Microbial Characterization of Retail Cocoa Powders and Chocolate Bars of Five Brands Sold in Italian Supermarkets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Microbiological Analysis
2.2. Microbial Identification
2.3. Inocula Preparation
2.4. Growth in Agar under Stressful Conditions
2.5. Growth of Mold Intentionally Inoculated in a Chocolate Model System Packaged with Aluminized Paper [26]
2.6. Growth of Mold Intentionally Inoculated in Chocolate Stored in Different Equilibria Relative Humidity (ERH) at 4, 20 and 30 °C
2.7. Physico-Chemical Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Cocoa Powder Contamination
3.2. Chocolate Contamination
3.3. Mouldy Chocolates
3.4. Growth of P. lanosocoeruleum in Agars and Chocolate Bars
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrari, C.; Il Mercato del Cacao e la Produzione di Cioccolato: Le Prospettive Commerciali e gli Aspetti Normativi. Tesi di Laurea in Scienze e Tecnologie Alimentari. 2014. Università degli Studi di Padova A.A. 2013/2014. Available online: http://hdl.handle.net/20.500.12608/18045 (accessed on 4 August 2022).
- Schwan, R.F.; Wheals, A.E. The microbiology of cocoa fermentation and its role in chocolate quality. Crit. Rev. Food Sci. Nutr. 2004, 44, 205–221. [Google Scholar] [CrossRef]
- CODEX STAN 87-1981; Codex Standards for Cocoa Products and Chocolate. World Health Organization: Geneva, Switzerland, 2003; p. 7.
- Gutierrez, T.J. State-of-the-art Chocolate Manufacture: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1313–1343. [Google Scholar] [CrossRef] [PubMed]
- Beckett, S.T. Industrial Chocolate Manufacture and Use, 4th ed.; Wiley Blackwell: London, UK, 2009. [Google Scholar]
- Keijbets, E.L.; Chen, J.; Dickinson, E.; Vieira, J. Surface investigation of chocolate adhesion to solid mould materials. J. Food Engin. 2009, 92, 217–225. [Google Scholar] [CrossRef]
- Barrile, J.; Ostovar, K.; Keeney, P. Microflora of cocoa beans before and after roasting at 150 °C. J. Milk Food Technol. 1971, 34, 369–371. [Google Scholar] [CrossRef]
- Oh, M.H.; Cox, J.M. Toxigenic bacilli associated with food poisoning. Food Sci. Biotechnol. 2009, 18, 594–603. [Google Scholar]
- Gabis, D.A.; Langlois, B.E.; Rudnick, A.W. Microbiological examination of cocoa powder. Appl. Microbiol. 1970, 20, 644–645. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.J.; Kamphuis, H.J.; Nout, M.J.; Zwietering, M.H. Microbiota of cocoa powder with particular reference to aerobic thermoresistant spore-formers. Food Microbiol. 2011, 28, 573–582. [Google Scholar] [CrossRef]
- Mossel, D.A.A.; Meursing, E.H.; Slot, H. An investigation on the numbers and types of aerobic spores in cocoa powder and whole milk. Neth. Milk Dairy J. 1974, 28, 149–154. [Google Scholar]
- Pivnick, H. Sugar, cocoa, chocolate, and confectioneries. In Microbial Ecology of Foods 2; Food Commodities, ICMSF, Eds.; Academic Press: New York, NY, USA, 1980; pp. 778–818. [Google Scholar]
- Kinderlerer, J.L. Chrysosporium species, potential spoilage organisms of chocolate. J. Appl. Microbiol. 1997, 83, 771–778. [Google Scholar] [CrossRef]
- Mazigh, D. Microbiology of chocolate. In Industrial Chocolate Manufacture and Use; Beckett, S.T., Ed.; Academic Press: London, UK; Blackie Academic & Professional: New York, NY, USA, 1994; pp. 312–320. [Google Scholar]
