Use of Grape By-Products to Enhance Meat Quality and Nutritional Value in Monogastrics
Abstract
:1. Introduction
2. Nutritional Composition of Grape By-Products
3. Effects of Dietary Grape By-Products on Pork Quality and Nutritional Value
4. Effects of Dietary Grape By-Products on Poultry Meat Quality and Nutritional Value
5. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Godfray, H.C.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA): Rome, Italy, 2012. [Google Scholar]
- Pogorzelska-Nowicka, E.; Atanasov, G.A.; Horbańczuk, J.; Wierzbicka, A. Bioactive compounds in functional meat products. Molecules 2018, 23, 307. [Google Scholar] [CrossRef]
- OECD; FAO. Agricultural Outlook 2020–2029; OECD: Paris, France, 2020. [Google Scholar] [CrossRef]
- Kumar, D.; Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- FAO-OIV. Focus on Table and Dried Grapes. 2016. Available online: http://www.fao.org/3/a-i7042e.pdf (accessed on 10 July 2022).
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.E.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed]
- Skuras, D.; Psaltopoulos, D. A broad overview of the main problems derived from climate change that will affect agricultural production in the Mediterranean area. In Building Resilience for Adaptation to Climate Change in the Agriculture Sector; FAO: Rome, Italy, 2012; pp. 217–260. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Food and Agriculture Data. 2020. Available online: https://www.fao.org/faostat/en/#data/QI (accessed on 23 June 2022).
- International Organization of Vine and Wine (OIV). OIV Statistical Report on World Vitiviniculture. In 2017 World Vitiviniculture Situation; OIV: Paris, France, 2017. [Google Scholar]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Romero, C.; Nardoia, M.; Brenes, A.; Arija, I.; Viveros, A.; Chamorro, S. Combining grape byproducts to maximise biological activity of polyphenols in chickens. Animals 2021, 11, 3111. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, M.J.; Raposo, R.; Cayuela, J.M.; Zafrilla, P.; Piñero, Z.; Moreno-Rojas, J.M.; Mulero, J.; Puertas, B.; Giron, F.; Guerrero, R.F.; et al. Valorization of grapes stems. Ind. Crops Prod. 2015, 63, 152–157. [Google Scholar] [CrossRef]
- Ruggieri, L.; Cadena, E.; Martínez-Blanco, J.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X.; Gea, T.; Sort, X.; Sanchez, A. Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J. Clean. Prod. 2009, 17, 830–838. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Gonzaléz-Centeno, M.R.; Jourdes, M.; Femenia, A.; Simal, S.; Rosselló, C.; Teissedre, P.-L. Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.). J. Agric. Food Chem. 2013, 61, 11579–11587. [Google Scholar] [CrossRef] [PubMed]
- Averilla, J.N.; Oh, J.; Kim, H.J.; Kim, J.S.; Kim, J.-S. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci. Biotechnol. 2019, 28, 1607–1615. [Google Scholar] [CrossRef]
- Khalaf, R.A.; Alhusban, A.A.; Al-Shalabi, E.; Al-Sheikh, I.; Sabbah, D.A. Chapter 10—Isolation and structure elucidation of bioactive polyphenols. Stud. Nat. Prod. Chem. 2019, 63, 267–337. [Google Scholar]
- Iuga, M.; Mironeasa, S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2473–2505. [Google Scholar] [CrossRef] [PubMed]
- Alm El-Dein, A.K.; Rashed, O.S.; Ouda, M.M.M.; Awaden, N.B.; Ismail, I.I.; Mady, M.S. Comparative study between dietary supplementation of grape pomace and vitamin E as antioxidant on some productive, reproductive and physiological performance of male and female aged Inshas strain chickens. Egypt. Poult. Sci. 2017, 37, 855–872. [Google Scholar]
