Suitability of Solvent-Assisted Extraction for Recovery of Lipophilic Phytochemicals in Sugarcane Straw and Bagasse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Lipid Extraction
2.3. High-Performance Liquid Chromatography–Evaporative Light Scattering (HPLC–ELSD)
2.4. Gas Chromatography –Quadrupole Mass Spectrometry (GC–QqQ)
2.5. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR)
2.6. Differential Scanning Calorimetry (DSC)
2.7. Statistics
3. Results and Discussion
3.1. Extraction Yields
3.2. Lipid Classes Profile of the Assayed Samples by HPLC–ELSD
3.3. Extract Characterisation by GC–MS
3.4. FTIR-ATR Results
3.5. Differential Scanning Calorimetry (DSC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- United Nations, Department of Economic and Social Affairs PD. World Population Prospects 2019. Available online: https://population.un.org/wpp/Publications/Files/wpp2019_10KeyFindings.pdf (accessed on 13 January 2021).
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Bell, J.; Paula, L.; Dodd, T.; Németh, S.; Nanou, C.; Mega, V.; Campos, P. EU ambition to build the world’s leading bioeconomy—Uncertain times demand innovative and sustainable solutions. New Biotechnol. 2018, 40, 25–30. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. FAOSTAT Statistical Database. 2020. Available online: https://www.fao.org/faostat/en/#home (accessed on 20 January 2021).
- Dotaniya, M.L.; Datta, S.C.; Biswas, D.R.; Dotaniya, C.K.; Meena, B.L.; Rajendiran, S.; Regar, K.L.; Lata, M. Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int. J. Recycl. Org. Waste Agric. 2016, 5, 185–194. [Google Scholar] [CrossRef]
- FAO. Food Outlook—Biannual Report on Global Food Markets; FAO: Rome, Italy, 2020. [Google Scholar]
- Casas, L.; Hernández, Y.; Mantell, C.; Casdelo, N.; Ossa, E.M. De Filter Cake Oil-Wax as Raw Material for the Production of Biodiesel: Analysis of the Extraction Process and the Transesterification Reaction. J. Chem. 2015, 2015, 946462. [Google Scholar] [CrossRef]
- Meghana, M.; Shastri, Y. Bioresource Technology Sustainable valorization of sugar industry waste: Status, opportunities, and challenges. Bioresour. Technol. 2020, 303, 122929. [Google Scholar] [CrossRef]
- Parajuli, S.; Kannan, B.; Karan, R.; Sanahuja, G.; Liu, H.; Garcia-Ruiz, E.; Kumar, D.; Singh, V.; Zhao, H.; Long, S.; et al. Towards oilcane: Engineering hyperaccumulation of triacylglycerol into sugarcane stems. GCB Bioenergy 2020, 12, 476–490. [Google Scholar] [CrossRef]
- Arora, A.; Singh, V. Biodiesel production from engineered sugarcane lipids under uncertain feedstock compositions: Process design and techno-economic analysis. Appl. Energy 2020, 280, 115933. [Google Scholar] [CrossRef]
- Huang, H.; Long, S.; Singh, V. Techno-economic analysis of biodiesel and ethanol co-production from lipid-producing sugarcane. Biofuels Bioprod. Biorefining 2016, 10, 299–315. [Google Scholar] [CrossRef]
- Singh, A.; Lal, U.R.; Mukhtar, H.M.; Singh, P.S.; Shah, G.; Dhawan, R.K. Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn. Rev. 2015, 9, 45–54. [Google Scholar] [CrossRef]
- Attard, T.M.; McElroy, C.R.; Rezende, C.A.; Polikarpov, I.; Clark, J.H.; Hunt, A.J. Sugarcane waste as a valuable source of lipophilic molecules. Ind. Crops Prod. 2015, 76, 95–103. [Google Scholar] [CrossRef]