- Yan, R.; Pinto, G.; Taylor-Roseman, R.; Cogan, K.; D’Alessandre, A.; Kovac, J. Evaluation of the Thermal Inactivation of a Salmonella Serotype Oranienburg Strain During Cocoa Roasting at Conditions Relevant to the Fine Chocolate Industry. Front. Microb. 2021, 12, 576337. [Google Scholar] [CrossRef] [PubMed]
- Hocking, A.D.; Charley, N.J.; Pitt, J.L. FRR Culture Collection Catalogue; CSIRO Division of Food Science and Technology: North Ryde, NSW, Australia, 1994. [Google Scholar]
- Marvig, C.L.; Kristiansen, R.M.; Madsen, M.G.; Nielsen, D.S. Identification and characterisation of organisms associated with chocolate pralines and sugar syrups used for their production. Int. J. Food Microbiol. 2014, 185, 167–176. [Google Scholar] [CrossRef]
- Mossel, D.A.A.; Sand, F.E.M.J. Occurence and prevention of microbial deterioration of confectionery products. Conserva 1968, 17, 23–32. [Google Scholar] [CrossRef]
- Martorell, P.; Stratford, M.; Steels, H.; Fernandez-Espinar, M.T.; Querol, A. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int. J. Food Microbiol. 2007, 114, 234–242. [Google Scholar] [CrossRef]
- Vermeulen, A.; Marvig, C.L.; Daelman, J.; Xhaferi, R.; Nielsen, D.S.; Devlieghere, F. Strategies to increase the stability of intermediate moisture foods towards Zygosaccharomyces rouxii: The effect of temperature, ethanol, pH and water activity, with and without the influence of organic acids. Food Microbiol. 2014, 45, 119–125. [Google Scholar] [CrossRef]
- Vermeulen, A.; Daelman, J.; Van Steenkiste, J.; Devlieghere, F. Screening of different stress factors and development of growth/no growth models for Zygosaccharomyces rouxii in modified Sabouraud medium, mimicking intermediate moisture foods (IMF). Food Microbiol. 2012, 32, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Iacumin, L.; Cecchini, F.; Manzano, M.; Osualdini, M.; Boscolo, D.; Orlic, S.; Comi, G. Description of the microflora of sourdoughs by culture-dependent and culture-independent methods. Food Microbiol. 2009, 26, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Klijn, N.; Weerkamp, A.H.; deVos, W.M. Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Appl. Environ. Microbiol. 1991, 57, 3390–3393. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Samson, R.A.; Hoekstra, E.S.; Frisvad, J.C.; Filtenborg, O. Introduction to Food and Airborne Fungi, 7th ed.; CSB: Wageningen, The Netherlands, 2004. [Google Scholar]
- Battilani, P.; Formenti, S.; Toscani, T.; Virgili, R. Influence of abiotic parameters on ochratoxin A production by a P. nordicum strain in dry-cured meat model system. Food Contr. 2010, 21, 1379–1744. [Google Scholar] [CrossRef]
- Pereira, A.P.M.; Sant’Ana, A.S. Diversity and fate of spore forming bacteria in cocoa powder, milk powder, starch and sugar during processing: A review. Trends Food Sci. Technol. 2018, 76, 101–118. [Google Scholar] [CrossRef]
- Eijlander, R.T.; van Hekezen, R.; Bienvenue, A.; Girard, V.; Hoornstra, E.; Johnson, N.B.; Meyer, R.; Wagendorp, A.; Walker, D.C.; Wells-Bennik, M.J.H. Spores in dairy—New insights in detection, enumeration and risk assessment. Int. J. Dairy Technol. 2019, 72, 303–315. [Google Scholar] [CrossRef]
- Berendsen, E.M.; Zwietering, M.H.; Kuipers, O.P.; Wells-Bennik, M.H. Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties. Food Microbiol. 2015, 45, 18–25. [Google Scholar] [CrossRef]