- Beres, C.; Freitas, S.P.; Godoy, R.L.O.; Oliveira, D.C.R.; Deliza, R.; Iacomini, M.; Mellinger-Silva, C.; Cabral, L.M.C. Antioxidant dietary fibre from grape pomace flour or extract: Does it make any difference on the nutritional and functional value? J. Funct. Foods 2019, 56, 276–285. [Google Scholar] [CrossRef]
- Ebrahimzadeh, S.K.; Navidshad, B.; Farhoomand, P.; Aghjehgheshlagh, F.M. Effects of grape pomace and vitamin E on performance, antioxidant status, immune response, gut morphology and histopathological responses in broiler chickens. S. Afr. J. Anim. Sci. 2018, 48, 324–336. [Google Scholar] [CrossRef]
- Erinle, T.J.; Adewole, D.I. Fruit pomaces-their nutrient and bioactive components, effects on growth and health of poultry species, and possible optimization techniques. Anim. Nutr. 2022, 9, 357–377. [Google Scholar] [CrossRef]
- Goñi, I.; Martín, N.; Saura-Calixto, F. In vitro digestibility and intestinal fermentation of grape seed and peel. Food Chem. 2005, 90, 281–286. [Google Scholar] [CrossRef]
- Gulcu, M.; Uslu, N.; Ozcan, M.M.; Gokmen, F.; Ozcan, M.M.; Banjnin, T.; Gezgin, S.; Dursun, N.; Geçgel, U.; Ceylan, D.A.; et al. The investigation of bioactive compounds of wine, grape juice and boiled grape juice wastes. J. Food Proc. Pres. 2019, 43, 13850. [Google Scholar] [CrossRef]
- Gungor, E.; Altop, A. Effect of raw and fermented grape pomace on the growth performance, antioxidant status, intestinal morphology, and selected bacterial species in broiler chicks. Animals 2021, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Vashan, S.J.; Safdari-Rostamabad, M.; Piray, A.H. The growth performance, plasma biochemistry índices, imune system, antioxidant status, and intestinal morphology of heat-stressed broiler chickens fed grape (Vitis vinifera) pomace. Anim. Feed Sci. Technol. 2020, 259, 114342. [Google Scholar] [CrossRef]
- Jonathan, O.; Mnisi, C.M. Effect of dietary red grape pomace on growth performance, hematology, serum biochemistry, and meat quality parameters in Hy-line Silver Brown cockerels. PLoS ONE 2021, 16, e0259630. [Google Scholar] [CrossRef]
- Kasapidou, E.; Sossidou, E.N.; Zdragas, A.; Papadaki, C.; Vafeas, G.; Mitlianga, P. Effect of grape pomace supplementation on broiler meat quality characteristics. Eur. Poult. Sci. 2016, 80, 1–12. [Google Scholar]
- Llobera, A.; Cañellas, J. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera), pomace and stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Panaite, T.D.; Cornescu, M.G.; Ropota, M.; Olteanu, M.; Drăgotoiu, D. The influence of by-products on the production parameters and nutrient digestibility in fattening pigs diet (60–100 kg). AgroLife Sci. J. 2019, 8, 261–269. [Google Scholar]
- Yi, C.; Shi, J.; Kramer, J.; Xue, S.; Jiang, Y.; Zhang, M.; Ma, Y.; Pohorly, J. Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chem. 2009, 114, 570–576. [Google Scholar] [CrossRef]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Gungor, E.; Altop, A.; Erener, G. Effect of raw and fermented grape seed on growth performance, antioxidant capacity, and cecal microflora in broiler chickens. Animal 2021, 15, 100194. [Google Scholar] [CrossRef]