- European Comission. COMMISSION REGULATION (EU) No 432/2012 of 16 May 2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union 2012, L136, 1–40. [Google Scholar]
- Asikin, Y.; Takahashi, M.; Hirose, N.; Hou, D.X.; Takara, K.; Wada, K. Wax, policosanol, and long-chain aldehydes of different sugarcane (Saccharum officinarum L.) cultivars. Eur. J. Lipid Sci. Technol. 2012, 114, 583–591. [Google Scholar] [CrossRef]
- Sharma, R.; Matsuzaka, T.; Kaushik, M.K.; Sugasawa, T.; Ohno, H.; Wang, Y.; Motomura, K.; Shimura, T.; Okajima, Y.; Mizunoe, Y.; et al. Octacosanol and policosanol prevent high-fat diet-induced obesity and metabolic disorders by activating brown adipose tissue and improving liver metabolism. Sci. Rep. 2019, 9, 5169. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Scott, S.D.; Pekas, E.J.; Lee, J.; Park, S. Improvement of Lipids and Reduction of Oxidative Stress With Octacosanol After Taekwondo Training. Int. J. Sports Physiol. Perform. 2019, 14, 1297–1303. [Google Scholar] [CrossRef]
- Kaushik, M.K.; Aritake, K.; Takeuchi, A.; Yanagisawa, M.; Urade, Y. Octacosanol restores stress-affected sleep in mice by alleviating stress. Sci. Rep. 2017, 7, 8892. [Google Scholar] [CrossRef] [PubMed]
- Inarkar, M.B.; Lele, S.S. Extraction and Characterization of Sugarcane Peel Wax. ISRN Agron. 2012, 2012, 340158. [Google Scholar] [CrossRef]
- Río, J.; Marques, G.; Lino, A.G.; Lima, C.F.; Colodette, J.L.; Gutiérrez, A. Lipophilic phytochemicals from sugarcane bagasse and straw. Ind. Crops Prod. 2015, 77, 992–1000. [Google Scholar]
- Oliveira, R.M.A.; Henriques, J.D.O.; Sartoratto, A.; Maciel, M.R.W.; Martinez, P.F.M. Evaluation of Limonene in sugarcane wax extraction. Sustain. Chem. Pharm. 2022, 27, 100657. [Google Scholar] [CrossRef]
- Randall, E.L. Improved Method for Fat and Oil Analysis by a New Process of Extraction. J. AOAC Int. 1974, 57, 1165–1168. [Google Scholar] [CrossRef]
- Thiex, N.J.; Anderson, S.; Gildemeister, B. Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (Randall/Soxtec/Submersion method): Collaborative study. J. AOAC Int. 2003, 86, 888–898. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- BLIGH, E.G.; DYER, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef]
- Huang, H.; Moreau, R.A.; Powell, M.J.; Wang, Z.; Kannan, B.; Altpeter, F.; Grennan, A.K.; Long, S.P.; Singh, V. Evaluation of the quantity and composition of sugars and lipid in the juice and bagasse of lipid producing sugarcane. Biocatal. Agric. Biotechnol. 2017, 10, 148–155. [Google Scholar] [CrossRef]
- Reis, A.; Rudnitskaya, A.; Blackburn, G.J.; Fauzi, N.M.; Pitt, A.R.; Spickett, C.M. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J. Lipid Res. 2013, 54, 1812–1824. [Google Scholar] [CrossRef]
- Castro-Gómez, P.; Rodríguez-Alcalá, L.M.; Monteiro, K.M.; Ruiz, A.L.T.G.; Carvalho, J.E.; Fontecha, J. Antiproliferative activity of buttermilk lipid fractions isolated using food grade and non-food grade solvents on human cancer cell lines. Food Chem. 2016, 212, 695–702. [Google Scholar] [CrossRef]
- Committee for Human Medicinal Products ICH Q3C (R7) Residual Solvents|European Medicines Agency. 2018. Available online: https://www.pmda.go.jp/files/000231003.pdf (accessed on 22 January 2021).
