olive Council (IOC): Madrid, Spain, 2021. [Google Scholar]
- López-López, A.; Sánchez-Gómez, A.H.; Montaño, A.; Cortés-Delagado, A.; Garrido-Fernández, A. Sensory characterisation of black ripe table olives from Spanish Manzanilla and Hojiblanca cultivars. Food Res. Int. 2019, 116, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Panagou, E.Z.; Sahgal, N.; Magan, N.; Nychas, G.J. Table olives volatile fingerprints: Potential of an electronic nose for quality discrimination. Sens. Actuators B Chem. 2008, 134, 902–907. [Google Scholar] [CrossRef]
- Martínez Gila, D.M.; Gámez García, J.; Bellincontro, A.; Mencarelli, F.; Gómez Ortega, J. Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharvest. Biol. Technol. 2020, 160, 111058. [Google Scholar] [CrossRef]
- Escuderos, M.E.; García, M.; Jiménez, A.; Horrillo, M.C. Edible and non-edible olive oils discrimination by the application of a sensory olfactory system based on tin dioxide sensors. Food Chem. 2013, 136, 1154–1159. [Google Scholar] [CrossRef]
- Portalo-Calero, F.; Arroyo, P.; Suárez, J.I.; Lozano, J. Triangular test of amanita mushrooms by using electronic nose and sensory panel. Foods 2019, 8, 414. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, M.P.; Carmona, E.N.; Abbatangelo, M.; Sberveglieri, V.; Duina, G.; Malla, R.; Comini, E.; Sbervegleri, G. Discrimination of Quality and geographical origin of extra virgin olive oil by S3 device with metal oxides gas sensors. Procedings 2018, 2, 1061. [Google Scholar]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. Evaluation of the olfactory pattern of black olives stuffed with flavored hydrocolloids. LWT 2022, 163, 113556. [Google Scholar] [CrossRef]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Boselli, E.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. E-Nose discrimination of abnormal fermentations in Spanish-Style Green Olives. Molecules 2021, 26, 5353. [Google Scholar] [CrossRef]
- Sánchez, R.; Pérez-Nevado, F.; Montero-Fernández, I.; Lozano, J.; Meléndez, F.; Martín-Vertedor, D. Application of Electronic Nose to Discriminate Species of Mold Strains in Synthetic Brines. Front. Microbiol. 2022, 1657. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Adámez, J.; Baltasar, M.N.F.; Yuste, M.C.A.; Martín-Vertedor, D. Oxidative stability, phenolic compounds and antioxidant potential of a virgin olive oil enriched with natural bioactive compounds. J. Oleo Sci. 2014, 63, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, R.; Boselli, E.; Fernández, A.; Arroyo, P.; Lozano, J.; Martín-Vertedor, D. Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose. Molecules 2022, 27, 4300. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Mu, S.; Stieger, M.; Boesveldt, S. Olfactory discrimination of fat content in milks is facilitated by differences in volatile compound composition rather than odor intensity. Food Chem. 2022, 393, 133357. [Google Scholar] [CrossRef]