- Karaman, S.; Karasu, S.; Tornuk, F.; Toker, O.S.; Geçgel, U.; Sagdic, O.; Ozcan, N.; Gul, O. Recovery potential of cold press byproducts obtained from the edible oil industry: Physicochemical, bioactive, and antimicrobial properties. J. Agric. Food Chem. 2015, 63, 2305–2313. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveiras, A.M.P.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Baydar, N.G.; Akkurt, M. Oil content and oil quality properties of some grape seeds. Turk. J. Agric. For. 2001, 25, 163–168. [Google Scholar]
- Bravi, M.; Spinoglio, F.; Verdone, N.; Adami, M.; Aliboni, A.; D’Andrea, A.; De Santis, A.; Ferri, D. Improving the extraction of α-tocopherol-enriched oil from grape seeds by supercritical CO2. Optimisation of the extraction conditions. J. Food Eng. 2007, 78, 488–493. [Google Scholar] [CrossRef]
- Duba, K.S.; Fiori, L. Supercritical CO2 extraction of grape seed oil: Effect of process parameters on the extraction kinetics. J. Supercrit. Fluids 2015, 98, 33–43. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Cruz, R.; Pereira, J.A.; Ramalhosa, E. Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res. Int. 2013, 50, 161–166. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [PubMed]
- Tangolar, S.G.; Ozogul, Y.; Tangolar, S.; Torun, A. Evaluation of fatty acid profiles and mineral content of grape seed oil of some grape genotypes. Int. J. Food Sci. Nutr. 2009, 60, 32–39. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Sousa, E.C.; Uchôa-Thomaz, A.M.A.; Carioca, J.O.B.; Morais, S.M.D.; Lima, A.D.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Hornedo-Ortega, R.; González-Centeno, M.R.; Chira, K.; Jourdes, M.; Teissedre, P.-L. Phenolic compounds of grapes and wines: Key compounds and implications in sensory perception. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; Cosme, F., Nunes., F.M., Filipe-Ribeiro, L., Eds.; IntechOpen: London, UK, 2021; ISBN 978-1-83962-576-3. [Google Scholar]
- Felhi, S.; Baccouch, N.; Ben Salah, H.; Smaoui, S.; Allouche, N.; Gharsallah, N.; Kadri, A. Nutritional constituents, phytochemical profiles, in vitro antioxidant and antimicrobial properties, and gas chromatography-mass spectrometry analysis of various solvent extracts from grape seeds (Vitis vinifera L.). Food Sci. Biotechnol. 2016, 25, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004, 52, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, J.S.; Ladas, D.; Mavromatis, A. Potential uses and applications of treated wine waste: A review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- Ruberto, G.; Renda, A.; Daquino, C.; Amico, V.; Spatafora, C.; Tringali, C.; Tommasi, N.D. Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chem. 2007, 100, 203–210. [Google Scholar] [CrossRef]
- Chedea, V.S.; Palade, L.M.; Pelmus, R.S.; Dragomir, C.; Taranu, I. Red grape pomace rich in polyphenols diet increases the antioxidant status in key organs—Kidneys, liver, and spleen of piglets. Animals 2019, 9, 149. [Google Scholar] [CrossRef]
- Obreque-Slier, E.; Peňa-Neira, A.; López-Solis, R.; Zamora-Marín, F.; Ricardo-da Silva, J.M.; Laureano, O. Comparative study of the phenolic composition of seeds and skins from Carménère and Cabernet Sauvignon grape varieties (Vitis vinifera L.) during ripening. J. Agric. Food Chem. 2010, 58, 3591–3599. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, J. Antioxidant and antiproliferative properties of a tocotrienol-rich fraction from grape seeds. Food Chem. 2009, 114, 1386–1390. [Google Scholar] [CrossRef]