- Wells-Bennik, M.H.; Eijlander, R.T.; den Besten, H.H.; Berendsen, E.M.; Warda, A.K.; Krawczyk, A.O.; Nierop Groot, M.N.; Xiao, Y.; Zwietering, M.H.; Kuipers, O.P.; et al. Bacterial spores in food: Survival, emergence, and outgrowth. Annu. Rev. Food Sci. Technol. 2016, 7, 457–482. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, H.M.W.; Wells-Bennik, M.H.J.; Zwietering, M.H. Natural diversity in heat resistance of bacteria and bacterial spores: Impact on food safety and quality. Annu. Rev. Food Sci. Technol. 2018, 9, 383–410. [Google Scholar] [CrossRef]
- Eijlander, R.T.; Breitenwieser, F.; de Groot, R.; Hoornstra, E.; Kamphuis, H.; Kokken, M.; Kuijpers, A.; Giriboni de Mello, I.; van der Rijdt, G.; Vadier, C.; et al. Enumeration and Identification of Bacterial Spores in Cocoa Powders. J. Food Prot. 2020, 83, 1530–1539. [Google Scholar] [CrossRef]
- Pereira, A.P.M.; Stellari, H.A.; Vilela, L.F.; Schwan, F.S.; Sant’Ana, A.S. Dynamics of Geobacillus stearothermophilus and Bacillus cereus spores inoculated in different time intervals during simulated cocoa beans fermentation. LWT—Food Sci. Technol. 2020, 120, 108–113. [Google Scholar] [CrossRef]
- Ouattara, H.G.; Koffi, B.L.; Karou, G.T.; Sangar, A.; Niamke, S.L.; Diopoh, J.K. Implication of Bacillus sp. in the production of pectinolytic enzymes during cocoa fermentation. World J. Microbiol. Biotechnol. 2008, 24, 1753–1760. [Google Scholar] [CrossRef]
- Schwan, R.F.; Pereira, A.P.M.; de Melo, G.V.; Fleet, G.H. Microbial activities during cocoa fermentation. In Cocoa and Coffee Fermentations; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Pereira, A.P.M.; Stelari, H.A.; Carlin, F.; Sant’Ana, A.S. Inactivation kinetics of Bacillus cereus and Geobacillus stearothermophilus spores through roasting of cocoa beans and nibs. Leb. Wissensch. Technol. 2019, 111, 394–400. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Flavor formation and character in cocoa and chocolate: A critical review. Cr. Rev. Food Sci. Nutr. 2008, 48, 840–857. [Google Scholar] [CrossRef]
- Rohan, T.A. The precursors of chocolate aroma: A comparative study of fermented and unfermented beans. J. Sci. Food Agric. 1964, 29, 456–459. [Google Scholar] [CrossRef]
- Chagas Junior, G.C.A.; Ferreira, N.R.; Santos Lopes, A. The microbiota diversity identified during the cocoa fermentation and the benefits of the starter cultures use: An overview. Int. J. Food Sci. Technol. 2021, 56, 544–552. [Google Scholar] [CrossRef]
- Almeida, S.D.F.O.D.; Silva, L.R.C.; Junior, G.C.A.C.; Oliveira, G.; Da Silva, S.H.M.; Vasconcelos, S.; Lopes, A.S. Diversity of yeasts during fermentation of cocoa from two sites in the Brazilian Amazon. Acta Amaz. 2018, 49, 64–70. [Google Scholar] [CrossRef]
- De Vuyst, L.; Weckx, S. The cocoa bean fermentation process: From ecosystem analysis to starter culture development. J. Appl. Microbiol. 2016, 121, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, G.; Young, G.M. Food evolution: The impact of society and science on the fermentation of cocoa beans. Compr. Rev. Food Sci. Food Saf. 2017, 16, 431–455. [Google Scholar] [CrossRef] [PubMed]
