Microbial Indicators and Possible Focal Points of Contamination during Production and Processing of Catfish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Points and Locations
2.2. Sample Collection and Sample Preparation
2.3. Detection and Isolation of Listeria spp.
2.4. Identification of Listeria spp. by Multiplex PCR
2.5. Determination of Aerobic Plate (APC), Total Coliform (TCC), and Generic Escherichia coli Counts
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Indicators in Catfish Pond Samples (Farm)
Sample Type | APC | TCC | E. coli | Lis | Lm |
---|---|---|---|---|---|
(log CFU/cm2 * or log CFU/g **) | (Positive/Total Samples) | ||||
Live fish skin (LF) * | 4.2 c ± 1.0 | 1.9 a ± 1.0 | 1.3 a ± 1.0 | 3/150 | 3/150 |
Pond water (PW) ** | 4.8 b ± 0.7 | 1.9 a ± 2.0 | 1.0 a ± 1.9 | 0/25 | 0/25 |
Pond sediment (PS) ** | 5.8 a ± 0.8 | 2.3 a ± 1.9 | 1.6 a ± 1.7 | 0/25 | 0/25 |
3.2. Indicators in Fish Samples and Water at the Processing Plant
Overall Prevalence in the PROCESSING ENVIRONMENT (FCS + NFCS) | |||||
---|---|---|---|---|---|
Sampling Time | APC | TCC | E. coli | Lis | Lm |
(log CFU/100 cm2) | (Positive/Total Samples) | ||||
During operation (OP) | 3.6 a ± 1.6 | 1.4 a ± 1.2 | <1.0 a ± 1.0 | 44/118 | 25/118 |
After cleaning and sanitation (AS) | 2.1 b ± 1.6 | <1.0b ± 0.9 | <1.0 b ± 0.3 | 17/118 | 12/118 |
Fish Samples at the Processing Plant | |||||
Sample Type | APC | TCC | E. coli | Lis | Lm |
(log CFU/cm2 * or log CFU/g **) | (Positive/Total Samples) | ||||
Fish skin—At receiving (FS) * | 3.4 a ± 0.5 | <1.0 b ± 0.8 | <1.0 b ± 0.4 | 3/30 | 0/30 |
Fillets before chilling (BC) ** | 3.8 a ± 1.3 | 1.2 b ± 1.3 | 0.7 a ± 1.1 | 17/30 | 9/30 |
Fillets after chilling (AC) ** | 3.4 a ± 1.8 | 1.8 a ± 1.4 | 0.9 a ± 1.4 | 29/30 | 10/30 |
Chiller Water Samples at the Processing Plant | |||||
Sample Type | APC | TCC | E. coli | Lis | Lm |
(log CFU/g) | (Positive/Total Samples) | ||||
Process chiller water (PCW) | 3.9 a ± 1.1 | 1.5 a ± 0.9 | <1.0 a ± 1.0 | 5/6 | 3/6 |
Clean chiller water (CCW)—before processing | 1.1 b ± 1.3 | <1.0 b ± 0 | <1.0 a ± 0 | 2/6 | 0/6 |
3.3. Indicators in Food Contact (FCS) and Non-Food Contact (NFCS) Surfaces at the Processing Plant
Sampling Points | Code | APC | TCC | E. coli | Lis | Lm | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
(log CFU/100 cm2) | (Number of Positive/Total Samples) | ||||||||||
OP | AS | OP | AS | OP | AS | OP | AS | OP | AS | ||
