Characteristics, Health Risk Assessment, and Transfer Model of Heavy Metals in the Soil—Food Chain in Cultivated Land in Karst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigation Areas
2.2. Sampling and Sample Analysis
2.3. Contamination Evaluation and Health Risk Assessment Model
2.4. Prediction Model for Metal Content in Foods
2.5. Quality Control and Statistics
3. Results
3.1. Soil pH Values and Heavy Metal Concentrations
3.2. Heavy Metals in Foods
3.3. Soil Contamination Evaluation
3.4. Health Risk Assessment of Food Consumption
3.5. Prediction Model of Metal Transfer from Soil to Crops
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Wu, Y.; Song, B.; Zhou, L.; Wang, F.; Pang, R. Spatial distribution and main controlling factor of cadmium accumulation in agricultural soils in Guizhou, China. J. Hazard. Mater. 2022, 424, 127308. [Google Scholar] [CrossRef] [PubMed]
- Srut, M.; Menke, S.; Hoeckner, M.; Sommer, S. Earthworms and cadmium—Heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicol. Environ. Saf. 2019, 171, 843–853. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Yang, L.; Xu, M.; Chen, Y.; Jing, H.; Zhang, J.; Yang, W.; Wu, P. Dynamic Effect of Organic Fertilizer Application on Rice Growth, Soil Physicochemical Properties and Cd Activity Exposed to Excess Cd. Bull. Environ. Contam. Toxicol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Arisekar, U.; Shakila, R.J.; Shalini, R.; Jeyasekaran, G.; Keerthana, M.; Arumugam, N.; Almansour, A.I.; Perumal, K. Distribution and ecological risk assessment of heavy metals using geochemical normalization factors in the aquatic sediments. Chemosphere 2022, 294, 133708. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhou, H.; Gu, J.; Liao, B.; Zhang, J.; Wu, P. Application of rapeseed residue increases soil organic matter, microbial biomass, and enzyme activity and mitigates cadmium pollution risk in paddy fields. Environ. Pollut. 2020, 264, 114681. [Google Scholar] [CrossRef]
- Yin, H.; Gao, Y.; Fan, C. Distribution, sources and ecological risk assessment of heavy metals in surface sediments from Lake Taihu, China. Environ. Res. Lett. 2011, 6, 044012. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, L.; Meng, J.; Yu, Y.; Qi, J.; Shen, P.; Li, X.; Ding, P.; Chen, M.; Hu, G. Characteristics, source apportionment and health risk assessment of heavy metals in urban road dust of the Pearl River Delta, South China. Ecotoxicol. Environ. Saf. 2022, 236, 113490. [Google Scholar] [CrossRef]
- Mao, C.P.; Song, Y.X.; Chen, L.X.; Ji, J.F.; Li, J.Z.; Yuan, X.Y.; Yang, Z.F.; Ayoko, G.A.; Frost, R.L.; Theiss, F. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 2019, 175, 339–348. [Google Scholar] [CrossRef]
- Renu, K.; Chakraborty, R.; Myakala, H.; Koti, R.; Famurewa, A.C.; Madhyastha, H.; Vellingiri, B.; George, A.; Gopalakrishnan, A.V. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium)—Induced hepatotoxicity—A review. Chemosphere 2021, 271, 129735. [Google Scholar] [CrossRef] [PubMed]
- Hajric, D.; Smajlovic, M.; Antunovic, B.; Smajlovic, A.; Alagic, D.; Tahirovic, D.; Brenjo, D.; Clanjak-Kudra, E.; Djedjibegovic, J.; Porobic, A.; et al. Risk assessment of heavy metal exposure via consumption of fish and fish products from the retail market in Bosnia and Herzegovina. Food Control 2022, 133, 108631. [Google Scholar] [CrossRef]
- Maleki, A.; Jari, H. Evaluation of drinking water quality and non-carcinogenic and carcinogenic risk assessment of heavy metals in rural areas of Kurdistan, Iran. Environ. Technol. Innov. 2021, 23, 101668. [Google Scholar] [CrossRef]