- Hasegawa, T.; Hashimoto, M.; Fujihara, T.; Yamada, H. Aroma Profile of Galangal Composed of Cinnamic Acid Derivatives and Their Structure-Odor Relationships. Nat. Prod. Commun. 2016, 11, 1463–1469. [Google Scholar] [CrossRef] [Green Version]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Jha, S.K.; Hayashi, K. Molecular structural discrimination of chemical compounds in body odor using their GC–MS chromatogram and clustering methods. Int. J. Mass Spectrom. 2017, 423, 1–14. [Google Scholar] [CrossRef]
- Yao, L.; Mo, Y.; Chen, D.; Feng, T.; Song, S.; Wang, H.; Sun, M. Characterization of key aroma compounds in Xinjiang dried figs (Ficuscarica L.) by GC–MS, GC–olfactometry, odor activity values, and sensory analyses. LWT 2021, 150, 111982. [Google Scholar] [CrossRef]
- Pang, X.L.; Yu, W.S.; Cao, C.D.; Yuan, X.X.; Qiu, J.; Kong, F.Y. Comparison of potent odorants in raw and ripened Pu-erh tea infusions based onodor activity value calculation and multivariate analysis: Understanding the role of pile fermentation. J. Agric. Food Chem. 2019, 67, 13139–13149. [Google Scholar] [CrossRef]
- Chen, E.; Song, H.; Li, Y.; Chen, H.; Wang, B.; Che, X.; Zhang, Y.; Zhao, S. Analysis of aroma components from sugarcane to non-centrifugal cane sugar using GC-O-MS. RSC Adv. 2020, 10, 32276–32289. [Google Scholar] [CrossRef]
- Asdaq, S.M.B.; Yasmin, F.; Alsalman, A.J.; Al Mohaini, M.; Kalmal, M.; Hawaj, M.A.; Alsalman, K.J.; Imran, M. Obviation of dyslipidemia by garlic oil and its organosulfur compound, diallyl disulphide, in experimental animals. Saudi J. Biol. Sci. 2022, 29, 2520–2525. [Google Scholar]
- Tian, T.T.; Ruan, S.L.; Zhao, Y.P.; Li, J.M.; Yang, C.; Cao, H. Multi-objective evaluation of freshly distilled brandy: Characterisation and distribution patterns of key odour-active compounds. Food Chem. 2022, 14, 100276. [Google Scholar] [CrossRef]
- Wang, H.Q.; Ma, W.J.; Shi, J.; Zhu, X.; Lin, Z.; Lv, H.P. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Res. Int. 2020, 130, 108908. [Google Scholar] [CrossRef]
- Felipe, J.L.; Bicas, F.L.; Bicas, J.L. Terpenos, aromas e a química dos compostos naturais. Quim. Nova 2017, 39, 120–130. [Google Scholar] [CrossRef]
- Bouyahyal, A.; Guaouguaou, F.; Dakka, N.; Bakri, Y. Pharmacological activities and medicinal properties of endemic Moroccan medicinal plant Origanum compactum (Benth) and their main compounds. Asian Pacific J. Trop. Dis. 2017, 7, 628–640. [Google Scholar] [CrossRef]
Sensors | Parameters | Units |
---|---|---|
Bosch BME680 | Temperature | °C |