- Lau, D.W.; King, A.J. Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. J. Agric. Food Chem. 2003, 51, 1602–1607. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, T.H.J.; Girard, B.; Kopp, T.; Drover, J.C.G. Yield and composition of grape seed oils extracted by supercritical carbon dioxide and petroleum ether: Varietal effects. J. Agric. Food Chem. 2005, 53, 1799–1804. [Google Scholar] [CrossRef]
- Rubio, M.; Alvarez-Ortí, M.; Fernández, E.; Pardo, J.E. Characterization of oil obtained from grape seeds collected during berry development. J. Agric Food Chem. 2009, 57, 2812–2815. [Google Scholar] [CrossRef]
- Pérez, C.; Ruiz del Castillo, M.L.; Gil, C.; Blanch, G.P.; Flores, G. Supercritical fluid extraction of grape seeds: Extract chemical composition, antioxidant activity and inhibition of nitrite production in LPS-stimulated Raw 264.7 cells. Food Funct. 2015, 6, 2607–2613. [Google Scholar] [CrossRef] [PubMed]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef]
- Igartuburu, J.M.; Pando, E.; Rodríguez-Luis, F.; Gil-Serrano, A. Structure of a hemicellulose B fraction in dietary fiber from the seed of grape variety Palomino (Vitis vinifera cv. palomino). J. Nat. Prod. 1998, 61, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Nardoia, M.; Romero, C.; Brenes, A.; Arija, I.; Viveros, A.; Ruiz-Capillas, C.; Chamorro, S. Addition of fermented and unfermented grape skin in broilers’ diets: Effect on digestion, growth performance, intestinal microbiota and oxidative stability of meat. Animal 2020, 14, 1371–1381. [Google Scholar] [CrossRef]
- Prozil, S.O.; Costa, E.V.; Evtuguin, D.V.; Cruz Lopes, L.P.; Domingues, M.R.M. Structural characterization of polysaccharides isolated from grape stalks of Vitis vinifera L. Carbohydr. Res. 2012, 356, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Kumanda, C.; Mlambo, V. Valorization of red grape pomace waste using polyethylene glycol and fibrolytic enzymes: Physiological and meat quality responses in broilers. Animals 2019, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- Van Niekerk, R.F.; Mnisi, C.M.; Mlambo, V. Polyethylene glycol inactivates red grape pomace condensed tannins for broiler chickens. Br. Poult. Sci. 2020, 61, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Alonso, I.; Jiménez-Escrig, A.; Saura-Calixto, F.; Borderías, A.J. Antioxidant protection of white grape pomace on restructured fish products during frozen storage. LWT 2008, 41, 42–50. [Google Scholar] [CrossRef]
- Alarcón, M.; Pérez-Coelho, M.S.; Díaz-Maroto, M.C.; Alaňón, M.E.; Soriano, A. Effect of winery by-product extracts on oxidative stability, volatile organic compounds and aroma profile of cooked pork model systems during chilled storage. LWT-Food Sci. Technol. 2021, 152, 112260. [Google Scholar] [CrossRef]
- Nollet, L.M.; Toldra, F. Handbook of Muscle Foods Analysis; CRC Press: Boca Raton, FL, USA, 2008; ISBN 9780429148255. [Google Scholar]
- Torres, J.L.; Varela, B.; García, M.T.; Carilla, J.; Matito, C.; Centelles, J.J.; Cascante, M.; Sort, X.; Bobet, R. Valorization of grape (Vitis vinifera) byproducts. Antioxidant and biological properties of polyphenolic fractions differing in procyanidin composition and flavonol content. J. Agric. Food Chem. 2002, 50, 7548–7555. [Google Scholar] [CrossRef] [PubMed]
- Viveros, A.; Chamorro, S.; Pizarro, M.; Arija, I.; Centeno, C.; Brenes, A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 2011, 90, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Kim, I.H. Effect of dietary grape pomace fermented by Saccharomyces boulardii on the growth performance, nutrient digestibility and meat quality in finishing pigs. Asian-Austral. J. Anim. Sci. 2011, 24, 1763–1770. [Google Scholar] [CrossRef]