- Commission Directive 2010/59/EU of 26 August 2010 DIRECTIVE 2009/32/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL the approximation of the laws of the Member States on extraction solvents used in the production of foodstuffs and food ingredients. Off. J. Eur. Communities 2010, L341, 1–15.
- Sauer, M. Industrial production of acetone and butanol by fermentation-100 years later. FEMS Microbiol. Lett. 2016, 363, fnw134. [Google Scholar] [CrossRef]
- Abreu, S.; Solgadi, A.; Chaminade, P. Optimization of normal phase chromatographic conditions for lipid analysis and comparison of associated detection techniques. J. Chromatogr. A 2017, 1514, 54–71. [Google Scholar] [CrossRef]
- Pimentel, L.; Fontes, A.L.; Salsinha, S.; Machado, M.; Correia, I.; Gomes, A.M.; Pintado, M.; Rodríguez-Alcalá, L.M. Suitable simple and fast methods for selective isolation of phospholipids as a tool for their analysis. Electrophoresis 2018, 39, 1835–1845. [Google Scholar] [CrossRef]
- Luthria, D.L.; Anderson, S. Soxtec: Its Principles and Applications. In Oil Extraction and Analysis; AOCS Publishing: New York, NY, USA, 2019; pp. 11–24. [Google Scholar]
- Cequier-Sánchez, E.; Rodríguez, C.; Ravelo, A.G.; Zárate, R. Dichloromethane as a Solvent for Lipid Extraction and Assessment of Lipid Classes and Fatty Acids from Samples of Different Natures. J. Agric. Food Chem. 2008, 56, 4297–4303. [Google Scholar] [CrossRef] [PubMed]
- Gładkowski, W.; Chojnacka, A.; Kiełbowicz, G.; Trziszka, T.; Wawrzeńczyk, C. Isolation of Pure Phospholipid Fraction from Egg Yolk. J. Am. Oil Chem. Soc. 2011, 89, 179–182. [Google Scholar] [CrossRef]
- Kalisch, B.; Dörmann, P.; Hölzl, G. DGDG and glycolipids in plants and algae. Subcell. Biochem. 2016, 86, 51–83. [Google Scholar] [PubMed]
- Sun, L.; Forauer, E.C.; Brown, S.R.B.; D’Amico, D.J. Application of bioactive glycolipids to control Listeria monocytogenes biofilms and as post-lethality contaminants in milk and cheese. Food Microbiol. 2021, 95, 103683. [Google Scholar] [CrossRef] [PubMed]
- Come, B.; Donato, M.; Potenza, L.F.; Mariani, P.; Itri, R.; Spinozzi, F. The intriguing role of rhamnolipids on plasma membrane remodelling: From lipid rafts to membrane budding. J. Colloid Interface Sci. 2021, 582, 669–677. [Google Scholar] [CrossRef]