Deheader | FCS1 | 4.8 a ± 0.9 | 3.2 b ± 0.6 | 1.5 a ± 1.4 | 1.3 a ± 1.2 | <1.0 a ± 0.7 | <1.0 a ± 0 | 3/6 | 0/6 | 2/6 | 0/6 |
Skinner | FCS2 | 4.4 a ± 0.8 | 3.1 b ± 1.8 | 1.7 a ± 1.1 | <1.0 a ± 1.0 | <1.0 a ± 0.9 | <1.0 a ± 0.7 | 1/6 | 1/6 | 0/6 | 1/6 |
Trimming board | FCS3 | 3.6 a ± 0.4 | 1.1 b ± 1.6 | 1.4 a ± 1.3 | <1.0 b ± 0.5 | <1.0 a ± 1.0 | <1.0 a ± 0 | 2/6 | 0/6 | 1/6 | 0/6 |
Fillet chiller | FCS4 * | 3.3 a ± 0.2 | 3.2 a ± 0.9 | 1.5 a ± 1.0 | 1.8 a ± 1.2 | <1.0 a ± 0.9 | <1.0 a ± 0 | 1/4 | 1/4 | ¼ | 0/4 |
Belt after chiller | FCS5 | 3.2 a ± 0.6 | <1.0 b ± 0.7 | 1.0 a ± 1.1 | <1.0 b ± 0 | <1.0 a ± 0.7 | <1.0 a ± 0 | 4/6 | 0/6 | 2/6 | 0/6 |
Grading table/belt | FCS6 | 3.3 a ± 0.3 | 1.1 b ± 1.4 | 1.7 a ± 0.9 | <1.0 b ± 0.6 | <1.0 a ± 0.8 | <1.0 a ± 0 | 4/6 | 0/6 | 1/6 | 0/6 |
Tray in freezer with fish/gray lug | FCS7 | 2.9 a ± 0.6 | 1.7 b ± 0.9 | <1.0 a ± 0.7 | <1.0 a ± 0 | <1.0 a ± 0.7 | <1.0 a ± 0 | 1/6 | 1/6 | 1/6 | 0/6 |
Manual fish conveyor (holding table before skinner) | FCS8 | 3.5 a ± 2.8 | 2.2 a ± 1.8 | 2.0 a ± 1.1 | 1.1 a ± 1.3 | 1.2 a ± 1.3 | <1.0 b ± 0 | 0/6 | 0/6 | 0/6 | 0/6 |
Whole fish skinner | FCS9 | 4.9 a ± 1.2 | 2.0 b ± 1.5 | 2.0 a ± 1.1 | <1.0 b ± 1.1 | 1.1 a ± 1.3 | <1.0 a ± 1.1 | 0/6 | 0/6 | 0/6 | 0/6 |
Manual trimming table | FCS10 | 3.6 a ± 1.9 | <1.0 b ± 1.1 | 1.8 a ± 1.2 | <1.0 b ± 0 | 1.3 a ± 1.5 | <1.0 b ± 0 | 3/6 | 0/6 | 2/6 | 0/6 |
Holding tray (graded fillet) | FCS11 | 3.6 a ± 2.2 | 2.9 a ± 0.9 | 2.0 a ± 1.1 | <1.0 b ± 1.1 | 1.5 a ± 0.8 | <1.0 b ± 0 | 5/6 | 1/6 | 2/6 | 1/6 |
Belt after chiller tumbler (whole fish) | FCS12 | 3.7 a ± 0.7 | 1.6 b ± 1.6 | 1.1 a ± 1.3 | <1.0 a ± 1.0 | <1.0 a ± 1.1 | <1.0 a ± 0 | 1/6 | 0/6 | 0/6 | 0/6 |
Tote with whole fish | FCS13 | 4.2 a ± 0.6 | 2.9 a ± 1.8 | 1.5 a ± 1.2 | <1.0 a ± 0.8 | 1.0 a ± 0.9 | <1.0 b ± 0.4 | 3/6 | 1/6 | 3/6 | 0/6 |
Belt before injection | FCS14 | 3.2 a ± 1.7 | 1.8 b ± 1.4 | <1.0 a ± 0.7 | <1.0 a ± 0.9 | <1.0 a ± 0.6 | <1.0 a ± 0 | 3/6 | 1/6 | 2/6 | 1/6 |
Injector tank | FCS15 | 4.1 a ± 0.6 | 2.1 b ± 1.2 | 1.7 a ± 1.4 | <1.0 b ± 0.4 | 1.5 a ± 0.9 | <1.0 b ± 0 | 2/6 | 0/6 | 1/6 | 0/6 |
Sampling Points | Code | APC | TCC | E. coli | Lis | Lm | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
(log CFU/100 cm2) | (Number of Positive/Total Samples) | ||||||||||
OP | AS | OP | AS | OP | AS | OP | AS | OP | AS | ||
Ice container/ice pipe | NFCS1 | 1.7 a ± 2.0 | 1.6 a ± 1.6 | <1.0 a ± 1.1 | <1.0 a ± 0 | <1.0 a ± 0 | <1.0 a ± 0 | 2/6 | 3/6 | 1/6 | 3/6 |
Freezer wall | NFCS2 | <1.0 a ± 1.3 | <1.0 a ± 0.6 | <1.0 a ± 0.6 | <1.0 a ± 0 | <1.0 a ± 0 | <1.0 a ± 0 | 0/6 | 0/6 | 0/6 | 0/6 |