- Habeanu, M.; Lefter, N.A.; Ropota, M.; Chedea, V.S.; Gheorghe, A.; Toma, S.M.; Ciurescu, G.; Dragomir, C. Dried grape pomace influenced fatty acids composition of Longissimus dorsi muscle and plasma polyphenols spectrum in finishing pigs. Indian J. Anim. Sci. 2015, 85, 786–789. [Google Scholar]
- Bertol, T.M.; Ludke, J.V.; Campos, R.M.L.; Kawski, V.L.; Junior, A.C.; Figueiredo, E.A.P. Inclusion of grape pomace in the diet of pigs on pork quality and oxidative stability of omega-3 enriched fat. Ciência Rural 2017, 47, e20150358. [Google Scholar] [CrossRef]
- Kafantaris, I.; Stagos, D.; Kotsampasi, B.; Hatzis, A.; Kypriotakis, A.; Gerasopoulos, K.; Makri, S.; Goutzourelas, N.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves performance, antioxidant status, fecal microbiota and meat quality of piglets. Animal 2017, 12, 246–255. [Google Scholar] [CrossRef]
- Trombetta, F.; Fruet, A.P.B.; Stefanello, F.S.; Fonseca, P.A.F.; De Souza, A.N.M.; Tonetto, C.J.; Rosado, A.G.J.; Nörnberg, J.L. Effects of the dietary inclusion of linseed oil and grape pomace on weight gain, carcass characteristics, and meat quality of swine. Int. Food Res. J. 2019, 26, 1741–1749. [Google Scholar]
- O’Grady, M.N.; Carpenter, R.; Lynch, P.B.; O’Brien, N.M.; Kerry, J.P. Addition of grape seed extract and bearberry to porcine diets: Influence on quality attributes of raw and cooked pork. Meat Sci. 2008, 78, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Chen, X.; Huang, Z.; Chen, D.; Li, M.; He, J.; Chen, H.; Zheng, P.; Yu, J.; Luo, Y.; et al. Effects of dietary grape seed proanthocyanidin extract supplementation on meat quality, muscle fiber characteristics and antioxidant capacity of finishing pigs. Food Chem. 2022, 367, 130781. [Google Scholar] [CrossRef] [PubMed]
- Peiretti, P.G.; Gai, F.; Brugiapaglia, A.; Mussa, P.P.; Meineri, G. Fresh meat quality of pigs fed diets with different fatty acid profiles and supplemented with red wine solids. Food Sci. Technol. 2015, 35, 633–642. [Google Scholar] [CrossRef]
- Frank, J. Beyond vitamin E supplementation: An alternative strategy to improve vitamin status. J. Plant Physiol. 2005, 162, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Agte, V.; Khetmalis, N.; Nilegaonkar, S.; Karkamkar, S.; Yadav, S. Prebiotic potential of ‘juice grape’ varieties and some hybrids. J. Sci. Ind. Res. 2010, 69, 850–854. [Google Scholar]
- Aditya, S.; Ohh, S.J.; Ahammed, M.; Lohakare, J. Supplementation of grape pomace (Vitis vinifera) in broiler diets and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. Anim. Nutr. 2018, 4, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Bennato, F.; Di Luca, A.; Martino, C.; Ianni, A.; Marone, E.; Grotta, L.; Ramazzotti, S.; Cichelli, A.; Martino, G. Influence of grape pomace intake on nutritional value, lipid oxidation and volatile profile of poultry meat. Foods 2020, 9, 508. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, S.; Viveros, A.; Rebolé, A.; Rica, B.D.; Arija, I.; Brenes, A. Influence of dietary enzyme addition on polyphenol utilization and meat lipid oxidation of chicks fed grape pomace. Int. Food Res. J. 2015, 73, 197–203. [Google Scholar] [CrossRef]
