Classification of Prunus Genus by Botanical Origin and Harvest Year Based on Carbohydrates Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Collection and Pre-Treatment
2.3. NMR Analysis and Data Processing
3. Results and Discussion
3.1. Fruits 1H-NMR Spectra and Assignment of the Interest Peaks
3.2. Fruits Variety-Based Classification
3.3. Harvest Year-Based Classification and Climatic Condition Influence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Q.; Borenstein, A.R.; Wu, Y.; Jackson, J.C.; Larson, E.B. Fruit and Vegetable Juices and Alzheimer’s Disease: The Kame Project. Am. J. Med. 2006, 119, 751–759. [Google Scholar] [CrossRef]
- Ogrinc, N.; Košir, I.J.; Spangenberg, J.E.; Kidrič, J. The Application of NMR and MS Methods for Detection of Adulteration of Wine, Fruit Juices, and Olive Oil. A Review. Anal. Bioanal. Chem. 2003, 376, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh-Zare, S.; Farhadi, K.; Amiri, S. Rapid Detection of Apple Juice Concentrate Adulteration with Date Concentrate, Fructose and Glucose Syrup Using HPLC-RID Incorporated with Chemometric Tools. Food Chem. 2022, 370, 131015. [Google Scholar] [CrossRef] [PubMed]
- Shojaee AliAbadi, M.H.; Karami-Osboo, R.; Kobarfard, F.; Jahani, R.; Nabi, M.; Yazdanpanah, H.; Mahboubi, A.; Nasiri, A.; Faizi, M. Detection of Lime Juice Adulteration by Simultaneous Determination of Main Organic Acids Using Liquid Chromatography-Tandem Mass Spectrometry. J. Food Compos. Anal. 2021, 105, 104223. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Liu, H.; Liu, J.; Jiao, Z. Profiles of Sugar and Organic Acid of Fruit Juices: A Comparative Study and Implication for Authentication. J. Food Qual. 2020, 2020, 7236534. [Google Scholar] [CrossRef]
- Muntean, E. Simultaneous Carbohydrate Chromatography and Unsuppressed Ion Chromatography in Detecting Fruit Juices Adulteration. Chromatographia 2010, 71, 69–74. [Google Scholar] [CrossRef]
- Gómez-Ariza, J.L.; Villegas-Portero, M.J.; Bernal-Daza, V. Characterization and Analysis of Amino Acids in Orange Juice by HPLC-MS/MS for Authenticity Assessment. Anal. Chim. Acta 2005, 540, 221–230. [Google Scholar] [CrossRef]
- Amaral, J.S. Target and Non-Target Approaches for Food Authenticity and Traceability. Foods 2021, 10, 172. [Google Scholar] [CrossRef]
- Katerinopoulou, K.; Kontogeorgos, A.; Salmas, C.E.; Patakas, A.; Ladavos, A. Geographical Origin Authentication of Agri-Food Products: A Review. Foods 2020, 9, 489. [Google Scholar] [CrossRef]
- Popescu, R.; Ionete, R.E.; Botoran, O.R.; Costinel, D.; Bucura, F.; Geana, E.I.; Alabedallat, Y.F.J.; Botu, M. 1H-NMR Profiling and Carbon Isotope Discrimination as Tools for the Comparative Assessment of Walnut (Juglans Regia L.) Cultivars with Various Geographical and Genetic Origins-a Preliminary Study. Molecules 2019, 24, 1378. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, A.P.; Mannina, L.; Proietti, N.; Carradori, S.; Daglia, M.; Giusti, A.M.; Antiochia, R.; Capitani, D. Untargeted NMR-based methodology in the study of fruit metabolites. Molecules 2015, 20, 4088–4108. [Google Scholar] [CrossRef]