Pressure | hPa | |
Humidity | % RH | |
Resistance | W | |
Sensirion SGP30 | eCO2 | ppm |
TVOC | ppb | |
H2 | ||
Ethanol | ||
ScioSence CCS811 | eCO2 | ppm |
TVOC | ppb | |
Resistance | W |
Samples | Positive Attributes | Negative Attributes | |||||||
---|---|---|---|---|---|---|---|---|---|
Fruity | Sweet | Toasted | Cheesy | Fermented | Metallic | Cooking Effect | Commercial Category | ||
T1 | 3.0 ± 0.7 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 2.5 ± 0.7 | Extra |
T2 | 4.0 ± 0.8 | 4.0 ± 0.6 | n.d. | n.d. | 5.0 ± 0.3 | 6.0 ± 0.5 | 5.0 ± 0.4 | n.d. | 2nd. Category |
T4 | 2.0 ± 0.8 | 1.5 ± 0.2 | n.d. | 4.5 ± 0.6 | n.d. | n.d. | 3.0 ± 0.2 | n.d. | 1st. Category |
T5 | 1.8 ± 0.3 | 1.4 ± 0.4 | n.d. | 6.0 ± 0.5 | n.d. | n.d. | n.d. | n.d. | Extra |
T3 | 6.0 ± 0.9 | 6.0 ± 0.3 | 2.0 ± 0.4 | n.d. | 1.5 ± 0.2 | 1.0 ± 0.3 | n.d. | n.d. | Extra |
T6 | 2.5 ± 0.3 | 3.0 ± 0.2 | n.d. | 3.0 ± 0.5 | n.d. | n.d. | n.d. | n.d. | Extra |
T7 | n.d. | n.d. | n.d. | 5.0 ± 0.4 | n.d. | n.d. | n.d. | n.d. | Extra |
Volatile Compounds | RT (min) | T1 | T2 | T3 | T4 | T5 | T6 | T7 |
---|---|---|---|---|---|---|---|---|
Acid derivates | ||||||||
3-methyl-butanoic acid | 10.7 | 0.0 | 17.7 | 8.1 | 0.0 | 0.0 | 0.0 | 0.0 |
2-methyl-butanoic acid | 11.3 | 0.0 | 8.8 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Ethyl cyclohexanecarboxylate | 24.1 | 16.5 | 5.6 | 0.0 | 0.0 | 6.4 | 0.0 | 0.0 |
methyl ester-2-Propenoic acid | 35.4 | 0.0 | 0.0 | 0.0 | 1.5 | 2.7 | 1.5 | 0.9 |
Alcohol | ||||||||
dimethyl-silanediol | 4.3 | 0.0 | 3.8 | 0.5 | 0.9 | 2.2 | 0.7 | 1.0 |
2-Methoxy-4-methylphenol | 27.2 | 20.0 | 2.9 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Carboxylic acid | ||||||||
Benzoic acid | 57.6 | 7.4 | 2.0 | 1.5 | 0.0 | 19.2 | 7.3 | 5.7 |
Creosol | 26.7 | 25.0 | 3.8 | 3.5 | 0.0 | 4.2 | 2.5 | 0.0 |
Benzoic acid | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hydrocarbons | ||||||||
2,4-dimethyl-hexane | 6.5 | 0.0 | 2.4 | 0.3 | 0.2 | 7.6 | 0.5 | 0.0 |
Styrene | 11.3 | 4.4 | 2.0 | 0.0 | 0.0 | 1.7 | 0.0 | 0.0 |
Diallyl disulphide | 20.9 | 0.0 | 0.0 | 12.8 | 11.7 | 0.0 | 18.1 | 17.1 |
3,7-dimethyl-1,6-Octadien | 22.0 | 0.0 | 11.9 | 4.5 | 3.9 | 0.0 | 0.0 | 0.0 |
(E)-3-Tetradecene | 27.0 | 0.0 | 2.7 | 0.0 | 0.0 | 5.3 | 0.0 | 0.0 |
1,2,3,4-tetrahydro-1,1,6-tr-naphthalene | 27.3 | 0.0 | 1.4 | 0.0 | 0.0 | 3.2 | 0.0 | 0.0 |
dodecamethyl-cyclohexasiloxane | 31.4 | 0.0 | 0.9 | 0.0 | 0.0 | 4.1 | 0.0 | 0.0 |
di-2-propenyl-trisulfide | 31.6 | 0.0 | 0.0 | 7.3 | 9.2 | 0.0 | 8.3 | 9.1 |
Allyl trisulfide | 31.8 | 0.0 | 0.0 | 2.0 | 3.1 | 0.0 | 2.5 | 3.5 |
Oxygenated compounds | ||||||||
Hexanal | 6.6 | 0.0 | 0.0 | 1.9 | 0.7 | 0.0 | 0.0 | 0.0 |
Benzaldehyde | 14.7 | 23.6 | 8.7 | 2.0 | 1.5 | 0.0 | 0.0 | 0.0 |