- Goñi, I.; Brenes, A.; Centeno, C.; Viveros, A.; Saura-Calixto, F.; Rebolé, A.; Arija, I.; Estevez, R. Effect of dietary grape pomace and vitamin E on growth performance, nutrient digestibility, and susceptibility to meat lipid oxidation in chickens. Poult. Sci. 2007, 86, 508–516. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Sáyago-Ayerdy, S.G.; Arija, I.; Saura-Calixto, F. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult. Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Jurčaga, L.; Bobko, M.; Haščík, P.; Bobková, A.; Demianová, A.; Belej, L.; Kročko, M. Effect of dietary red grape pomace on lipid oxidation in meat of broiler chickens. J. Microbiol. Biotech. Food Sci. 2021, 10, e3769. [Google Scholar] [CrossRef]
- Turcu, R.P.; Panaite, T.D.; Untea, A.E.; Soica, C.; Iuga, M.; Mironeasa, S. Effects of supplementing grape pomace to broilers fed polyunsaturated fatty acids enriched diets on meat quality. Animals 2020, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Turcu, R.; Margareta, O.; Criste, R.D.; Mariana, R.; Tatiana, P.; Șoica, C.; Drăgotoiu, D. The effect of using grape seeds meal as natural antioxidant in broiler diets enriched in fatty acids, on meat quality. J. Hyg. Eng. Des. 2018, 25, 14–20. [Google Scholar]
- Ao, X.; Kim, I.H. Effects of grape seed extract on performance, immunity, antioxidant capacity, and meat quality in Pekin ducks. Poult. Sci. 2020, 99, 2078–2086. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Effect of different drying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot). J. Food Sci. 2012, 77, 192–201. [Google Scholar] [CrossRef] [PubMed]
Item | Grape Pomace 1 | Grape Skin 2 | Grape Seed 3 | Grape Seed Oil 4 |
---|---|---|---|---|
Crude protein (%) | 8.90–13.9 (12.3) † | 6.54–13.8 (10.2) | 6.00–12.7 (9.55) | – |
Fiber | ||||
Crude fiber (%) | 14.3–74.5 (38.9) | 45.8–47.4 (46.6) | – | |
ADF (%) | 32.3–48.4 (40.4) | 19.3–49.0 (34.2) | – | – |
TDF/NDF (%) | 40.9–59.1 (48.8) | 17.3–56.3 (36.8) | 45.2 | – |
SDF (%) | 2.35 | 0.72–1.72 (1.22) | 79.9 | – |
ADL/Lignin (%) | 18.2–42.5 (29.8) | 28.3–43.7 (36) | ND | – |
Crude fat (%) | 2.12–13.5 (7.9) | 1.14–6.33 (3.74) | 4.82–20.7 (12.7) | – |
Sugar (%) | 2.10–14.2 (6.4) | 4.90–14.6 (9.75) | ND | – |
Ash (%) | 2.40–23.7 (13.1) | 2.53–7.59 (5.06) | 2.60–3.88 (3.18) | – |
Moisture (%) | 3.39–10.2 (7.2) | 7.00–19.9 (13.5) | 6.53–7.60 (7.07) | – |
Fatty acid profile (% total fatty acids) | ||||
16:0 | 12.0–13.4 (12.7) | – | 8.52 | 6.5–9.7 (8.1) |
18:0 | 4.31–5.07 (4.69) | – | 3.95 | 2.84–7.30 (4.49) |
20:0 | 0.57–0.84 (0.71) | – | 0.10 | 0.14–0.16 (0.15) |
16:1n-7 | 0.05–0.10 (0.08) | – | 0.32 | 0.08 |
18:1n-9 | 12.2–14.0 (13.1) | – | 22.9 | 13.7–26.5 (20.1) |
20:1n-9 | 0.03–0.04 (0.04) | – | 0.09 | 0.00–0.97 (0.39) |
18:2n-6 | 58.0–62.7 (60.4) | – | 62.5 | 60.1–74.7 (66.0) |
18:3n-3 | 1.7–2.8 (2.25) | – | 0.35 | 0.00–0.87 (0.42) |
SFA | 20.6–21.8 (21.2) | – | 13.7 | 10.4–11.7 (13.1) |
cis-MUFA | 14.3–15.4 (16.5) | – | 23.3 | 14.8–18.7 (16.7) |
PUFA | 60.9–64.4 (62.7) | – | 62.9 | 68.3–74.9 (71.6) |
n-3 PUFA | 1.7–2.8 (2.25) | – | 0.35 | 0.20 |
n-6 PUFA | 58.1–62.7 (60.4) | – | 62.5 | 74.7 |
Mineral composition | ||||
Macrominerals (g/kg) | ||||
Ca | 3.2–7.0 (5.1) | 41–70 (76) | 4.7–7.0 (5.85) | – |
K | 15.6–26.5 (21.1) | 17.9–24.7 (21.3) | 8.32–33.1 (20.7) | – |
Mg | 0.80–0.90 (0.85) | 0.40–0.83 (0.62) | 1.30–1.79 (1.55) | – |
P | 2.0–3.6 (2.8) | 23–29 (26) | 0.83–23.7 (12.3) | – |
Microminerals (mg/kg) | ||||
Cu | 12.4–387 (199) | 23–124 (73.5) | <10.0–73.3 | – |
Fe | 64–185 (124.5) | 117–398 (257.5) | 45–120 (82.5) | – |
Mn | 13–17 (15) | 13–17 (15) | 16.5–27.5 (22) | – |
Zn | 12 –18 (13) | 12–18 (13) | 18.2–26.9 (22.6) | – |
Vitamin E homologues (mg/kg) | ||||