- Bastos, V.S.; Santos, M.F.S.; Gomes, L.P.; Leite, A.M.O.; Flosi Paschoalin, V.M.; Del Aguila, E.M. Analysis of the cocobiota and metabolites of Moniliophthora perniciosa-resistant Theobroma cacao beans during spontaneous fermentation in southern Brazil. J. Sci. Food Agric. 2018, 98, 4963–4970. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Hernandez, C.; Mota-Gutierrez, J.; Ferrocino, I. The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. Int. J. Food Microbiol. 2019, 301, 41–50. [Google Scholar] [CrossRef]
- Batista, N.N.; Ramos, C.L.; Ribeiro, D.D.; Pinheiro, A.C.M.; Schwan, R.F. Dynamic behavior of Saccharomyces cerevisiae, Pichia kluyveri and Hanseniaspora uvarum during spontaneous and inoculated cocoa fermentations and their effect on sensory characteristics of chocolate. LWT—Food Sci. Technol. 2015, 63, 221–227. [Google Scholar] [CrossRef]
- Camu, N.; De Winter, T.; Addo, S.K.; Takrama, J.S.; Bernaert, H.; De Vuyst, L. Fermentation of cocoa beans: Influence of microbial activities and polyphenol concentrations on the flavour of chocolate. J. Sci. Food Agric. 2008, 88, 2288–2297. [Google Scholar] [CrossRef]
- Soumahoro, S.; Ouattara, H.G.; Droux, M.; Nasser, W.; Niamke, S.L.; Reverchon, S. Acetic acid bacteria (AAB) involved in cocoa fermentation from Ivory Coast: Species diversity and performance in acetic acid production. J. Food Sci. Technol. 2020, 57, 1904–1916. [Google Scholar] [CrossRef]
- Nazaruddin, R.; Seng, L.K.; Hassan, O.; Said, M. Effect of pulp preconditioning on the content of polyphenols in cocoa beans (Theobroma cacao) during fermentation. Ind. Crops Prod. 2006, 24, 87–94. [Google Scholar] [CrossRef]
- Leite, P.B.; Maciel, L.F.; Opretzka, L.C.F.; Soares, S.E.; Bispo, E.S. Phenolic compounds, methylxanthines and antioxidant activity in cocoa mass and chocolates produced from “witch broom disease” resistant and non resistant cocoa cultivars. Cienc. Agrotecnologia 2013, 37, 244–250. [Google Scholar] [CrossRef]
- Copetti, M.V.; Iamanaka, B.T.; Frisvad, J.C.; Pereira, J.L.; Taniwaki, M.H. Mycobiota of cocoa: From farm to chocolate. Food Microbiol. 2011, 28, 1499–1504. [Google Scholar] [CrossRef] [Green Version]
- ICMSF (International Commission on Microbiological Specifications for Foods). Microorganisms in Foods 4: Application of the Hazard Analysis Critical Control Point (HACCP) System to Ensure Microbiological Safety and Quality; Blackwell Scientific Publications: Oxford, UK, 2000. [Google Scholar]
- Kongor, J.E.; Hinneh, M.; Van de Walle, D.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—A review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- Pia, A.K.; Pereira, A.P.; Costa, R.A.; Alvarenga, V.O.; Freire, L.; Carlin, F.; Sant’Ana, A.S. The fate of Bacillus cereus and Geobacillus stearothermophilus during alkalization of cocoa as affected by alkali concentration and use of pre-roasted nibs. Food Microbiol. 2019, 82, 99–106. [Google Scholar] [CrossRef]
- ICMSF (International Commission on Microbiological Specifications for Foods). Microorganisms in Foods 8: Use of Data for Assessing Process Control and Product Acceptance; Springer: New York, NY, USA, 2011. [Google Scholar]
- Agell, O.; Rodrìguez, M.C.; Rodrìguez, J.J. La Seguridad Alimentaria del Chocolate. 2013. Available online: http://ebookbrowse.com/19-la-seguridadalimentaria-del-chocolate-pdf-d256889457 (accessed on 16 March 2022).
