Value-Added Utilization of Citrus Peels in Improving Functional Properties and Probiotic Viability of Acidophilus-bifidus-thermophilus (ABT)-Type Synbiotic Yoghurt during Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Different Citrus Peel Powder
2.3. Preparation of ABT Synbiotic Yoghurt
2.4. Determination of Polyphenols
2.5. Sensory Evaluation
2.6. Titratable Acidity (%) and Moisture Content
2.7. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Free Radical Scavenging Activity
2.8. Antibacterial Activity of Different ABT Synbiotic Yoghurts
2.9. Viability of ABT Starter Culture in Different ABT Synbiotic Yoghurts during Cold Storage
2.10. Statistical Analysis
3. Results and Discussion
3.1. Determination of Polyphenols in Fruit Peels
3.2. Sensory Evaluation of ABT Synbiotic Yoghurt with Citrus Peel Addition
3.3. Titratable Acidity and Moisture Content of ABT Synbiotic Yoghurt with Citrus Peel Addition during Cold Storage
3.4. Antioxidant Activity of ABT Synbiotic Yoghurt with Citrus Peel Addition
3.5. Antibacterial Activity of ABT Synbiotic Yoghurt with Citrus Peel Addition during Cold Storage
3.6. Viability of ABT Starter Culture of Synbiotic Yoghurt with Citrus Peel Addition during Cold Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandemir, K.; Piskin, E.; Xiao, J.; Tomas, M.; Capanoglu, E. Fruit Juice Industry Wastes as a Source of Bioactives. J. Agric. Food Chem. 2022, 70, 6805–6832. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Maugeri, A.; Lombardo, G.E.; Musumeci, L.; Barreca, D.; Rapisarda, A.; Cirmi, S.; Navarra, M. The Second Life of Citrus Fruit Waste: A Valuable Source of Bioactive Compounds. Molecules 2021, 26, 5991. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.; Kumar, J.; Mamun, M.; Hamid, A.; Ahmed, M.; Uddin, N.; Shishir, M.R.I.; Mondal, S.C. Extraction and Characterization of Pectin from Citrus sinensis Peel. J. Biosyst. Eng. 2021, 46, 16–25. [Google Scholar] [CrossRef]
- Vinderola, C.; Reinheimer, J. Culture media for the enumeration of Bifidobacterium bifidum and Lactobacillus acidophilus in the presence of yoghurt bacteria. Int. Dairy J. 1999, 9, 497–505. [Google Scholar] [CrossRef]
- Chaouch, M.A.; Benvenuti, S. The role of fruit by-products as bioactive compounds for intestinal health. Foods 2020, 9, 1716. [Google Scholar] [CrossRef]
- Farahmandfar, R.; Tirgarian, B.; Dehghan, B.; Nemati, A. Changes in chemical composition and biological activity of essential oil from Thomson navel orange (Citrus sinensis L. Osbeck) peel under freezing, convective, vacuum, and microwave drying methods. Food Sci. Nutr. 2020, 8, 124–138. [Google Scholar] [CrossRef]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2022, 27, 233. [Google Scholar] [CrossRef]
- Nishad, J.; Koley, T.K.; Varghese, E.; Kaur, C. Synergistic effects of nutmeg and citrus peel extracts in imparting oxidative stability in meat balls. Food Res. Int. 2018, 106, 1026–1036. [Google Scholar] [CrossRef]
- Caggia, C.; Palmeri, R.; Russo, N.; Timpone, R.; Randazzo, C.L.; Todaro, A.; Barbagallo, S. Employ of Citrus By-product as Fat Replacer Ingredient for Bakery Confectionery Products. Front. Nutr. 2020, 7, 46. [Google Scholar] [CrossRef]