- Bradham, K.D.; Nelson, C.M.; Kelly, J.; Pomales, A.; Scruton, K.; Dignam, T.; Misenheimer, J.C.; Li, K.; Obenour, D.R.; Thomas, D.J. Relationship Between Total and Bioaccessible Lead on Children’s Blood Lead Levels in Urban Residential Philadelphia Soils. Environ. Sci. Technol. 2017, 51, 10005–10011. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Tang, Y.; Liu, M.; Van Zwieten, L.; Yang, X.; Yu, C.; Wang, H.; Song, Z. Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agric. Ecosyst. Environ. 2020, 301, 107027. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Zhang, Q. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agric. Ecosyst. Environ. 2020, 288, 106719. [Google Scholar] [CrossRef]
- Yu, E.; Liu, H.; Tu, Y.; Gu, X.; Ran, X.; Yu, Z.; Wu, P. Superposition Effects of Zinc Smelting Atmospheric Deposition on Soil Heavy Metal Pollution Under Geochemical Anomaly. Front. Environ. Sci. 2022, 10. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Qu, M.-K.; Chen, J.; Yang, L.-F.; Zhao, Y.-C.; Huang, B. Meta-analysis of the Effects of Metal Mining on Soil Heavy Metal Concentrations in Southwest China. Huan Jing Ke Xue = Huanjing Kexue 2021, 42, 4414–4421. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, R.; Zhang, J.; Gao, L.; Ni, X. Distribution and dispersion of heavy metals in the rock-soil-moss system of the black shale areas in the southeast of Guizhou Province, China. Environ. Sci. Pollut. Res. 2022, 29, 854–867. [Google Scholar] [CrossRef]
- Kong, X.Y.; Liu, T.; Yu, Z.H.; Chen, Z.; Lei, D.; Wang, Z.W.; Zhang, H.; Li, Q.H.; Zhang, S.S. Heavy Metal Bioaccumulation in Rice from a High Geological Background Area in Guizhou Province, China. Int. J. Environ. Res. Public Health 2018, 15, 2281. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Lu, G.; Fan, B.; Xiang, W.; Bao, Z. Bioaccumulation and risk assessment of heavy metals in soil-crop systems in Liujiang karst area, Southwestern China. Environ. Sci. Pollut. Res. 2021, 28, 9657–9669. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Yang, Z.; Yu, T.; Yang, Q.; Wen, Y.; Wu, T. Potential Ecological Risk Assessment of Heavy Metals in the Fe-Mn Nodules in the Karst Area of Guangxi, Southwest China. Bull. Environ. Contam. Toxicol. 2021, 106, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Z.; Yang, W.; Pan, L.; Gu, M.; Lee, D. Assessment of Metals Pollution on Agricultural Soil Surrounding a Lead-Zinc Mining Area in the Karst Region of Guangxi, China. Bull. Environ. Contam. Toxicol. 2013, 90, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-W.; Liu, H.-Y.; Gu, X.-F.; Tu, Y.; Yu, E.-J.; Wu, P. Distribution Characteristics of Heavy Metals in Soils Affected by Different Land Use Types in a Superimposed Pollution Area with High Geological Background. Huan Jing Ke Xue = Huanjing Kexue 2022, 43, 2094–2103. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Shahab, A.; Li, J.; Xi, B.; Sun, X.; He, H.; Yu, G. Distribution, ecological risk assessment and source identification of heavy metals in surface sediments of Huixian karst wetland, China. Ecotoxicol. Environ. Saf. 2019, 185, 109700. [Google Scholar] [CrossRef]
- Huang, L.; Rad, S.; Xu, L.; Gui, L.; Song, X.; Li, Y.; Wu, Z.; Chen, Z. Heavy Metals Distribution, Sources, and Ecological Risk Assessment in Huixian Wetland, South China. Water 2020, 12, 431. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, J.; Zhou, X.; Zhou, Y.; Li, Y.; Li, B.; Zhou, S. Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China. Environ. Pollut. 2020, 256, 113505. [Google Scholar] [CrossRef]