- Dijk, R.; van den Berg, D.; Beumer, R.; de Boer, E.; Dijkstra, A.; Kalkman, P.; Stegeman, H.; Uyttendaele, M.; Veenendaal, H. Microbiologie van Voedingsmiddelen-Methoden, Principes en Criteria; Noordervlietmedia B.V.: Houten, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Werber, D.; Dreesman, J.; Feil, F.; Van Treeck, U.; Fell, G.; Ethelberg, S.; Hauri, A.M.; Roggentin, P.; Prager, R.; Fisher, I.S.T.; et al. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infect. Dis. 2005, 5, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Tamminga, S.K.; Beumer, R.R.; Kampelmacher, E.H.; van Leusden, F.M. Survival of Salmonella Eastbourne and Salmonella Typhimurium in chocolate. J. Hyg. 1976, 76, 41–47. [Google Scholar] [CrossRef]
- Podolak, R.; Enache, H.; Stone, W.; Black, D.G.; Elliot, P. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low e moisture foods. J. Food Prot. 2010, 73, 1919–1936. [Google Scholar] [CrossRef]
- Hockin, J.C.; D’Aoust, J.Y.; Bowering, D.; Jessop, J.H.; Khanna, B.; Lior, H.; Milling, M.E. An international outbreak of Salmonella nima from imported chocolate. J. Food Prot. 1989, 52, 51–54. [Google Scholar] [CrossRef]
- Barrera, M.C.; Blanco, M.J.; Agut, M. Analisis microbiologico de tabletas de chocolate y cacao em polvo. Alimentaria 2001, 38, 71–74. [Google Scholar]
- Nascimiento, M.S.; Reolon, E.M.; Santos, A.R.B.; Moreira, V.E.; Silva, N. Enterobacteriaceae contamination in chocolate processing. Food Contr. 2015, 47, 291–297. [Google Scholar] [CrossRef]
- CDR-HPA; Health Protection Agency e UK. National increase in human Salmonella Montevideo infections in England and Wales: March to June 2006. Eurosurveillance 2006, 16, 1–2. [Google Scholar] [CrossRef]
- Cordier, J.L. Production of powdered infant formula and microbiological control measures. In Enterobacter Sakazakii; Faber, J.M., Forsythe, S., Eds.; ASM Press: Washington, DC, USA, 2008; pp. 145–185. [Google Scholar] [CrossRef]
- Alshammari, J.; Xu, J.; Tang, J.; Sabiani, S.; Zhu, M.J. Thermal resistance of Salmonella in low-moisture high-sugar products. Food Contr. 2020, 114, 107255. [Google Scholar] [CrossRef]
- Yuqiao, J.; Pickens, S.R.; Burbick, S.J.; Grasso-Kelley, E.M.; Keller, S.E.; Anderson, N.M. Thermal Inactivation of Salmonella Agona in Low–Water Activity Foods: Predictive Models for the Combined Effect of Temperature, Water Activity, and Food Component. J. Food Prot. 2018, 81, 1411–1417. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Sanchez-Hervas, M.; Gil, J.V.; Bisbal, F.; Ramon, D.; Martinez-Culebras, P.V. Mycobiota and mycotoxin producing fungi from cocoa beans. Int. J. Food Microbiol. 2008, 125, 336–340. [Google Scholar] [CrossRef]
- ICMSF (International Commission on Microbiological Specifications for Foods). Cocoa, chocolate, and confectionery. In Microorganisms in Foods 6: Microbial Ecology of Food Commodities; Blackie Academic and Professional: London, UK, 2005; pp. 467–479. [Google Scholar]
- De Daza, M.S.T.; Aguilar, C.E.; Roa, V.; Rangel, D.H.R. Combined stress effects on growth of Zygosaccharomyces rouxii from an intermediate moisture papaya product. J. Food Sci. 1995, 60, 356–359. [Google Scholar] [CrossRef]
- Fleet, G. Spoilage yeasts. Crit. Rev. Biotechnol. 1992, 12, 1–441. [Google Scholar] [CrossRef]
- ADM Cocoa International. Cocoa and Chocolate Manual. Switzerland. 2009. Available online: www.adm.com (accessed on 16 March 2022).