- Younis, K.; Islam, R.U.; Jahan, K.; Yousuf, B.; Ray, A. Effect of addition of mosambi (Citrus limetta) peel powder on textural and sensory properties of papaya jam. Cogent Food Agric. 2015, 1, 1023675. [Google Scholar] [CrossRef]
- Sicari, V.; Pellicanò, T.M.; Laganà, V.; Poiana, M. Use of orange by-products (dry peel) as an alternative gelling agent for marmalade production: Evaluation of antioxidant activity and inhibition of HMF formation during different storage temperature. J. Food Process. Preserv. 2018, 42, e13429. [Google Scholar] [CrossRef]
- Teixeira, F.; Santos, B.A.d.; Nunes, G.; Soares, J.M.; Amaral, L.A.d.; Souza, G.H.O.d.; Resende, J.T.V.d.; Menegassi, B.; Rafacho, B.P.M.; Schwarz, K. Addition of orange peel in orange jam: Evaluation of sensory, physicochemical, and nutritional characteristics. Molecules 2020, 25, 1670. [Google Scholar] [CrossRef] [PubMed]
- Lourens-Hattingh, A.; Viljoen, B.C. Yogurt as probiotic carrier food. Int. Dairy J. 2001, 11, 1–17. [Google Scholar] [CrossRef]
- Espírito-Santo, A.; Lagazzo, A.; Sousa, A.; Perego, P.; Converti, A.; Oliveira, M.N. Rheology, spontaneous whey separation, microstructure and sensorial characteristics of probiotic yoghurts enriched with passion fruit fiber. Food Res. Int. 2013, 50, 224–231. [Google Scholar] [CrossRef]
- Al-Bedrani, D.I.; ALKaisy, Q.; Mohammed, Z. Physicochemical, rheological and sensory properties of yogurt flavored with sweet orange (Citrus sinensis) marmalade. IOP Conf. Ser. Earth Environ. Sci. 2019, 388, 012052. [Google Scholar] [CrossRef]
- Erkaya-Kotan, T. In vitro angiotensin converting enzyme (ACE)-inhibitory and antioxidant activity of probiotic yogurt incorporated with orange fibre during storage. J. Food Sci. Technol. 2020, 57, 2343–2353. [Google Scholar] [CrossRef]
- Chand, P.; Kumar, M.D.; Singh, A.K.; Deshwal, G.K.; Rao, P.S.; Tomar, S.K.; Sharma, H. Low-calorie synbiotic yoghurt from indigenous probiotic culture and combination of inulin and oligofructose: Improved sensory, rheological, and textural attributes. J. Food Process. Preserv. 2021, 45, e15322. [Google Scholar] [CrossRef]
- Żbikowska, A.; Szymańska, I.; Kowalska, M. Impact of Inulin Addition on Properties of Natural Yogurt. Appl. Sci. 2020, 10, 4317. [Google Scholar] [CrossRef]
- Dias, P.; Sajiwanie, J.; Rmusk, R. Formulation and development of composite fruit peel powder incorporated fat and sugar-free probiotic set yogurt. GSC Biol. Pharm. Sci. 2020, 11, 93–99. [Google Scholar] [CrossRef]
- Khalid, K.A. Growth sites and their impacts on sour orange ‘Citrus aurantium (Tournef.)’ essential oil. Biocatal. Agric. Biotechnol. 2021, 31, 101909. [Google Scholar] [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) phenomenon—A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Bridi, R.; Atala, E.; Pizarro, P.N.; Montenegro, G. Honeybee pollen load: Phenolic composition and antimicrobial activity and antioxidant capacity. J. Nat. Prod. 2019, 82, 559–565. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Dairy Products, 16th ed.; American Public Health Association: Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- Virtanen, T.; Pihlanto, A.; Akkanen, S.; Korhonen, H. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 2007, 102, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.M.; Elshaghabee, F.M. Influence of cold storage on antimicrobial, antioxidant and proteolytic activities of three different probiotic fermented milks. Adv. Food Sci. 2016, 38, 82–89. [Google Scholar]