- Tian, S.Q.; Wang, S.J.; Bai, X.Y.; Zhou, D.Q.; Luo, G.J.; Yang, Y.J.; Hu, Z.Y.; Li, C.J.; Deng, Y.H.; Lu, Q. Ecological security and health risk assessment of soil heavy metals on a village-level scale, based on different land use types. Environ. Geochem. Health 2020, 42, 3393–3413. [Google Scholar] [CrossRef]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops*. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, G.; Zhang, D.; Lei, M. An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis. Environ. Pollut. 2021, 276, 116666. [Google Scholar] [CrossRef]
- Li, X.; Geng, T.; Shen, W.; Zhang, J.; Zhou, Y. Quantifying the influencing factors and multi-factor interactions affecting cadmium accumulation in limestone-derived agricultural soil using random forest (RF) approach. Ecotoxicol. Environ. Saf. 2021, 209, 111773. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Liu, H.; Wu, P.; Meng, W.; Li, X.; Chen, X. Distribution characteristics and potential pollution assessment of heavy metals (Cd, Pb, Zn) in reservoir sediments from a historical artisanal zinc smelting area in Southwest China. Environ. Sci. Pollut. Res. 2022, 29, 14288–14298. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-Q.; Yang, W.-T.; Yang, L.-Y.; Chen, Y.-L.; Jing, H.-N.; Wu, P. Health Risk Assessment and Environmental Benchmark of Heavy Metals in Cultivated Land in Mountainous Area of Northwest Guizhou Province. Huan Jing Ke Xue = Huanjing Kexue 2022, 43, 3799–3810. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Luo, P.; Li, S.; Zhang, Q.; Sun, D. Distributions of Heavy Metals in Rice and Corn and Their Health Risk Assessment in Guizhou Province. Bull. Environ. Contam. Toxicol. 2022, 108, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, P.; Yang, W. Study on Safe Usage of Agricultural Land in Typical Karst Areas Based on Cd in Soil and Maize: A Case Study of Northwestern Guizhou, China. Agriculture 2022, 12, 1156. [Google Scholar] [CrossRef]
- Szymczycha-Madeja, A.; Mulak, W. Comparison of various digestion procedures in chemical analysis of spent hydrodesulfurization catalyst. J. Hazard. Mater. 2009, 164, 776–780. [Google Scholar] [CrossRef]
- CNEMC. Chinese Soil Element Background Value; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Yang, J.; Sun, Y.; Wang, Z.; Gong, J.; Gao, J.; Tang, S.; Ma, S.; Duan, Z. Heavy metal pollution in agricultural soils of a typical volcanic area: Risk assessment and source appointment. Chemosphere 2022, 304, 135340. [Google Scholar] [CrossRef]
- Aendo, P.; Thongyuan, S.; Songserm, T.; Tulayakul, P. Carcinogenic and non-carcinogenic risk assessment of heavy metals contamination in duck eggs and meat as a warning scenario in Thailand. Sci. Total Environ. 2019, 689, 215–222. [Google Scholar] [CrossRef]
- Boudebbouz, A.; Boudalia, S.; Bousbia, A.; Habila, S.; Boussadia, M.I.; Gueroui, Y. Heavy metals levels in raw cow milk and health risk assessment across the globe: A systematic review. Sci. Total Environ. 2021, 751, 141830. [Google Scholar] [CrossRef]
- Ma, W.; Tai, L.; Qiao, Z.; Zhong, L.; Wang, Z.; Fu, K.; Chen, G. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: A case study in North China. Sci. Total Environ. 2018, 631–632, 348–357. [Google Scholar] [CrossRef]