- Ishaka, A.; Imam, M.U.; Mahamud, R.; Bakar, A.; Zuki, Z.; Maznah, I. Characterization of rice bran wax policosanol and its nanoemulsion formulation. Int. J. Nanomed. 2014, 9, 2261–2269. [Google Scholar] [CrossRef]
- Lytovchenko, A.; Beleggia, R.; Schauer, N.; Isaacson, T.; Leuendorf, J.E.; Hellmann, H.; Rose, J.K.; Fernie, A.R. Application of GC-MS for the detection of lipophilic compounds in diverse plant tissues. Plant Methods 2009, 5, 4. [Google Scholar] [CrossRef]
- Elseweidy, M.M.; Zein, N.; Aldhamy, S.E.; Elsawy, M.M.; Saeid, S.A. Policosanol as a new inhibitor candidate for vascular calcification in diabetic hyperlipidemic rats. Exp. Biol. Med. 2016, 241, 1943–1949. [Google Scholar] [CrossRef]
- Calderón, C.; Sanwald, C.; Schlotterbeck, J.; Drotleff, B.; Lämmerhofer, M. Comparison of simple monophasic versus classical biphasic extraction protocols for comprehensive UHPLC-MS/MS lipidomic analysis of Hela cells. Anal. Chim. Acta 2019, 1048, 66–74. [Google Scholar] [CrossRef]
- Pimentel, L.; Gomes, A.; Pintado, M.; Rodríguez-Alcalá, L.M. Isolation and Analysis of Phospholipids in Dairy Foods. J. Anal. Methods Chem. 2016, 2016, 9827369. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies. Tables and Charts, 3rd ed.; John Wiley & Sons, LTD: London, UK, 2001. [Google Scholar]
- Rueda-Ordóñez, Y.J.; Tannous, K. Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air. Bioresour. Technol. 2016, 211, 231–239. [Google Scholar] [CrossRef] [PubMed]
STRAW | ||||||||
---|---|---|---|---|---|---|---|---|
Compound | EtOH | AcO | EtAc | DCM | ||||
Hydrocarbon | 24.36 d ± 0.06 | 31.95 ab ± 3.62 | 29.96 c ± 1.35 | 37.24 a ± 1.07 | ||||
Wax esters | 2.60 d ± 0.04 | 3.70 b ± 0.06 | 2.84 c ± 0.01 | 4.24 a ± 0.01 | ||||
Triglycerides | 3.66 d ± 0.04 | 4.08 c ± 0.04 | 4.48 b ± 0.26 | 5.12 a ± 0.27 | ||||
Fatty alcohols | 7.14 c ± 0.12 | 11.32 a ± 0.55 | 8.24 b ± 0.05 | 11.50 a ± 0.10 | ||||
Phytosterol | 3.58 ab ± 0.47 | 3.58 b ± 0.09 | 3.54 b ± 0.04 | 4.15 a ± 0.14 | ||||
Diglycerides | 6.18 a ± 0.60 | 4.88 b ± 0.16 | 6.44 a ± 0.12 | 6.38 a ± 0.29 | ||||
Free fatty acids | 14.58 c ± 0.73 | 15.04 bc ± 1.35 | 19.60 a ± 1.53 | 18.63 ab ± 2.17 | ||||
Monoglycerides | 1.38 b ± 0.09 | 1.40 b ± 0.11 | 1.67 ab ± 0.09 | 2.18 a ± 0.22 | ||||
Glycolipids | 34.98 a ± 1.66 | 23.62 b ± 2.18 | 23.25 b ± 1.00 | 10.55 c ± 1.83 | ||||
Phosphatidylinositol | 0.44 a ± 0.04 | 0.17 b ± 0.02 | n.d c | n.a | n.d c | n.a | ||