- Dave, R.; Shah, N. Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria. J. Dairy Sci. 1996, 79, 1529–1536. [Google Scholar] [CrossRef]
- Terzaghi, B.E.; Sandine, W. Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. 1975, 29, 807–813. [Google Scholar] [CrossRef]
- Marzouk, B. Characterization of bioactive compounds in Tunisian bitter orange (Citrus aurantium L.) peel and juice and determination of their antioxidant activities. BioMed Res. Int. 2013, 2013, 345415. [Google Scholar] [CrossRef]
- Hegde, P.; Agrawal, P.; Gupta, P.K. Extraction of polyphenols from orange peel by solvent extraction and microbial assisted extraction and comparison of extraction efficiency. In Biotechnology and Biochemical Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 129–135. [Google Scholar] [CrossRef]
- Li, Z.; Ma, W.; Ali, I.; Zhao, H.; Wang, D.; Qiu, J. Green and Facile Synthesis and Antioxidant and Antibacterial Evaluation of Dietary Myricetin-Mediated Silver Nanoparticles. ACS Omega 2020, 5, 32632–32640. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, Y.; Shen, S.; Zhi, Z.; Cheng, H.; Chen, S.; Ye, X. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chem. 2020, 326, 126785. [Google Scholar] [CrossRef]
- Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chem. 2019, 295, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; Costello, M.; Drake, M.; Bodyfelt, F. The Sensory Evaluation of Dairy Products, 2nd ed.; Springer Science + Business Media, Inc.: New York, NY, USA, 2009; p. 576. [Google Scholar] [CrossRef]
- Kemp, S.E.; Hollowood, T.; Hort, J. Sensory Evaluation: A Practical Handbook; John Wiley & Sons Ltd.: West Sussex, UK, 2011. [Google Scholar]
- Pastorino, A.; Hansen, C.; McMahon, D.J. Effect of pH on the chemical composition and structure-function relationships of Cheddar cheese. J. Dairy Sci. 2003, 86, 2751–2760. [Google Scholar] [CrossRef]
- Li, S.; Tang, S.; He, Q.; Hu, J.; Zheng, J. In vitro antioxidant and angiotensin-converting enzyme inhibitory activity of fermented milk with different culture combinations. J. Dairy Sci. 2020, 103, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Tonolo, F.; Fiorese, F.; Moretto, L.; Folda, A.; Scalcon, V.; Grinzato, A.; Ferro, S.; Arrigoni, G.; Bindoli, A.; Feller, E. Identification of new peptides from fermented milk showing antioxidant properties: Mechanism of action. Antioxidants 2020, 9, 117. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef]
- Moschopoulou, E.; Sakkas, L.; Zoidou, E.; Theodorou, G.; Sgouridou, E.; Kalathaki, C.; Liarakou, A.; Chatzigeorgiou, A.; Politis, I.; Moatsou, G. Effect of milk kind and storage on the biochemical, textural and biofunctional characteristics of set-type yoghurt. Int. Dairy J. 2018, 77, 47–55. [Google Scholar] [CrossRef]