- Longobardi, F.; Ventrella, A.; Bianco, A.; Catucci, L.; Cafagna, I.; Gallo, V.; Mastrorilli, P.; Agostiano, A. Non-targeted 1H NMR fingerprinting and multivariate statistical analyses for the characterisation of the geographical origin of Italian sweet cherries. Food Chem. 2013, 141, 3028–3033. [Google Scholar] [CrossRef]
- Pei, Y.; He, C.; Liu, H.; Shen, G.; Feng, J. Compositional Analysis of Four Kinds of Citrus Fruits with an NMR-Based Method for Understanding Nutritional Value and Rational Utilization: From Pericarp to Juice. Molecules 2022, 27, 2579. [Google Scholar] [CrossRef]
- Park, S.J.; Hyun, S.-H.; Suh, H.W.; Lee, S.-Y.; Min, T.-S.; Auh, J.-H.; Lee, H.-J.; Kim, J.-H.; Cho, S.-M.; Choi, H.-K. Differentiation of black raspberry fruits according to species and geographic origins by genomic analysis and 1H-NMR-based metabolic profiling. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 633–642. [Google Scholar] [CrossRef]
- Salvino, R.A.; Colella, M.F.; Luca, G. De NMR-Based Metabolomics Analysis of Calabrian Citrus Fruit Juices and Its Application to Industrial Process Quality Control. Food Control 2021, 121, 107619. [Google Scholar] [CrossRef]
- Tamasi, G.; Bonechi, C.; Leone, G.; Andreassi, M.; Consumi, M.; Sangiorgio, P.; Verardi, A.; Rossi, C.; Magnani, A. Varietal and Geographical Origin Characterization of Peaches and Nectarines by Combining Analytical Techniques and Statistical Approach. Molecules 2021, 26, 4128. [Google Scholar] [CrossRef]
- Girelli, C.R.; Accogli, R.; Del Coco, L.; Angilè, F.; De Bellis, L.; Fanizzi, F.P. H-NMR-Based Metabolomic Profiles of Different Sweet Melon (Cucumis Melo L.) Salento Varieties: Analysis and Comparison. Food Res. Int. 2018, 114, 81–89. [Google Scholar] [CrossRef]
- Vogels, J.T.W.E.; Terwel, L.; Tas, A.C.; Van Den Berg, F.; Dukel, F. Detection of Adulteration in Orange Juices by a New Screening Method Using Proton NMR Spectroscopy in Combination with Pattern Recognition Techniques. J. Agric. Food Chem. 1996, 44, 175–180. [Google Scholar] [CrossRef]
- An, L.; Ma, J.; Wang, H.; Li, F.; Qin, D.; Wu, J.; Zhu, G. NMR-Based Global Metabolomics Approach to Decipher the Metabolic Effects of Three Plant Growth Regulators on Strawberry Maturation. Food Chem. 2018, 269, 559–566. [Google Scholar] [CrossRef]
- Dugalic, K.; Sudar, R.; Viljevac, M.; Josipovic, M.; Cupic, T. Sorbitol and Sugar Composition in Plum Fruits Influenced by Climatic Conditions. J. Agric. Sci. Technol. 2014, 16, 1145–1155. [Google Scholar]
- Manganaris, G.A.; Vicente, A.R.; Crisosto, C.H. Effect of Pre-Harvest and Post-Harvest Conditions and Treatments on Plum Fruit Quality. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2008, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cantín, C.M.; Gogorcena, Y.; Moreno, M.Á. Analysis of Phenotypic Variation of Sugar Profile in Different Peach and Nectarine [Prunus persica (L.) Batsch] Breeding Progenies. J. Sci. Food Agric. 2009, 89, 1909–1917. [Google Scholar] [CrossRef]
- Muir, J.G.; Rose, R.; Rosella, O.; Liels, K.; Barrett, J.S.; Shepherd, S.J.; Gibson, P.R. Measurement of Short-Chain Carbohydrates in Common Australian Vegetables and Fruits by High-Performance Liquid Chromatography (HPLC). J. Agric. Food Chem. 2009, 57, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Santucci, C.; Tenori, L.; Luchinat, C. NMR Fingerprinting as a Tool to Evaluate Post-Harvest Time-Related Changes of Peaches, Tomatoes and Plums. Food Res. Int. 2015, 75, 106–114. [Google Scholar] [CrossRef]