Phosphatidylserine | 0.45 a ± 0.09 | 0.20 b ± 0.07 | n.d c | n.a | n.d c | n.a | ||
Phosphatidylcholine | 0.65 a ± 0.15 | 0.06 b ± 0.01 | n.d c | n.a | n.d c | n.a |
BAGASSE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound | EtOH | AcO | EtAc | DCM | ||||||
Hydrocarbon | 15.50 d ± 0.44 | 18.72 c ± 0.08 | 22.66 b ± 1.35 | 38.93 a ± 4.93 | ||||||
Wax esters | 1.48 d ± 0.08 | 1.80 c ± 0.05 | 2.08 b ± 0.22 | 5.28 a ± 0.07 | ||||||
Triglycerides | 1.73 c ± 0.02 | 2.24 c ± 0.08 | 2.25 b ± 0.11 | 2.55 a ± 0.16 | ||||||
Fatty alcohols | 8.56 d ± 0.01 | 11.78 c ± 0.02 | 14.17 b ± 0.22 | 19.80 a ± 0.91 | ||||||
Phytosterol | 1.96 c ± 0.07 | 2.77 b ± 0.01 | 3.61 a ± 0.19 | 3.70 a ± 0.13 | ||||||
Diglycerides | 3.19 b ± 0.08 | 4.48 a ± 0.05 | 4.67 a ± 0.06 | 4.18 a ± 0.68 | ||||||
Free fatty acids | 5.51 c ± 0.34 | 10.05 b ± 0.13 | 12.60 a ± 0.37 | 13.99 a ± 1.08 | ||||||
Monoglycerides | 1.22 b ± 0.21 | 2.87 a ± 0.20 | 2.68 b ± 0.01 | 1.80 b ± 0.09 | ||||||
Glycolipids | 60.15 a ± 0.02 | 45.29 b ± 0.34 | 35.28 c ± 1.07 | 9.76 d ± 0.28 | ||||||
Phosphatidylcholine | 0.69 a ± 0.08 | n.d b | n.a | n.d b | n.a | n.d b | n.a |
STRAW | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EtOH | AcO | EtAc | DCM | |||||||||
Octanoic acid (FFA 8:0) | 4.36 c ± 0.31 | 7.20 b ± 0.20 | 20.15 a ± 0.24 | 8.45 b ± 0.63 | ||||||||
Dodecanoic acid (FFA 12:0) | 0.24 c ± 0.03 | 0.40 b ± 0.09 | 0.48 b ± 0.03 | 1.40 a ± 0.24 | ||||||||
Myristic acid (FFA 14:0) | 0.49 c ± 0.10 | 1.20 a ± 0.12 | 0.64 b ± 0.07 | 1.25 a ± 0.21 | ||||||||
Palmitic acid (FFA 16:0) | 4.89 c ± 0.49 | 13.33 b ± 1.08 | 12.58 b ± 0.43 | 19.15 a ± 0.32 | ||||||||
Linoleic acid (FFA 18:1 c9c12) | 0.55 c ± 0.11 | 1.98 b ± 0.12 | 2.23 b ± 0.11 | 4.09 a ± 0.78 | ||||||||
Oleic acid (FFA 18:1 c9) | 2.50 d ± 0.50 | 6.00 c ± 1.04 | 8.88 b ± 0.32 | 15.21 a ± 2.78 | ||||||||
Stearic acid (FFA 18:0) | 1.69 c ± 0.22 | 4.01 b ± 0.55 | 4.12 b ± 0.17 | 6.58 a ± 1.20 | ||||||||
Arachidic acid (FFA 20:0) | 0.31 c ± 0.05 | 1.50 ab ± 0.22 | 1.48 b ± 0.09 | 1.91 a ± 0.23 | ||||||||
Behenic acid (FFA 22:0) | n.d c | n.a | 0.40 b ± 0.14 | 0.46 b ± 0.02 | 0.69 a ± 0.14 | |||||||
Lignoceric acid (FFA 24:0) | n.d c | n.a | 0.58 b ± 0.19 | 0.59 b ± 0.02 | 1.11 a ± 0.21 | |||||||
Octacosanoic acid (FFA 28:0) | 0.24 d ± 0.08 | 1.63 b ± 0.22 | 0.77 c ± 0.13 | 6.89 a ± 1.04 | ||||||||
Σ FFA | 15.26 d ± 1.25 | 38.24 c ± 3.65 | 52.38 b ± 2.84 | 66.73 a ± 9.20 | ||||||||