Microorganisms | Accession Number | Brand | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | % | ||
Bacillus subtilis | NR_112116.2 | 66 | 66 | 53 | 70 | 47 | 60.4 |
Bacillus licheniformis | MK515041.1 | 18 | 34 | 32 | 30 | 33 | 29.4 |
Bacillus flexus * | MT255044.1 | 16 | 12 | 20 | 9.6 | ||
Jeotgalibacillus marinus | MK439548.1 | 3 | 0.6 |
Microorganisms | Accession Number | Brand | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | % | ||
Penicillium brevicompactum | MH876753.1 | 6 | 5.0 | ||||
Penicillium lanosocoeruleum | MH873469.1 | 15 | 10 | 9 | 17 | 13 | 53.3 |
Penicillium chrysogenum | MH877425.1 | 3 | 3 | 5.0 | |||
Cladosporium cladosporioides | JF499855.1 | 9 | 11 | 15 | 7 | 2 | 36.7 |
Chocolate Bars | Aw | Time to Detect the Hyphas/Spores (Days) | |
---|---|---|---|
Air Packaging | Vacuum Packaging | ||
Extra bitter | 0.510 ± 0.006 | No growth | No growth |
0.602 ± 0.003 | No growth | No growth | |
0.712 ± 0.005 | No growth | No growth | |
0.835 ± 0.002 | 92 ± 3 a/90 ± 5 a | No growth | |
Extra Fine Milk | 0.530 ± 0.002 | No growth | No growth |
0.628 ± 0.005 | No growth | No growth | |
0.732 ± 0.003 | No growth | No growth | |
0.840 ± 0.002 | 85 ± 3 a/83 ± 1 a | No growth | |
Milk filled Cream | 0.550 ± 0.002 | No growth | No growth |
0.655 ± 0.003 | No growth | No growth | |
0.748 ± 0.002 | No growth | No growth | |
0.862 ± 0.004 | 52 ± 7 a/50 ± 5 a | No growth |
ERH % | NaCl % | Time to Detect the Hyphas/Spores (Days) | ||
---|---|---|---|---|
Extra Bitter | Extra Fine Milk | Milk Filled Cream | ||
75 | 35.70 | No growth | No growth | No growth |
81 | 22.50 | No growth | No growth | No growth |
86 | 18.18 | No growth | No growth | No growth |
90 | 14.18 | 74 ± 2 a/72 ± 3 a | 65 ± 3 a/63 ± 2 a | 62 ± 1 a/61± 2 a |
94 | 9.38 | 65 ± 3 a/60 ± 5 a | 55 ± 3 a/53 ± 5 a | 53 ± 3 a/52± 6 a |
99 | 1.74 | 30 ± 4 a/28 ± 4 a | 28/± 4 a/26 ± 5 a | 28/± 4 a/26± 3 a |
Brand | Cocoa Powder | Chocolate | ||
---|---|---|---|---|
pH | Aw | pH | Aw | |
1 | 6.9 ± 0.2 a | 0.406 ± 0.003 a | 6.8 ± 0.3 a | 0.527 ± 0.005 a |
2 | 5.7 ± 0.1 b | 0.389 ± 0.005 b | 5.6 ± 0.2 b | 0.512 ± 0.010 b |
3 | 6.3 ± 0.5 ab | 0.409 ± 0.004 a | 6.1 ± 0.2 c | 0.530 ± 0.006 a |
4 | 7.1 ± 0.2 a | 0.390 ± 0.003 b | 7.0 ± 0.1 a | 0.520 ± 0.001 c |
5 | 5.3 ± 0.1 d | 0.412 ± 0.007 c | 5.5 ± 0.2 b | 0.522 ± 0.003 c |
Temperature | 30 °C | 55 °C | 30 °C | 55 °C | 25 °C |
---|---|---|---|---|---|
Brand | CBT | CBT | CBT Spores | CBT Spores | Fungi |
1 | 1.1 ± 0.4 aw | 1.0 ± 0.1 aw | 1.3 ± 0.3 aw | 1.1 ± 0.2 aw | <1 ax |