- Girelli, C.R.; De Pascali, S.A.; Del Coco, L.; Fanizzi, F.P. Metabolic Profile Comparison of Fruit Juice from Certified Sweet Cherry Trees (Prunus avium L.) of Ferrovia and Giorgia Cultivars: A Preliminary Study. Food Res. Int. 2016, 90, 281–287. [Google Scholar] [CrossRef]
- Sobolev, A.P.; Segre, A.; Lamanna, R. Proton High-Field NMR Study of Tomato Juice. Magn. Reson. Chem. 2003, 41, 237–245. [Google Scholar] [CrossRef]
- Capitani, D.; Sobolev, A.P.; Tomassini, A.; Sciubba, F.; De Salvador, F.R.; Mannina, L.; Delfini, M. Peach Fruit: Metabolic Comparative Analysis of Two Varieties with Different Resistances to Insect Attacks by NMR Spectroscopy. J. Agric. Food Chem. 2013, 61, 1718–1726. [Google Scholar] [CrossRef]
- Goulas, V.; Minas, I.S.; Kourdoulas, P.M.; Lazaridou, A.; Molassiotis, A.N.; Gerothanassis, I.P.; Manganaris, G.A. 1H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit. Front. Plant Sci. 2015, 6, 959. [Google Scholar] [CrossRef]
- Navarro, Y.; Soengas, R.; Iglesias, M.J.; Ortiz, F.L. Use of NMR for the Analysis and Quantification of the Sugar Composition in Fresh and Store-Bought Fruit Juices. J. Chem. Educ. 2020, 97, 831–837. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, H.; Wang, X.; Cao, J.; Jiang, W. Sugar and Organic Acid Composition of Apricot and Their Contribution to Sensory Quality and Consumer Satisfaction. Sci. Hortic. 2017, 225, 553–560. [Google Scholar] [CrossRef]
- Falchi, R.; Bonghi, C.; Drincovich, M.F.; Famiani, F.; Lara, M.v.; Walker, R.P.; Vizzotto, G. Sugar Metabolism in Stone Fruit: Source-Sink Relationships and Environmental and Agronomical Effects. Front. Plant Sci. 2020, 11, 1820. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, C.; Li, W.; Qu, Z.; Zeng, M.; Xi, W. Transcriptional Regulatory Networks Controlling Taste and Aroma Quality of Apricot (Prunus armeniaca L.) Fruit during Ripening. BMC Genom. 2019, 20, 45. [Google Scholar] [CrossRef]
- Famiani, F.; Bonghi, C.; Chen, Z.H.; Drincovich, M.F.; Farinelli, D.; Lara, M.v.; Proietti, S.; Rosati, A.; Vizzotto, G.; Walker, R.P. Stone Fruits: Growth and Nitrogen and Organic Acid Metabolism in the Fruits and Seeds—A Review. Front. Plant Sci. 2020, 11, 1427. [Google Scholar] [CrossRef]
- Xi, W.; Zheng, H.; Zhang, Q.; Li, W. Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening. Int. J. Mol. Sci. 2016, 17, 998. [Google Scholar] [CrossRef]
- Bae, H.; Yun, S.K.; Jun, J.H.; Yoon, I.K.; Nam, E.Y.; Kwon, J.H. Assessment of Organic Acid and Sugar Composition in Apricot, Plumcot, Plum, and Peach during Fruit Development. J. Appl. Bot. Food Qual. 2014, 87, 24–29. [Google Scholar] [CrossRef]
- Ceccarelli, A.; Farneti, B.; Frisina, C.; Allen, D.; Donati, I.; Cellini, A.; Costa, G.; Spinelli, F.; Stefanelli, D. Harvest Maturity Stage and Cold Storage Length Influence on Flavour Development in Peach Fruit. Agronomy 2018, 9, 10. [Google Scholar] [CrossRef]
- Farina, V.; Lo Bianco, R.; Mazzaglia, A. Evaluation of Late-Maturing Peach and Nectarine Fruit Quality by Chemical, Physical, and Sensory Determinations. Agriculture 2019, 9, 189. [Google Scholar] [CrossRef]