- Czech, A.; Malik, A.; Sosnowska, B.; Domaradzki, P. Bioactive substances, heavy metals, and antioxidant activity in whole fruit, peel, and pulp of citrus fruits. Int. J. Food Sci. 2021, 2021, 6662259. [Google Scholar] [CrossRef]
- Zaki, N.; Naeem, M. Antioxidant, Antimicrobial and Anticancer Activities of Citrus Peels to Improve the Shelf Life of Yoghurt Drink. Egypt. J. Food Sci. 2021, 49, 249–265. [Google Scholar] [CrossRef]
- Matevosyan, L.; Bazukyan, I.; Trchounian, A. Antifungal and antibacterial effects of newly created lactic acid bacteria associations depending on cultivation media and duration of cultivation. BMC Microbiol. 2019, 19, 102. [Google Scholar] [CrossRef]
- Iseppi, R.; Messi, P.; Camellini, S.; Sabia, C. Bacteriocin activity of Lactobacillus brevis and Lactobacillus paracasei ssp. paracasei. J. Med. Microbiol. 2019, 68, 1359–1366. [Google Scholar] [CrossRef]
- Kang, S.; Kong, F.; Shi, X.; Han, H.; Li, M.; Guan, B.; Yang, M.; Cao, X.; Tao, D.; Zheng, Y. Antibacterial activity and mechanism of lactobionic acid against Pseudomonas fluorescens and Methicillin-resistant Staphylococcus aureus and its application on whole milk. Food Control 2020, 108, 106876. [Google Scholar] [CrossRef]
- Shehata, M.G.; Awad, T.S.; Asker, D.; El Sohaimy, S.A.; Abd El-Aziz, N.M.; Youssef, M.M. Antioxidant and antimicrobial activities and UPLC-ESI-MS/MS polyphenolic profile of sweet orange peel extracts. Curr. Res. Food Sci. 2021, 4, 326–335. [Google Scholar] [CrossRef] [PubMed]
- El-Dieb, S.; Abd Rabo, F.; Badran, S.; Abd El-Fattah, A.; Elshaghabee, F. In vitro model for assessment of the health benefits of some microbial strains. Int. J. Probiotics Prebiotics 2010, 5, 157–163. [Google Scholar] [CrossRef]
- Ravindran, L.; Manjunath, N.; Darshan, R.P.; Manuel, S.G. In vitro study analysis of antimicrobial properties of lactic acid bacteria against pathogens. J. Biotechnol. Innov. 2016, 5, 262–269. [Google Scholar]
- Stoyanova, L.; Ustyugova, E.; Netrusov, A. Antibacterial metabolites of lactic acid bacteria: Their diversity and properties. Appl. Biochem. Microbiol. 2012, 48, 229–243. [Google Scholar] [CrossRef]
- Islam, R.; Hossain, M.N.; Alam, M.K.; Uddin, M.E.; Rony, M.H.; Imran, M.A.S.; Alam, M.F. Antibacterial activity of lactic acid bacteria and extraction of bacteriocin protein. Adv. Biosci. Biotechnol. 2020, 11, 49–59. [Google Scholar] [CrossRef]
- Davoodabadi, A.; Dallal, M.M.S.; Lashani, E.; Ebrahimi, M.T. Antimicrobial activity of Lactobacillus spp. isolated from fecal flora of healthy breast-fed infants against diarrheagenic Escherichia coli. Jundishapur J. Microbiol. 2015, 8, e27852. [Google Scholar] [CrossRef]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O. Effect of refrigerated storage on probiotic viability and the production and stability of antimutagenic and antioxidant peptides in yogurt supplemented with pineapple peel. J. Dairy Sci. 2015, 98, 5905–5916. [Google Scholar] [CrossRef]
- Ho, Y.-Y.; Lin, C.-M.; Wu, M.-C. Evaluation of the prebiotic effects of citrus pectin hydrolysate. J. Food Drug Anal. 2017, 25, 550–558. [Google Scholar] [CrossRef]