1-Octacosanol (FOH 28:0) | 2.35 c ± 0.35 | 5.58 b ± 0.16 | 2.28 c ± 0.09 | 18.19 a ± 2.52 | ||||||||
1-Triacontanol (FOH 30:0) | 1.12 b ± 0.22 | 3.52 c ± 0.15 | 1.65 b ± 0.11 | 13.84 a ± 1.46 | ||||||||
1-Dotriacontanol (FOH 32:0) | 1.39 b ± 0.28 | 4.48 c ± 0.21 | 2.01 b ± 0.22 | 19.43 a ± 2.56 | ||||||||
1-Tetratriacontanol (FOH 34:0) | n.d c | n.a | 0.35 b ± 0.06 | n.d c | n.a | 2.17 a ± 0.22 | ||||||
Σ FOH | 4.86 c ± 0.89 | 13.93 b ± 1.14 | 5.94 c ± 0.37 | 53.63 a ± 6.73 | ||||||||
Pentacosane (C25:0) | n.d b | n.a | n.d b | n.a | n.d b | n.a | 0.40 a ± 0.08 | |||||
Heptacosane (C27:0) | n.d d | n.a | 0.45 b ± 0.08 | 0.28 c ± 0.01 | 0.94 a ± 0.06 | |||||||
Nonacosane (C29:0) | n.d d | n.a | 0.47 b ± 0.07 | 0.24 c ± 0.02 | 1.32 a ± 0.20 | |||||||
Hentriacontane (C31:0) | 0.28 d ± 0.05 | 0.97 b ± 0.15 | 0.49 c ± 0.05 | 2.18 a ± 0.58 | ||||||||
Σ HYDROCARBONS | 0.28 d ± 0.05 | 1.89 b ± 0.15 | 1.01 c ± 0.07 | 4.84 a ± 0.91 | ||||||||
Campesterol (ST 28:1;O) | 0.43 c ± 0.06 | 0.89 b ± 0.19 | 0.94 b ± 0.08 | 2.87 a ± 0.57 | ||||||||
Stigmasterol (ST 29:2;O) | 0.89 c ± 0.11 | 3.59 b ± 0.34 | 2.16 b ± 0.05 | 11.81 a ± 1.62 | ||||||||
β-Sitosterol (ST 29:1;O) | 1.56 c ± 0.09 | 3.97 b ± 0.69 | 3.96 b ± 0.35 | 11.00 a ± 2.01 | ||||||||
Stigmast-4-en-3-one (ST 29:2;O2) | 1.17 c ± 0.03 | 2.62 b ± 0.34 | 2.49 b ± 0.15 | 8.49 a ± 0.99 | ||||||||
Σ ST | 4.06 c ± 0.63 | 11.07 b ± 1.73 | 9.55 b ± 0.61 | 34.16 a ± 2.73 | ||||||||
4-Coumaric acid | 1.63 a ± 0.26 | 0.62 b ± 0.09 | 0.35 c ± 0.05 | n.d d | n.a | |||||||
Octacosanal (FAL 28:0) | 0.25 c ± 0.05 | 1.70 b ± 0.20 | 0.39 c ± 0.02 | 9.22 a ± 1.38 | ||||||||
Friedelan-3-one | 0.61 c ± 0.08 | 1.52 b ± 0.32 | 1.39 b ± 0.11 | 4.65 a ± 0.91 |
BAGASSE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EtOH | AcO | EtAc | DCM | |||||||||
Dodecanoic acid (FFA 12:0) | n.d c | n.a | 0.16 b ± 0.02 | 0.37 a ± 0.08 | n.d c | n.a | ||||||
Myristic acid (FFA 14:0) | n.d b | n.a | 0.40 a ± 0.02 | n.d b | n.a | n.d b | n.a | |||||
Palmitic Acid (FFA 16:0) | 2.86 c ± 0.62 | 6.52 a ± 0.86 | 6.92 a ± 0.62 | 4.33 b ± 0.58 | ||||||||
Stearic acid (FFA 18:0) | 1.03 b ± 0.16 | 3.68 a ± 0.62 | 2.70 a ± 0.23 | 1.77 b ± 0.17 | ||||||||
Oleic Acid (FFA 18:1 c9) | 1.57 c ± 0.47 | 4.50 a ± 0.06 | 4.37 a ± 0.17 | 2.49 b ± 0.28 | ||||||||