Octanal | 16.9 | 0.0 | 4.8 | 1.6 | 1.0 | 6.5 | 0.5 | 0.1 |
(Z) 3,7-dimethyl--2,6-octadienal. | 19.4 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bicyclo[3.1.1]heptane-2-carboxaldehyde, | 19.9 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
(E)-3,7-dimethyl-2,6-Octadienal | 20.6 | 0.0 | 2.9 | 0.0 | 0.0 | 5.3 | 0.0 | 0.0 |
Nonanal | 22.2 | 0.0 | 4.0 | 2.6 | 0.8 | 5.2 | 0.5 | 0.1 |
4-(1-methylethyl)-benzaldehyde | 29.0 | 0.0 | 0.0 | 6.6 | 8.1 | 0.0 | 7.7 | 7.0 |
Cuminaldehyde | 29.1 | 0.0 | 0.0 | 2.5 | 3.4 | 0.0 | 2.3 | 3.6 |
(E)-2-Decenal | 29.9 | 3.1 | 8.5 | 4.4 | 3.0 | 12.5 | 2.7 | 0.7 |
Terpenes | ||||||||
β-phellandrene | 15.3 | 0.0 | 0.0 | 8.5 | 8.9 | 0.0 | 7.6 | 9.5 |
β-pinene | 16.1 | 0.0 | 0.0 | 5.5 | 6.4 | 0.0 | 4.7 | 5.9 |
p-Cymene | 17.9 | 0.0 | 0.0 | 8.0 | 15.1 | 4.0 | 13.8 | 15.6 |
D-Limonene | 18.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
β-Terpinene | 19.7 | 0.0 | 0.0 | 7.3 | 14.1 | 4.9 | 12.3 | 13.4 |
L-α-Terpineol | 21.4 | 0.0 | 0.0 | 0.3 | 0.4 | 0.0 | 0.4 | 0.3 |
L-β-Terpineol | 26.7 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
terpinen-7-al | 31.0 | 0.0 | 0.0 | 4.6 | 6.1 | 0.0 | 6.2 | 6.5 |
Predicted Class | |||
---|---|---|---|
Real Class | T1 | T2 | T3 |
T1 | 33.3 | 0 | 0 |
T2 | 0 | 33.3 | 0 |
T3 | 0 | 0 | 33.3 |
Predicted Class (a) | ||||
Real Class | T1 | T2 | T4 | T5 |
T1 | 25 | 0 | 0 | 0 |
T2 | 0 | 25 | 0 | 0 |
T4 | 0 | 0 | 25 | 0 |
T5 | 0 | 0 | 0 | 25 |
Predicted Class (b) | ||||
Real Class | T1 | T3 | T6 | T7 |
T1 | 25 | 0 | 0 | 0 |
T3 | 0 | 25 | 0 | 0 |
T6 | 0 | 0 | 21.9 | 3.1 |
T7 | 0 | 0 | 3.1 | 21.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero-Fernández, I.; Marcía-Fuentes, J.A.; Cascos, G.; Saravia-Maldonado, S.A.; Lozano, J.; Martín-Vertedor, D. Masking Effect of Cassia grandis Sensory Defect with Flavoured Stuffed Olives. Foods 2022, 11, 2305. https://doi.org/10.3390/foods11152305
Montero-Fernández I, Marcía-Fuentes JA, Cascos G, Saravia-Maldonado SA, Lozano J, Martín-Vertedor D. Masking Effect of Cassia grandis Sensory Defect with Flavoured Stuffed Olives. Foods. 2022; 11(15):2305. https://doi.org/10.3390/foods11152305
Chicago/Turabian StyleMontero-Fernández, Ismael, Jhunior Abrahan Marcía-Fuentes, Gema Cascos, Selvin Antonio Saravia-Maldonado, Jesús Lozano, and Daniel Martín-Vertedor. 2022. "Masking Effect of Cassia grandis Sensory Defect with Flavoured Stuffed Olives" Foods 11, no. 15: 2305. https://doi.org/10.3390/foods11152305
APA StyleMontero-Fernández, I., Marcía-Fuentes, J. A., Cascos, G., Saravia-Maldonado, S. A., Lozano, J., & Martín-Vertedor, D. (2022). Masking Effect of Cassia grandis Sensory Defect with Flavoured Stuffed Olives. Foods, 11(15), 2305. https://doi.org/10.3390/foods11152305