- Casarotti, S.N.; Borgonovi, T.F.; Batista, C.L.; Penna, A.L.B. Guava, orange and passion fruit by-products: Characterization and its impacts on kinetics of acidification and properties of probiotic fermented products. LWT 2018, 98, 69–76. [Google Scholar] [CrossRef]
- Pak, D.; Muthaiyan, A.; Story, R.S.; O’Bryan, C.A.; Lee, S.-O.; Crandall, P.G.; Ricke, S.C. Fermentative capacity of three strains of Lactobacillus using different sources of carbohydrates: In vitro evaluation of synbiotic effects, resistance and tolerance to bile and gastric juices. J. Food Res. 2013, 2, 158–167. [Google Scholar] [CrossRef]
- Arioui, F.; Ait Saada, D.; Cheriguene, A. Physicochemical and sensory quality of yogurt incorporated with pectin from peel of Citrus sinensis. Food Sci. Nutr. 2017, 5, 358–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compounds | SO Peel | SWO Peel | LO Peel | |
---|---|---|---|---|
Phenolic acids | ||||
1 | o-Coumaric acid | 1128.23 ± 23.48 b | 266.22 ± 10.61 e | 14.13 ± 0.96 k |
2 | Benzoic acid | 972.78 ± 9.72 c | 809.58 ± 13.67 a | 758.68 ± 20.11 a |
3 | Ellagic acid | 604.76 ± 10.43 e | 249.29 ± 9.46 e | 68.19 ± 3.76 g |
4 | p-Hydroxybenzoic acid | 92.26 ± 1.56 g | 194.20 ± 11.48 f | 281.43 ± 6.82 c |
5 | Chlorogenic acid | 61.72 ± 1.52 h | 35.09 ± 2.43 hi | 127.29 ± 12.88 f |
6 | Caffeic acid | 25.86 ± 2.09 I | 35.21 ± 2.85 hi | 34.05 ± 2.46 h |
7 | Cinnamic acid | 11.56 ± 1.04 k | 8.04 ± 1.18 k | 3.76 ± 0.58 l |
8 | Gallic acid | 6.05 ± 0.95 l | 6.52 ± 0.86 k | 19.47 ± 1.82 j |
9 | Vanillic acid | 23.95 ± 2.08 i | 59.43 ± 1.39 g | n.d. |
10 | Syringic acid | 17.43 ± 0.91 j | 31.13 ± 3.09 i | n.d. |
11 | Ferulic acid | 18.53 ± 1.76 j | n.d. | 36.28 ± 1.08 h |
12 | Rosemarinic acid | 12.63 ± 1.27 k | n.d. | 73.26 ± 2.96 g |
13 | p-Coumaric acid | n.d. | n.d. | 24.82 ± 1.49 i |
Stilbenes | ||||
1 | Resveratrol | 755.94 ± 8.93 d | n.d. | 77.57 ± 6.45 g |
Flavonoids | ||||
1 | Myricetin | 2098.10 ± 38.12 a | 345.79 ± 15.39 d | 153.39 ± 5.91 e |
2 | Quercetin | 615.68 ± 11.38 e | 379.01 ± 10.85 c | 364.15 ± 15.27 b |
3 | Naringin | 381.03 ± 10.82 f | 719.94 ± 14.22 b | 269.87 ± 3.99 c |
4 | Kaempferol | 6.68 ± 1.04 l | 16.24 ± 1.64 j | 20.57 ± 2.63 j |
5 | Catechin | 22.57 ± 1.83 i | 38.97 ± 2.85 h | 26.08 ± 1.75 i |
6 | Rutin | n.d. | n.d. | 181.10 ± 5.24 d |
Total | 6855.77 | 3194.67 | 2534.09 |
Experimental ABT Synbiotic Yoghurt | Storage Period (Day) | Titratable Acidity (% Lactic Acid) | Moisture (%) |
---|---|---|---|
A: Control (without citrus peel addition) | 0 | 0.87 ± 0.05 c | 87.54 ± 0.15 a |
14 | 0.92 ± 0.04 c | 87.48 ± 0.19 a | |
28 | 1.15 ± 0.06 b | 87.50 ± 0.14 a | |
B: 0.5% SO peel addition | 0 | 0.90 ± 0.03 c | 86.90 ± 0.21 b |
14 | 1.20 ± 0.04 ab | 86.85 ± 0.13 b | |
28 | 1.30 ± 0.06 a | 86.78 ± 0.20 b | |
C: 0.5% SWO peel addition | 0 | 0.90 ± 0.04 c | 86.92 ± 0.14 b |
14 | 1.15 ± 0.07 b | 86.80 ± 0.09 b | |
28 | 1.23 ± 0.03 ab | 86.75 ± 0.07 b | |
D: 0.5% LO peel addition | 0 | 0.92 ± 0.03 c | 86.88 ± 0.16 b |
14 | 1.20 ± 0.02 b | 86.80 ± 0.11 b | |
28 | 1.23 ± 0.06 ab | 86.78 ± 0.06 b |
Experimental ABT Synbiotic Yoghurt | Storage Period (Day) | Inhibition Zone (mm) | ||