Linoleic acid (FFA 18:2 c9c12) | 0.87 b ± 0.32 | 2.49 a ± 0.35 | 2.47 a ± 0.09 | 1.13 b ± 0.25 | ||||||||
Arachidic acid (FFA 20:0) | 0.44 c ± 0.08 | 1.27 a ± 0.16 | 1.28 a ± 0.17 | 0.92 b ± 0.19 | ||||||||
Behenic acid (FFA 22:0) | n.d c | n.a | 0.88 a ± 0.13 | 0.96 a ± 0.14 | 0.48 b ± 0.11 | |||||||
Lignoceric acid (FFA 24:0) | 0.38 c ± 0.03 | 1.66 a ± 0.18 | 1.76 a ± 0.36 | 1.43 a ± 0.24 | ||||||||
Octacosanoic acid (FFA 28:0) | 2.84 c ± 0.90 | 13.82 a ± 1.23 | 11.09 b ± 2.61 | 13.81 ab ± 1.50 | ||||||||
Σ FFA | 9.98 c ± 1.68 | 35.38 a ± 2.94 | 31.92 ab ± 3.14 | 26.36 b ± 3.22 | ||||||||
1-Octacosanol (FOH 28:0) | 5.89 c ± 1.16 | 19.64 a ± 1.92 | 11.21 b ± 2.81 | 21.64 a ± 2.07 | ||||||||
1-Triacontanol (FOH 30:0) | 1.29 d ± 0.21 | 3.67 b ± 0.59 | 2.21 c ± 0.51 | 4.31 a ± 0.22 | ||||||||
1-Dotriacontanol (FOH 32:0) | 0.68 d ± 0.15 | 2.01 b ± 0.44 | 1.16 c ± 0.27 | 3.21 a ± 0.21 | ||||||||
Σ FOH | 7.85 c ± 1.54 | 25.32 a ± 2.74 | 14.59 b ± 3.33 | 29.16 a ± 2.40 | ||||||||
Heptacosane (C27:0) | 0.36 c ± 0.10 | 1.67 a ± 0.17 | 0.99 b ± 0.21 | 2.15 a ± 0.36 | ||||||||
Octacosane (C28:0) | n.d b | n.a | n.d b | n.a | 0.41 a ± 0.07 | 0.20 a ± 0.04 | ||||||
Nonacosane (C29:0) | n.d d | n.a | 0.53 b ± 0.13 | 0.35 c ± 0.09 | 2.87 a ± 2.22 | |||||||
Hentriacontane (C31:0) | n.d b | n.a | 0.46 a ± 0.03 | n.d b | n.a | n.d b | n.a | |||||
Σ HYDROCARBONS | 0.36 d ± 0.10 | 2.66 b ± 0.08 | 1.75 c ± 0.30 | 5.23 a ± 0.44 | ||||||||
Campesterol (ST 28:1;O) | 0.65 c ± 0.08 | 1.87 a ± 0.16 | 1.78 a ± 0.15 | 1.33 b ± 0.19 | ||||||||
Stigmasterol (ST 29:2;O) | 1.48 c ± 0.36 | 5.77 b ± 0.75 | 4.55 b ± 0.88 | 7.06 a ± 0.75 | ||||||||
β-Sitosterol (ST 29:1;O) | 1.83 c ± 0.29 | 5.82 a ± 0.70 | 5.87 a ± 0.55 | 4.31 b ± 0.37 | ||||||||
4,22-Stigmastadiene-3-one (ST 29:2;O) | 0.86 b ± 0.15 | 3.34 a ± 0.35 | 3.11 a ± 0.43 | 3.94 a ± 0.58 | ||||||||
Stigmast-4-en-3-one (ST 29:2;O2) | 2.68 c ± 0.48 | 9.53 b ± 0.98 | 9.27 b ± 1.18 | 11.59 a ± 1.72 | ||||||||
Σ ST | 7.50 c ± 1.04 | 26.33 ab ± 2.69 | 24.59 b ± 3.10 | 28.22 a ± 1.17 | ||||||||
4-Coumaric acid | 36.11 a ± 2.13 | 11.29 b ± 0.30 | 7.93 c ± 0.71 | n.d d | n.a | |||||||
Octacosanal (FAL 28:0) | 2.27 d ± 0.84 | 7.91 b ± 0.08 | 4.40 c ± 1.27 | 13.79 a ± 1.65 |
Wavenumber (cm−1) | Origin | Assignment |
---|---|---|
3357–3337 | -OH stretching | Alcohols |
2917 | C-H stretching (-CH3, -CH2 and -CH) | Aliphatic chains |
2849 | ||
1710 | -OH bending | Alcohols |