Waste belt | NFCS3 | 4.7 a ± 1.0 | 3.3 a ± 1.8 | 2.4 a ± 0.7 | <1.0 b ± 1.0 | 1.2 a ± 1.6 | <1.0 a ± 0 | 1/6 | 1/6 | 1/6 | 1/6 |
Floor | NFCS4 | 4.3 a ± 2.1 | 3.9 a ± 0.9 | 2.0 a ± 1.6 | <1.0 a ± 1.0 | <1.0 a ± 1.4 | <1.0 a ± 0.5 | 5/6 | 3/6 | 4/6 | 2/6 |
Drain | NFCS5 | 4.6 a ± 1.2 | 4.1 a ± 1.1 | 1.6 a ± 1.3 | 1.2 a ± 1.0 | <1.0 a ± 1.0 | <1.0 a ± 0 | 3/6 | 4/6 | 1/6 | 3/6 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanson, T.; Site, D. 2014 U.S. Catfish Database. 2015. Available online: https://www.agecon.msstate.edu/whatwedo/budgets/docs/catfish2014.pdf (accessed on 12 April 2022).
- Jin, Y.; Liu, S.; Yuan, Z.; Yang, Y.; Tan, S.; Liu, Z. Catfish genomic studies: Progress and perspectives. Genom. Aquac. 2016, 73–104. [Google Scholar]
- USDA National Agricultural Statistics Service (NASS). Catfish Production. 2022. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/bg257f046/nc581v125/gt54mt95t/cfpd0722.pdf (accessed on 29 August 2022).
- Tortorello, M.L. Indicator Organisms for Safety and Quality—Uses and Methods for Detection: Minireview. J. AOAC Int. 2003, 86, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.F.; Flick, G.J.; Silva, J.L.; Mccaskey, T.A. Influence of Processing Schemes on Indicative Bacteria and Quality of Fresh Aquacultured Catfish Fillets. J. Food Prot. 1997, 60, 54–58. [Google Scholar] [CrossRef]
- Siberio-Pérez, L.G. Incidence of Salmonella spp. in Farming Environments and Food Facilities by Improved Detection. Ph.D. Thesis, Mississippi State University, Starkville, MS, USA, 2017. [Google Scholar]
- Watchalotone, S.; Silva, J.L.; Chen, T.C.; Handumrongkul, C. Influence of Process Flow on Microbial Profile of Channel Catfish Fillets. In Proceedings of the 1998 Catfish Processors’ Workshop, Starkville, MS, USA, 1998; Silva, J.L., Hood, A.F., Dean, S., Eds.; Office of Agricultural Communications, Division of Agriculture, Forestry, and Veterinary Medicine: Starkville, MS, USA, 2001; pp. 14–16. [Google Scholar]
- Huang, Y.W.; Leung, C.K. Microbiological assessment of channel catfish grown in cage and pond culture. Food Microbiol. 1993, 10, 187–195. [Google Scholar] [CrossRef]
- International Commission on Microbiological Specifications for Foods (ICMSF). Microorganisms in Foods 2: Sampling for Microbiological Analysis: Principles and Specific Applications, 2nd ed.; University of Toronto Press, Ed.; Blackwell Scientific Publications: Toronto, Canada, 1986.