α-Tocopherol | – | – | – | 85.5–578 (331.8) |
γ-Tocopherol | – | – | – | – |
δ -Tocopherol | – | – | – | – |
α-Tocotrienol | – | – | – | 69–319 (194) |
γ-Tocotrienol | – | – | – | 479–1575 (1027) |
Phenolic compounds | ||||
Total phenols (mg GAE/g) | 12.3–58.9 (27.9) | 9.70–52.3 (31) | 261.3 * | – |
Total anthocyanin (mg Mvd-3-glu/g) | 1.3–3.4 (2.0) | 0.29–1.42 (0.86) ** | ND | – |
Total tannins (mg TAE/g) | 107.2 | 44.9–73.0 (59) | 33.9 | – |
Total flavonoids (mg CE/g) | 26.9 | 31.0–61.2 (46.1) *** | ND | – |
Grape By-Product | Incorporation Level in Feed (% Dry Matter)/Experiment Duration | Initial Weight/Age of Animals | Main Findings | References |
---|---|---|---|---|
Grape pomace | 3% for 105 d | Pigs at 19.3 kg and 21-d-old |
| [68] |
5% for 28 d | Hybrid pigs at 75.5 kg |
| [69] | |
3–5% for 21 d and 6–10% for 17 d | Barrows at 80.0 kg |
| [70] | |
Red grape pomace | 9% for 30 d | Piglets at 4.8 kg and 20 d old |
| [71] |
3.5 and 7% for 86 d | Castrated males and female pigs at 48.6 kg and 180 d old |
| [72] | |
Grape seeds | 1% of grape seeds and 5% of flax meal for 42 d | Hybrid pigs with an average weight of 60.2 kg |
| [31] |
Grape seed extract | 0.01, 0.03 and 0.07% for 56 d | Male and female pigs with an average body weight of 46.0 kg |
| [73] |
0.005, 0.01 and 0.02% for 49 d | Pigs with an average body weight of 67.5 kg |
| [74] | |
Red wine solids | 0.36% for 56 d | Male and female pigs at 74.0 kg and 3 months |
| [75] |
Grape By-Product | Level in the Diet (% dry matter) and Experiment Duration | Initial Weight and Age of Animals | Main Results | References |
---|---|---|---|---|
Grape pomace | 0.25, 0.5 and 1% for 42 d | Broiler chicks at 1 d old |
| [29] |
0.5, 0.75 and 1% for 28 d | Broiler chicks at 3 d old |
| [78] | |
2.5, 5 and 7% for 49 d | Male chickens at 1 d old |
| [79] | |
Red grape pomace | 5 and 10% for 21 d | Male broiler chicks with an average weight of 591 g at 21 d old |
| [80] |
0.5, 1.5 and 3% for 21 d | Male broiler chicks at 1 d old |
| [81] | |
1.5, 3 and 6% for 21 d | Male broiler chicks at 21 d old |
| [82] | |
1, 2 and 3% for 42 d | Hybrid broiler chickens at 1 d old |
| [83] | |
Red and white grape pomace | 3% or 6% for 28 d(14–42 d) | Broiler chickens with an average weight of 506 g at 14 d old |
| [84] |
Grape seeds | 2% for 35 d(14–49 d) | Broilers with average weight of 312 g at 14 d old |
| [85] |
Grape seed extract | 0.01 and 0.02% for 42 d | Female Pekin ducklings at 52.0 g and 1 d old |
| [86] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfaia, C.M.; Costa, M.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Use of Grape By-Products to Enhance Meat Quality and Nutritional Value in Monogastrics. Foods 2022, 11, 2754. https://doi.org/10.3390/foods11182754
Alfaia CM, Costa MM, Lopes PA, Pestana JM, Prates JAM. Use of Grape By-Products to Enhance Meat Quality and Nutritional Value in Monogastrics. Foods. 2022; 11(18):2754. https://doi.org/10.3390/foods11182754
Chicago/Turabian StyleAlfaia, Cristina M., Mónica M. Costa, Paula A. Lopes, José M. Pestana, and José A. M. Prates. 2022. "Use of Grape By-Products to Enhance Meat Quality and Nutritional Value in Monogastrics" Foods 11, no. 18: 2754. https://doi.org/10.3390/foods11182754
APA StyleAlfaia, C. M., Costa, M. M., Lopes, P. A., Pestana, J. M., & Prates, J. A. M. (2022). Use of Grape By-Products to Enhance Meat Quality and Nutritional Value in Monogastrics. Foods, 11(18), 2754. https://doi.org/10.3390/foods11182754