1605 | RONH2 | Amines |
1515 | C-N stretching | Amides |
1462 | C-H bending (-CH3, -CH2) | Aliphatic chains |
1423 | ||
1377 | ||
1328 | -CHO (CH deformation) | Aldehydes |
1269–1225 | NH2 rocking/twisting | Amines |
1169 | C-O asymmetric stretching | Alcohols |
1123 | N-H bending | Amines |
1051–1030 | C-O stretching | Alcohols |
833 | CH2 rocking | Aliphatic chains |
729 | Rotational deformation of CH2 in chain | High aliphatic chains |
719 |
Temperature (°C) (|ΔH| (J/g)) | ||||
Straw Extract | Crystallisation | Melting | Oxidation | Decomposition |
EtOH | 57.8 (17.1) | 70.1 (20.4) | n/a | 354.5 (186.2) |
AcO | 56.1 (22.4) | 66.4 (26.2) | n/a | 410.6 (65.7) |
EtAc | 65.9 (53.7) | 74.8 (55.3) | n/a | 374.4 (153.6) |
DCM | 58.7 (45.2) | 70.8 (55.1) | 163.6 (23.4) | 393.5 (225.6) |
Temperature (°C) (|ΔH| (J/g)) | ||||
Bagasse Extract | Crystallisation | Melting | Oxidation | Decomposition |
EtOH | 57.9 (11.6) | 68.1 (12.4) | n/a | 362.9 (279.5) |
AcO | 58.6 (43.5) | 68.9 (51.1) | n/a | 406.9 (176.9) |
EtAc | 62.1 (64.2) | 68.6 (71.7) | n/a | 393.2 (231.7) |
DCM | 62.9 (90.3) | 72.2 (106.9) | 168.0 (35.1) | 436.4 (267.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, F.S.; Pimentel, L.L.; Vidigal, S.S.M.P.; Costa, P.T.; Pintado, M.E.; Rodríguez-Alcalá, L.M. Suitability of Solvent-Assisted Extraction for Recovery of Lipophilic Phytochemicals in Sugarcane Straw and Bagasse. Foods 2022, 11, 2661. https://doi.org/10.3390/foods11172661
Teixeira FS, Pimentel LL, Vidigal SSMP, Costa PT, Pintado ME, Rodríguez-Alcalá LM. Suitability of Solvent-Assisted Extraction for Recovery of Lipophilic Phytochemicals in Sugarcane Straw and Bagasse. Foods. 2022; 11(17):2661. https://doi.org/10.3390/foods11172661
Chicago/Turabian StyleTeixeira, Francisca S., Lígia L. Pimentel, Susana S. M. P. Vidigal, Paula T. Costa, Manuela E. Pintado, and Luís M. Rodríguez-Alcalá. 2022. "Suitability of Solvent-Assisted Extraction for Recovery of Lipophilic Phytochemicals in Sugarcane Straw and Bagasse" Foods 11, no. 17: 2661. https://doi.org/10.3390/foods11172661
APA StyleTeixeira, F. S., Pimentel, L. L., Vidigal, S. S. M. P., Costa, P. T., Pintado, M. E., & Rodríguez-Alcalá, L. M. (2022). Suitability of Solvent-Assisted Extraction for Recovery of Lipophilic Phytochemicals in Sugarcane Straw and Bagasse. Foods, 11(17), 2661. https://doi.org/10.3390/foods11172661