- Doǧan-Halkman, H.B.; Çakir, I.; Keven, F.; Worobo, R.W.; Halkman, A.K. Relationship among fecal coliforms and Escherichia coli in various foods. Eur. Food Res. Technol. 2003, 216, 331–334. [Google Scholar] [CrossRef]
- Varga, S.; Anderson, G.W. Significance of Coliforms and Enterococci in Fish Products. Appl. Microbiol. 1968, 16, 193–196. [Google Scholar] [CrossRef]
- Chen, B.Y.; Pyla, R.; Kim, T.J.; Silva, J.L.; Jung, Y.S. Prevalence and contamination patterns of Listeria monocytogenes in catfish processing environment and fresh fillets. Food Microbiol. 2010, 27, 645–652. [Google Scholar] [CrossRef]
- Cripe, J.; Losikoff, M. Presence of Listeria monocytogenes and Sanitation Controls in Cold-Smoked Salmon Facilities during FDA Inspections. Food Prot. Trends 2021, 41, 184–194. [Google Scholar] [CrossRef]
- Murugesan, L.; Kucerova, Z.; Knabel, S.J.; Laborde, L.F. Predominance and Distribution of a Persistent Listeria monocytogenes Clone in a Commercial Fresh Mushroom Processing Environment. J. Food Prot. 2015, 78, 1988–1998. [Google Scholar] [CrossRef]
- Ahmed, M.S. The investigation of molecular characterization of presumptive Listeria monocytogenes isolates from a food-processing environment. Iran. J. Vet. Res. 2019, 20, 46–50. [Google Scholar]
- Amajoud, N.; Leclercq, A.; Soriano, J.M.; Bracq-Dieye, H.; El Maadoudi, M.; Senhaji, N.S.; Kounnoun, A.; Moura, A.; Lecuit, M.; Abrini, J. Prevalence of Listeria spp. and characterization of Listeria monocytogenes isolated from food products in Tetouan, Morocco. Food Control 2018, 84, 436–441. [Google Scholar] [CrossRef]
- Matto, C.; Varela, G.; Braga, V.; Vico, V.; Gianneechini, R.E.; Rivero, R. Detection of Listeria spp. in cattle and environment of pasture-based dairy farms 1. Pesq. Vet. Bras. 2018, 38, 1736–1741. [Google Scholar] [CrossRef] [Green Version]
- Orsi, R.H.; Wiedmann, M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl. Microbiol. Biotechnol. 2016, 100, 5273–5287. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). Appendix 4: Bacterial Pathogen Growth and Inactivation, Fish and Fishery Products Hazards and Controls Guidance, 4th ed. 2021. Available online: https://www.fda.gov/media/80390/download (accessed on 12 April 2022).
- Liu, D.; Lawrence, M.L.; Ainsworth, A.J.; Austin, F.W. Comparative assessment of acid, alkali and salt tolerance in Listeria monocytogenes virulent and avirulent strains. FEMS Microbiol. Lett. 2005, 243, 373–378. [Google Scholar] [CrossRef]
- Martín, B.; Perich, A.; Gómez, D.; Yangüela, J.; Rodríguez, A.; Garriga, M.; Aymerich, T. Diversity and distribution of Listeria monocytogenes in meat processing plants. Food Microbiol. 2014, 44, 119–127. [Google Scholar] [CrossRef]
- Rothrock, M.J.; Micciche, A.C.; Bodie, A.R.; Ricke, S.C. Listeria Occurrence and Potential Control Strategies in Alternative and Conventional Poultry Processing and Retail. Front. Sustain. Food Syst. 2019, 3, 33. [Google Scholar] [CrossRef]
- Vongkamjan, K.; Fuangpaiboon, J.; Jirachotrapee, S.; Turner, M.P. Occurrence and diversity of Listeria spp. in seafood processing plant environments. Food Control 2015, 50, 265–272. [Google Scholar] [CrossRef]
- Food Safety Preventive Controls Alliance (FSPCA). Appendix 6: Hygienic Zoning and Environmental Monitoring; FSPCA Preventive Controls for Human Food Participant Manual, Version 1.2; 2016. Available online: https://www.ifsh.iit.edu/fspca/fspca-preventive-controls-human-food (accessed on 16 July 2022).