2 | 1.4 ± 0.1 aw | 1.2 ± 0.2 aw | 1.5 ± 0.3 aw | 1.5 ± 0.1 bw | <1 ay |
3 | 1.2 ± 0.4 aw | 1.2 ± 0.3 aw | 1.3 ± 0.2 aw | 1.2 ± 0.2 abw | <1 ax |
4 | 1.2 ± 0.3 aw | <1 bx | 1.1 ± 0.1 aw | <1 bx | <1 ax |
5 | 1.3 ± 0.1 aw | <1 bx | 1.2 ± 0.3 aw | <1 bx | <1 ax |
Temperature | 30 °C | 55 °C | 30 °C | 55 °C | 25 °C |
---|---|---|---|---|---|
Brand | CBT | CBT | CBT Spores | CBT Spores | Molds |
1 | 1.1 ± 0.1 aw | <1 ax | 1.2 ± 0.1 aw | <1 ax | 1.3 ± 0.2 aw |
2 | 1.3 ± 0.1 aw | <1 ax | 1.1 ± 0.3 aw | <1 ax | 1.2 ± 0.2 aw |
3 | 1.1 ± 0.2 aw | <1 ax | 1.2 ± 0.2 aw | <1 ax | 1.3 ± 0.1 aw |
4 | 1.3 ± 0.1 aw | <1 ax | 1.1 ± 0.3 aw | <1 ax | 1.5 ± 0.2 bw |
5 | 1.3 ± 0.1 aw | <1 ax | 1.3 ± 0.2 aw | <1 ax | 1.5 ± 0.1 bw |
Microorganisms | Accession Number | Brand | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | % | ||
Bacillus subtilis | NR_112116.2 | 55 | 63 | 58 | 65 | 50 | 58.2 |
Bacillus licheniformis | MK 515041.1 | 8 | 3 | 15 | 5.2 | ||
Bacillus amyloliquefaciens | NR_041455.1 | 26 | 15 | 28 | 8 | 10 | 17.4 |
Geobacillus stearothermophilus | NR_115284.2 | 19 | 14 | 14 | 24 | 25 | 19.2 |
Species | Aw | |||
---|---|---|---|---|
0.90 | 0.85 | 0.80 | 0.75–0.50 | |
Penicillium brevicompactum | 2.8 ± 0.5 | n.g. | n.g. | n.g. |
Penicillium lanosocoeruleum | 5.5 ± 1.0 | 2.5 ± 0.4 | 1.1 ± 0.5 | n.g. |
Penicillium chrysogenum | 2.7 ± 0.5 | n.g. | n.g. | n.g. |
Cladosporium cladosporioides | 2.4 ± 0.5 | n.g. | n.g. | n.g. |
Bacillus spp. * | n.g. | n.g. | n.g. | n.g. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacumin, L.; Pellegrini, M.; Colautti, A.; Orecchia, E.; Comi, G. Microbial Characterization of Retail Cocoa Powders and Chocolate Bars of Five Brands Sold in Italian Supermarkets. Foods 2022, 11, 2753. https://doi.org/10.3390/foods11182753
Iacumin L, Pellegrini M, Colautti A, Orecchia E, Comi G. Microbial Characterization of Retail Cocoa Powders and Chocolate Bars of Five Brands Sold in Italian Supermarkets. Foods. 2022; 11(18):2753. https://doi.org/10.3390/foods11182753
Chicago/Turabian StyleIacumin, Lucilla, Michela Pellegrini, Andrea Colautti, Elisabetta Orecchia, and Giuseppe Comi. 2022. "Microbial Characterization of Retail Cocoa Powders and Chocolate Bars of Five Brands Sold in Italian Supermarkets" Foods 11, no. 18: 2753. https://doi.org/10.3390/foods11182753
APA StyleIacumin, L., Pellegrini, M., Colautti, A., Orecchia, E., & Comi, G. (2022). Microbial Characterization of Retail Cocoa Powders and Chocolate Bars of Five Brands Sold in Italian Supermarkets. Foods, 11(18), 2753. https://doi.org/10.3390/foods11182753