- Yang, L.; Yang, W.; Gu, S.; Zhang, J.; Wu, P. Effects of Organic Fertilizers on Cd Activity in Soil and Cd Accumulation in Rice in Three Paddy Soils from Guizhou Province. Bull. Environ. Contam. Toxicol. 2021, 107, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Luo, X.; Cheng, Y.; Ke, W.; Hartley, W.; Li, C.; Jiang, J.; Zhu, F.; Xue, S. Spatial distribution of toxic metal(loid)s at an abandoned zinc smelting site, Southern China. J. Hazard. Mater. 2022, 427, 127970. [Google Scholar] [CrossRef] [PubMed]
- Delavar, M.A.; Safari, Y. Spatial distribution of heavy metals in soils and plants in Zinc Town, northwest Iran. Int. J. Environ. Sci. Technol. 2016, 13, 297–306. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Rada, E.C.; Schiavon, M.; Torretta, V. A regulatory strategy for the emission control of hexavalent chromium from waste-to-energy plants. J. Clean. Prod. 2021, 278, 123415. [Google Scholar] [CrossRef]
- Heidari, M.; Darijani, T.; Alipour, V. Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere 2021, 273, 129656. [Google Scholar] [CrossRef]
- Romeh, A.A. Potential risks from the accumulation of heavy metals in canola plants. Environ. Sci. Pollut. Res. 2021, 28, 52529–52546. [Google Scholar] [CrossRef]
- Yang, W.T.; Chen, Y.L.; Yang, L.Y.; Xu, M.Q.; Jing, H.N.; Wu, P.; Wang, P. Spatial distribution, food chain translocation, human health risks, and environmental thresholds of heavy metals in a maize cultivation field in the heart of China’s karst region. J. Soils Sediments 2022, 22, 2654–2670. [Google Scholar] [CrossRef]
Class | Range | Classification |
---|---|---|
0 | Igeo < 0 | Uncontaminated |
1 | 0 ≤ Igeo < 1 | Uncontaminated to moderately contaminated |
2 | 1 ≤ Igeo < 2 | Moderately contaminated |
3 | 2 ≤ Igeo < 3 | Moderately to heavily contaminated |
4 | 3 ≤ Igeo < 4 | Heavily contaminated |
5 | 4 ≤ Igeo < 5 | Heavily to extremely contaminated |
6 | Igeo > 5 | Extremely contaminated |
Potential Risk Level | Er | R |
---|---|---|
Slight risk | Er < 40 | R < 150 |
Moderate risk | 40 ≤ Er < 80 | 150 ≤ R < 300 |
High risk | 80 ≤ Er < 160 | 300 ≤ R < 600 |
Very high risk | 160 ≤ Er < 320 | 600 ≤ R < 1200 |
Extremely high Risk | Er ≥ 320 | R ≥ 1200 |
Soil pH | Heavy Metals in Soil (mg kg−1) | ||||||
---|---|---|---|---|---|---|---|
Cd | Hg | As | Pb | Cr | |||
Rice soil (n = 22) | Min | 4.67 | 0.26 | 0.04 | 3.23 | 18.20 | 52.30 |
Max | 7.47 | 3.55 | 0.32 | 51.90 | 102.00 | 216.00 | |
Mean | 6.05 | 1.17 | 0.11 | 13.57 | 39.01 | 137.57 | |
SD | 0.74 | 0.89 | 0.08 | 13.83 | 25.49 | 52.63 | |
CV | 0.12 | 0.76 | 0.68 | 1.02 | 0.65 | 0.38 | |
1st quartile | 5.47 | 0.49 | 0.06 | 6.48 | 23.90 | 100.00 | |
Median | 6.05 | 0.84 | 0.09 | 7.74 | 29.30 | 131.00 | |
3rd quartile | 6.78 | 1.63 | 0.13 | 12.70 | 39.20 | 198.00 | |
Skewness | 0.08 | 1.34 | 1.96 | 2.16 | 1.79 | 0.14 | |
Kurtosis | −0.91 | 1.16 | 3.61 | 3.86 | 2.18 | −1.01 | |
Maize soil (n = 103) | Min | 4.53 | 0.30 | 0.06 | 2.74 | 18.50 | 61.30 |
Max | 8.09 | 15.50 | 2.87 | 532.00 | 696.00 | 404.00 | |
Mean | 6.35 | 2.96 | 0.25 | 31.75 | 71.69 | 168.98 | |
SD | 0.93 | 2.47 | 0.30 | 53.85 | 97.88 | 83.16 | |
CV | 0.15 | 0.83 | 1.20 | 1.70 | 1.37 | 0.49 | |
1st quartile | 5.64 | 1.38 | 0.13 | 12.40 | 33.10 | 99.60 | |
Median | 6.30 | 2.21 | 0.19 | 22.50 | 47.80 | 137.00 | |
3rd quartile | 7.06 | 3.61 | 0.26 | 34.10 | 58.60 | 228.00 | |
Skewness | 0.18 | 2.50 | 7.14 | 8.08 | 4.55 | 0.93 | |
Kurtosis | −0.87 | 8.29 | 61.50 | 74.49 | 23.64 | 0.15 | |
Cabbage soil (n = 35) | Min | 4.35 | 1.06 | 0.05 | 3.78 | 30.00 | 88.70 |
Max | 7.77 | 64.70 | 0.32 | 81.70 | 1864.00 | 259.00 | |
Mean | 6.13 | 13.01 | 0.14 | 24.77 | 320.60 | 163.83 | |
SD | 0.93 | 16.31 | 0.07 | 20.76 | 429.59 | 50.06 | |
CV | 0.15 | 1.25 | 0.47 | 0.84 | 1.34 | 0.31 | |