- Chou, C.-H.; Silva, J.L.; Wang, C. Prevalence and typing of Listeria monocytogenes in raw catfish fillets. J. Food Prot. 2006, 69, 815–819. [Google Scholar] [CrossRef]
- Ramos, M.; Lyon, W.J. Reduction of endogenous bacteria associated with catfish fillets using the Grovac process. J. Food Prot. 2000, 63, 1231–1239. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Dhowlaghar, N.; Abeysundara, P.D.A.; Nannapaneni, R.; Schilling, M.W.; Chang, S.; Cheng, W.-H.; Sharma, C.S. Growth and Biofilm Formation by Listeria monocytogenes in Catfish Mucus Extract on Four Food Contact Surfaces at 22 and 10 °C and Their Reduction by Commercial Disinfectants. J. Food Prot. 2018, 81, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Di Bonaventura, G.; Piccolomini, R.; Paludi, D.; D’Orio, V.; Vergara, A.; Conter, M.; Ianieri, A. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. J. Appl. Microbiol. 2008, 104, 1552–1561. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.; Magalhães, R.; Carneiro, L.; Santos, I.; Silva, J.; Ferreira, V.; Hogg, T.; Teixeira, P. Foci of contamination of Listeria monocytogenes in different cheese processing plants. Int. J. Food Microbiol. 2013, 167, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Cruz, C.D.; Fletcher, G.C. Assessing manufacturers’ recommended concentrations of commercial sanitizers on inactivation of Listeria monocytogenes. Food Control 2012, 26, 194–199. [Google Scholar] [CrossRef]
- Hood, S.K.; Zottola, E.A. Biofilms in food processing. Food Control 1995, 6, 9–18. [Google Scholar] [CrossRef]
- Cabeça, T.K.; Pizzolitto, A.C.; Pizzolitto, E.L. Activity of disinfectants against foodborne pathogens in suspension and adhered to stainless steel surfaces. Braz. J. Microbiol. 2012, 43, 1112–1119. [Google Scholar] [CrossRef]
- Korany, A.M.; Hua, Z.; Green, T.; Hanrahan, I.; El-Shinawy, S.H.; El-kholy, A.; Hassan, G.; Zhu, M.-J. Efficacy of Ozonated Water, Chlorine, Chlorine Dioxide, Quaternary Ammonium Compounds and Peroxyacetic Acid Against Listeria monocytogenes Biofilm on Polystyrene Surfaces. Front. Microbiol. 2018, 9, 2296. [Google Scholar] [CrossRef]
- USDA’s Food Safety and Inspection Service (FSIS). FSIS Compliance Guideline for Establishments That Slaughter or Further Process Siluriformes Fish and Fish Products. 2017. Available online: https://www.fsis.usda.gov/guidelines/2017-0003 (accessed on 11 April 2022).
- Gudbjörnsdóttir, B.; Suihko, M.L.; Gustavsson, P.; Thorkelsson, G.; Salo, S.; Sjöberg, A.M.; Niclasen, O.; Bredholt, S. The incidence of Listeria monocytogenes in meat, poultry and seafood plants in the Nordic countries. Food Microbiol. 2004, 21, 217–225. [Google Scholar] [CrossRef]
- Hitchins, A.D.; Jinneman, K.; Chen, Y. BAM Chapter 10: Detection of Listeria monocytogenes in Foods and Environmental Samples, and Enumeration of Listeria monocytogenes in Foods. In Bacteriological Analytical Manual (BAM). 2022. Available online: https://www.fda.gov/media/157717/download (accessed on 28 May 2022).
- Bubert, A.; Hein, I.; Rauch, M.; Lehner, A.; Yoon, B.; Goebel, W.; Wagner, M. Detection and Differentiation of Listeria spp. by a Single Reaction Based on Multiplex PCR. Appl. Environ. Microbiol. 1999, 65, 4688–4692. [Google Scholar] [CrossRef]
- Dash, S.; Das, S.K.; Samal, J.; Thatoi, H.N. Epidermal mucus, a major determinant in fish health: A review. Iran. J. Vet. Res. 2018, 19, 72–81. [Google Scholar]
- Miettinen, H.; Wirtanen, G. Ecology of Listeria spp. in a fish farm and molecular typing of Listeria monocytogenes from fish farming and processing companies. Int. J. Food Microbiol. 2006, 112, 138–146. [Google Scholar] [CrossRef]
- Avnimelech, Y.; Ritvo, G. Shrimp and fish pond soils: Processes and management. Aquaculture 2003, 220, 549–567. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Addressing Total Coliform Positive or E. coli Positive Sample Results in EPA Region 8. 2021. Available online: https://www.epa.gov/region8-waterops/addressing-total-coliform-positive-or-ecoli-positive-sample-results-epa-region-8 (accessed on 11 April 2022).