- Wu, X.Y.; Han, W.; Yang, Z.Q.; Zhang, Y.X.; Zheng, Y.J. The difference in temperature between day and night affects the strawberry soluble sugar content by influencing the photosynthesis, respiration and sucrose phosphatase synthase. Hort. Sci. 2021, 48, 174–182. [Google Scholar] [CrossRef]
- Menzel, C.M. Effect of Temperature on Soluble Solids Content in Strawberry in Queensland, Australia. Horticulturae 2022, 8, 367. [Google Scholar] [CrossRef]
Metabolites | δ (ppm), Multiplicity (j, Hz) and Assignment | |||
---|---|---|---|---|
Plum | Cherry | Apricot | Sour Cherry | |
Prunus domestica | Prunus avium | Prunus armeniaca | Prunus cerasus | |
(n = 27) | (n = 22) | (n = 15) | (n = 12) | |
β-d-glucose | 3.23 (dd, CH), | 3.23 (dd, CH), | 3.23 (dd, CH), | 3.23 (dd, CH), |
3.40 (dd, CH), | 3.40 (dd, CH), | 3.40 (dd, CH), | 3.40 (dd, CH), | |
4.63 (d, H1) | 4.63 (d, H1) | 4.63 (d, H1) | 4.63 (d, H1) | |
methanol | 3.36 (s, CH3) | 3.36 (s, CH3) | 3.36 (s, CH3) | 3.36 (s, CH3) |
α-d-glucose | 3.43 (dd, CH), | 3.43 (dd, CH), | 3.43 (dd, CH), | 3.43 (dd, CH), |
3.50 (dd, CH), | 3.50 (dd, CH), | 3.50 (dd, CH), | 3.50 (dd, CH), | |
5.22 (d, CH) | 5.22 (d, CH) | 5.22 (d, CH) | 5.22 (d, CH) | |
fructose | 3.60 (d, CH2) | 3.60 (d, CH2) | 3.60 (d, CH2) | 3.60 (d, CH2) |
3.99 (H5), | 3.99 (H5), | 3.99 (H5), | 3.99 (H5), | |
4.10 (d, H3, H4) | 4.10 (d, H3, H4) | 4.10 (d, H3, H4) | 4.10 (d, H3, H4) | |
sucrose | 4.20 (d, H3), | 4.20 (d, H3), | ||
5.39 (d, H1) | 5.39 (d, H1) |
Variables | Temperature | Precipitation | Carbohydrates | F | S | SF | αG | βG |
---|---|---|---|---|---|---|---|---|
Temperature | 1 | −0.564 | −0.047 | −0.261 | 0.121 | 0.105 | −0.066 | −0.173 |
Precipitation | −0.564 | 1 | 0.089 | 0.107 | 0.089 | 0.092 | −0.036 | 0.083 |
Carbohydrates | −0.047 | 0.089 | 1 | 0.567 | −0.672 | −0.679 | 0.693 | 0.698 |
F | −0.261 | 0.107 | 0.567 | 1 | −0.856 | −0.863 | 0.778 | 0.816 |
S | 0.121 | 0.089 | −0.672 | −0.856 | 1 | 0.993 | −0.908 | −0.885 |
SF | 0.105 | 0.092 | −0.679 | −0.863 | 0.993 | 1 | −0.893 | −0.886 |
αG | −0.066 | −0.036 | 0.693 | 0.778 | −0.908 | −0.893 | 1 | 0.903 |
βG | −0.173 | 0.083 | 0.698 | 0.816 | −0.885 | −0.886 | 0.903 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miricioiu, M.G.; Ionete, R.E.; Costinel, D.; Botoran, O.R. Classification of Prunus Genus by Botanical Origin and Harvest Year Based on Carbohydrates Profile. Foods 2022, 11, 2838. https://doi.org/10.3390/foods11182838
Miricioiu MG, Ionete RE, Costinel D, Botoran OR. Classification of Prunus Genus by Botanical Origin and Harvest Year Based on Carbohydrates Profile. Foods. 2022; 11(18):2838. https://doi.org/10.3390/foods11182838
Chicago/Turabian StyleMiricioiu, Marius Gheorghe, Roxana Elena Ionete, Diana Costinel, and Oana Romina Botoran. 2022. "Classification of Prunus Genus by Botanical Origin and Harvest Year Based on Carbohydrates Profile" Foods 11, no. 18: 2838. https://doi.org/10.3390/foods11182838
APA StyleMiricioiu, M. G., Ionete, R. E., Costinel, D., & Botoran, O. R. (2022). Classification of Prunus Genus by Botanical Origin and Harvest Year Based on Carbohydrates Profile. Foods, 11(18), 2838. https://doi.org/10.3390/foods11182838