1st quartile | 5.25 | 2.62 | 0.10 | 8.63 | 60.70 | 119.00 | |
Median | 6.12 | 6.78 | 0.12 | 19.90 | 196.00 | 168.00 | |
3rd quartile | 7.11 | 17.10 | 0.15 | 29.60 | 347.00 | 203.00 | |
Skewness | 0.12 | 2.02 | 1.40 | 1.59 | 2.63 | 0.25 | |
Kurtosis | −0.95 | 3.47 | 1.05 | 2.31 | 6.84 | −1.13 | |
National background value in soil | / | 0.10 | 0.07 | 11.20 | 26.00 | 61.00 |
Heavy Metals in Soil (mg kg−1) | ||||||
---|---|---|---|---|---|---|
Cd | Hg | As | Pb | Cr | ||
Rice (n = 22) | Numbers of ND | 0 | 22 | 0 | 7 | 0 |
Min | 0.007 | / | 0.009 | 0.010 | 0.092 | |
Max | 0.316 | / | 0.101 | 0.092 | 2.440 | |
Mean | 0.071 | / | 0.052 | 0.020 | 0.355 | |
SD | 0.085 | / | 0.031 | 0.021 | 0.514 | |
CV | 1.209 | / | 0.589 | 1.050 | 1.449 | |
1st quartile | 0.014 | / | 0.024 | 0.012 | 0.113 | |
Median | 0.034 | / | 0.051 | 0.013 | 0.143 | |
3rd quartile | 0.080 | / | 0.082 | 0.016 | 0.568 | |
Skewness | 1.752 | / | 0.193 | 3.511 | 3.472 | |
Kurtosis | 2.423 | / | −1.274 | 12.856 | 13.706 | |
Maize (n = 103) | Numbers of ND | 0 | 103 | 8 | 91 | 36 |
Min | 0.014 | / | 0.001 | 0.010 | 0.030 | |
Max | 0.214 | / | 0.009 | 0.490 | 0.612 | |
Mean | 0.032 | / | 0.003 | 0.056 | 0.070 | |
SD | 0.033 | / | 0.002 | 0.137 | 0.079 | |
CV | 1.029 | / | 0.486 | 2.442 | 1.123 | |
1st quartile | 0.017 | / | 0.002 | 0.011 | 0.035 | |
Median | 0.021 | / | 0.003 | 0.014 | 0.050 | |
3rd quartile | 0.033 | / | 0.004 | 0.026 | 0.074 | |
Skewness | 4.224 | / | 1.036 | 3.446 | 5.329 | |
Kurtosis | 19.421 | / | 0.793 | 11.908 | 34.319 | |
Cabbage (n = 35) | Numbers of ND | 0 | 15 | 3 | 12 | 32 |
Min | 0.004 | 0.001 | 0.001 | 0.011 | 0.034 | |
Max | 0.450 | 0.003 | 0.019 | 1.380 | 0.046 | |
Mean | 0.082 | 0.002 | 0.006 | 0.141 | 0.039 | |
SD | 0.090 | 0.001 | 0.004 | 0.282 | 0.006 | |
CV | 1.103 | 0.340 | 0.791 | 2.001 | 0.162 | |
1st quartile | 0.017 | 0.001 | 0.003 | 0.013 | 0.034 | |
Median | 0.054 | 0.002 | 0.004 | 0.064 | 0.037 | |
3rd quartile | 0.113 | 0.002 | 0.007 | 0.166 | 0.046 | |
Skewness | 2.500 | 0.240 | 1.406 | 4.188 | 1.402 | |
Kurtosis | 8.029 | −0.906 | 1.224 | 18.811 | / |
Plant Type | Heavy Metals | Regression Equation | n | R2 | p | Detection Value | Prediction Value |
---|---|---|---|---|---|---|---|
Cabbage | Cd | Cf = 10^(−1.845 − 0.039 × pH + 0.912 × ) | 35 | 0.850 | <0.001 | 0.082 (0.004–0.450) | 0.081 (0.009–0.370) |
Maize | Cd | Cf = 10^(−0.748 − 0.151 × pH + 0.322 × ) | 102 | 0.504 | <0.001 | 0.032 (0.014–0.210) | 0.028 (0.011–0.073) |
Rice | Cd | Cf = 10^(−0.133 − 0.208 × pH + 1.025 × ) | 22 | 0.438 | <0.005 | 0.071 (0.006–0.316) | 0.050 (0.011–0.189) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wu, P.; Yang, W. Characteristics, Health Risk Assessment, and Transfer Model of Heavy Metals in the Soil—Food Chain in Cultivated Land in Karst. Foods 2022, 11, 2802. https://doi.org/10.3390/foods11182802
Yang L, Wu P, Yang W. Characteristics, Health Risk Assessment, and Transfer Model of Heavy Metals in the Soil—Food Chain in Cultivated Land in Karst. Foods. 2022; 11(18):2802. https://doi.org/10.3390/foods11182802
Chicago/Turabian StyleYang, Liyu, Pan Wu, and Wentao Yang. 2022. "Characteristics, Health Risk Assessment, and Transfer Model of Heavy Metals in the Soil—Food Chain in Cultivated Land in Karst" Foods 11, no. 18: 2802. https://doi.org/10.3390/foods11182802
APA StyleYang, L., Wu, P., & Yang, W. (2022). Characteristics, Health Risk Assessment, and Transfer Model of Heavy Metals in the Soil—Food Chain in Cultivated Land in Karst. Foods, 11(18), 2802. https://doi.org/10.3390/foods11182802