- Autio, T.; Hielm, S.; Miettinen, M.; Sjöberg, A.M.; Aarnisalo, K.; Björkroth, J.; Mattila-Sandholm, T.; Korkeala, H. Sources of Listeria monocytogenes contamination in a cold-smoked rainbow trout processing plant detected by pulsed-field gel electrophoresis typing. Appl. Environ. Microbiol. 1999, 65, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Hansen, C.H.; Vogel, B.F.; Gram, L. Prevalence and survival of Listeria monocytogenes in Danish aquatic and fish-processing environments. J. Food Prot. 2006, 69, 2113–2122. [Google Scholar] [CrossRef]
- Kim, C.R.; Hearnsberger, J.O.; Vickery, A.P.; White, C.H.; Marshall, D.L. Extending Shelf Life of Refrigerated Catfish Fillets Using Sodium Acetate and Monopotassium Phosphate. J. Food Prot. 1994, 58, 644–647. [Google Scholar] [CrossRef]
- Silva, J.L.; Harkness, E.; White, T.D. Residual Effect of C02 on Bacterial Counts and Surface pH of Channel Catfish. J. Food Prot. 1993, 56, 1051–1053. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). National Primary Drinking Water Regulations. 2022. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 14 August 2022).
- Doijad, S.; Barbuddhe, S.B.; Garg, S.; Kalekar, S.; Rodrigues, J.; D’Costa, D.; Bhosle, S.; Chakraborty, T. Incidence and genetic variability of Listeria species from three milk processing plants. Food Control 2011, 22, 1900–1904. [Google Scholar] [CrossRef]
- Sinde, E.; Carballo, J. Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorehtylene: The influence of free energy and the effect of commercial sanitizers. Food Microbiol. 2000, 17, 439–447. [Google Scholar] [CrossRef]
- Veluz, G.A.; Pitchiah, S.; Alvarado, C.Z. Attachment of Salmonella serovars and Listeria Monocytogenes to stainless steel and plastic conveyor belts. Poult. Sci. 2012, 91, 2004–2010. [Google Scholar] [CrossRef]
- Cooper, R.A.; Griffith, C.J.; Malik, R.E.; Obee, P.; Looker, N. Monitoring the effectiveness of cleaning in four British hospitals. Am. J. Infect. Control 2007, 35, 338–341. [Google Scholar] [CrossRef]
- Cunningham, A.E.; Rajagopal, R.; Lauer, J.; Allwood, P. Assessment of hygienic quality of surfaces in retail food service establishments based on microbial counts and real-time detection of ATP. J. Food Prot. 2011, 74, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Legnani, P.; Leoni, E.; Berveglieri, M.; Mirolo, G.; Alvaro, N. Hygienic control of mass catering establishments, microbiological monitoring of food and equipment. Food Control 2004, 15, 205–211. [Google Scholar] [CrossRef]
- Montville, R.; Chen, Y.; Schaffner, D.W. Risk assessment of hand washing efficacy using literature and experimental data. Int. J. Food Microbiol. 2002, 73, 305–313. [Google Scholar] [CrossRef]
- Reij, M.W.; Den Aantrekker, E.D. Recontamination as a source of pathogens in processed foods. Int. J. Food Microbiol. 2004, 91, 1–11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah-Ruiz, A.; Wood, L.S.; Kim, T.; Schilling, W.; White, S.B.; Chen, B.-Y.; Durango-Villadiego, A.; Silva, J.L. Microbial Indicators and Possible Focal Points of Contamination during Production and Processing of Catfish. Foods 2022, 11, 2778. https://doi.org/10.3390/foods11182778
Abdallah-Ruiz A, Wood LS, Kim T, Schilling W, White SB, Chen B-Y, Durango-Villadiego A, Silva JL. Microbial Indicators and Possible Focal Points of Contamination during Production and Processing of Catfish. Foods. 2022; 11(18):2778. https://doi.org/10.3390/foods11182778
Chicago/Turabian StyleAbdallah-Ruiz, Angelica, Lurdes Siberio Wood, Taejo Kim, Wes Schilling, Shecoya B. White, Bang-Yuan Chen, Alba Durango-Villadiego, and Juan L. Silva. 2022. "Microbial Indicators and Possible Focal Points of Contamination during Production and Processing of Catfish" Foods 11, no. 18: 2778. https://doi.org/10.3390/foods11182778
APA StyleAbdallah-Ruiz, A., Wood, L. S., Kim, T., Schilling, W., White, S. B., Chen, B. -Y., Durango-Villadiego, A., & Silva, J. L. (2022). Microbial Indicators and Possible Focal Points of Contamination during Production and Processing of Catfish. Foods, 11(18), 2778. https://doi.org/10.3390/foods11182778