---|---|---|---|---|
S. aureus | B. subtilis | E. coli | ||
A: Control (without citrus peel addition) | 0 | 6.50 ± 0.40 d | 5.10 ± 0.60 e | 3.70 ± 0.50 e |
14 | 7.00 ± 0.60 d | 6.00 ± 0.50 de | 4.30 ± 0.20 de | |
28 | 7.80 ± 0.30 bc | 6.90 ± 0.40 cd | 6.30 ± 0.30 b | |
B: 0.5% SO peel addition | 0 | 7.40 ± 0.60 bcd | 6.20 ± 0.50 de | 4.40 ± 0.20 de |
14 | 8.20 ± 0.50 bc | 7.30 ± 0.10 c | 6.30 ± 0.40 abc | |
28 | 9.30 ± 0.40 a | 8.20 ± 0.20 a | 7.20 ± 0.50 a | |
C: 0.5% SWO peel addition | 0 | 7.50 ± 0.50 bcd | 6.10 ± 0.30 d | 4.60 ± 0.20 d |
14 | 8.20 ± 0.40 bc | 6.85 ± 0.60 cd | 5.80 ± 0.10 c | |
28 | 9.50 ± 0.20 a | 7.50 ± 0.50 abc | 6.50 ± 0.20 ab | |
D: 0.5% LO peel addition | 0 | 7.80 ± 0.10 c | 6.25 ± 0.20 d | 4.55 ± 0.10 d |
14 | 8.30 ± 0.30 b | 7.10 ± 0.30 c | 5.40 ± 0.40 c | |
28 | 9.70 ± 0.20 a | 7.80 ± 0.10 b | 6.10 ± 0.50 bc |
Experimental ABT Synbiotic Yoghurt | Storage Period (Day) | L. acidophilus | S. thermophilus | Bifidobacteria sp. |
---|---|---|---|---|
A: Control (without citrus peel addition) | 0 | 8.30 ± 0.65 a | 8.45 ± 0.70 a | 8.05 ± 0.72 ab |
14 | 6.90 ± 0.57 b | 7.75 ± 0.61 ab | 7.20 ± 0.83 abc | |
28 | 5.20 ± 0.62 c | 6.05 ± 0.85 b | 5.45 ± 1.10 c | |
B: 0.5% SO peel addition | 0 | 8.25 ± 1.20 ab | 8.35 ± 1.05 ab | 8.20 ± 0.81 a |
14 | 7.50 ± 0.95 ab | 7.30 ± 0.85 ab | 7.55 ± 0.67 ab | |
28 | 6.10 ± 0.82 bc | 6.70 ± 0.71 b | 6.80 ± 0.57 bc | |
C: 0.5% SWO peel addition | 0 | 8.30 ± 0.61 a | 8.20 ± 0.63 a | 8.30 ± 1.06 ab |
14 | 7.20 ± 0.55 ab | 7.62 ± 0.75 ab | 7.10 ± 1.01 abc | |
28 | 6.30 ± 0.68 bc | 6.85 ± 0.61 b | 6.70 ± 0.82 abc | |
D: 0.5% LO peel addition | 0 | 8.35 ± 0.81 a | 8.40 ± 0.71 a | 8.25 ± 0.92 ab |
14 | 7.10 ± 1.10 ab | 7.75 ± 0.86 ab | 7.20 ± 0.61 ab | |
28 | 6.15 ± 1.22 bc | 6.52 ± 0.91 b | 6.65 ± 0.80 abc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathy, H.M.; Abd El-Maksoud, A.A.; Cheng, W.; Elshaghabee, F.M.F. Value-Added Utilization of Citrus Peels in Improving Functional Properties and Probiotic Viability of Acidophilus-bifidus-thermophilus (ABT)-Type Synbiotic Yoghurt during Cold Storage. Foods 2022, 11, 2677. https://doi.org/10.3390/foods11172677
Fathy HM, Abd El-Maksoud AA, Cheng W, Elshaghabee FMF. Value-Added Utilization of Citrus Peels in Improving Functional Properties and Probiotic Viability of Acidophilus-bifidus-thermophilus (ABT)-Type Synbiotic Yoghurt during Cold Storage. Foods. 2022; 11(17):2677. https://doi.org/10.3390/foods11172677
Chicago/Turabian StyleFathy, Hayam M., Ahmed A. Abd El-Maksoud, Weiwei Cheng, and Fouad M. F. Elshaghabee. 2022. "Value-Added Utilization of Citrus Peels in Improving Functional Properties and Probiotic Viability of Acidophilus-bifidus-thermophilus (ABT)-Type Synbiotic Yoghurt during Cold Storage" Foods 11, no. 17: 2677. https://doi.org/10.3390/foods11172677
APA StyleFathy, H. M., Abd El-Maksoud, A. A., Cheng, W., & Elshaghabee, F. M. F. (2022). Value-Added Utilization of Citrus Peels in Improving Functional Properties and Probiotic Viability of Acidophilus-bifidus-thermophilus (ABT)-Type Synbiotic Yoghurt during Cold Storage. Foods, 11(17), 2677. https://doi.org/10.3390/foods11172677