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Abstract: The aim of this study was to investigate the effects of hydrothermal treatment at different
temperatures and times on the structure and functional properties of quinoa protein isolate (QPI). The
structure of QPI was investigated by analyzing changes in the intrinsic fluorescence spectrum, ultra-
violet (UV) spectrum, and Fourier transform infrared spectrum. The solubility, water/oil-holding
capacity, emulsifying activity, and emulsion stability of QPI were studied, as were the particle size
and the thermogravimetric properties of QPI. The results showed that the average particle size of
QPI gradually increased with the increase in hydrothermal treatment time and temperature, and
reached a maximum value of 121 ◦C for 30 min. The surface morphology also became rough and its
thermal stability also increased. The endogenous fluorescence and UV spectral intensity at 280 nm
decreased gradually with increasing hydrothermal treatment time and temperature, and reduced to
the minimum values at 121 ◦C for 30 min, respectively. After hydrothermal treatment, the secondary
structure of QPI tended to be disordered. The functional properties of QPI after treatment were all
superior to those of the control. The results of this study might provide a basis for the processing and
utilization of QPI.

Keywords: quinoa (Chenopodium quinoa Willd); protein isolate; hydrothermal treatment; structure;
functional properties

1. Introduction

Chenopodium quinoa Willd is a kind of quasi-grain. Its protein content is 12.0–23.0%,
which is higher than rice, maize and barley [1]. Quinoa protein isolate (QPI) is rich in all
the essential amino acids needed by the human body, with a balanced amino acid content,
and is easily absorbed by the human body [2]. Quinoa protein is mainly composed of 37%
11S globulin and 35% 2S albumin; disulfide bonds are the key to stabilizing the protein
structure, while gluten and gliadin are less so [3]. In addition,11S globulin is a hexamer
composed of a 22–23 kDa basic group and a 32–39 kDa acidic group [4]. 2S Albumin is a
heterodimer linked by about 30–40 and 60–90 residues via disulfide bonds (Mw 8–9 kDa) [5].
Compared with most grain proteins, QPI is closer to milk and meat, and is a sustainable
high-quality plant protein. In recent years. QPI has gradually become a research hotspot
due to its good functional and physicochemical properties that could be used in the food
industry [6]. Studies have shown that the emulsifying activity and emulsion stability
of QPI are higher than those of wheat protein and soybean protein [7]. QPI has strong
water and oil-holding capacities which are higher than those of oats, soybeans, and wheat
proteins [8–10].

The structure and functional properties of protein determine its application scope in
food processing. The commonly used modification methods in the food industry include ul-
trasound, high pressure, pH and heat treatment, among which heat treatment has attracted
wide attention due to its simple operation and low cost [11–15]. Heat treatment causes
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thermal denaturation through the destruction of covalent bonds, which increases the expo-
sure of hydrophobic and thiol (SH) groups, and has a substantial impact on the functional
properties of food proteins such as solubility, foaming, and emulsifying properties [11].
Heat treatment and alkali treatment can improve the performance of rice protein [16].
Ultrasonic heat treatment reduced the relative content of α-helix and β-sheet in soybean
protein secondary structure, and increased the relative content of random coil, resulting
in loose tertiary structure [17]. Heat treatment significantly affects the conformation of
Cuminum cyminum protein, resulting in a surface hydrophobicity increase [15]. Heat treat-
ment at 85 ◦C for 15 s increased the particle size, turbidity, zeta potential, and surface
hydrophobicity of goat milk proteins, further improving their functional properties [18].
Studies also have shown that heat treatment has an effect on the structural and functional
properties of faba bean protein [19], protein isolate from Stauntonia brachyanthera seeds [20],
and sunflower protein [21]. Up to the present, there are few reports indicating the potential
effect of heat treatment on QPI. Previous studies have shown that different kinds of heat
treatments significantly affected the structural and functional properties of QPI [22]. In
addition, the degree of aggregation of QPI can be changed by adjusting the hydrothermal
treatment conditions [23]. The water retention capacity improved considerably in the
heat-modified and frozen QPI [24]. Mir et al. (2021) have investigated the effects of heat
treatment at 80, 90, and 100 ◦C for 15 and 30 min on the functional properties of QPI [25].
However, the aims of present study are to analyze the effects of the ordinary hydrothermal
treatment and simulated autoclaving hydrothermal treatment on the new variety “Longli-1”
quinoa protein isolate. We focused on the effects of ordinary hydrothermal treatment and
simulated autoclaving on the secondary and tertiary structure of QPI and their effects on
functional properties, which are important for processing. The results of this study provide
some valuable information for the application of quinoa protein in a variety of foods.

The aims of this study were to (1) determine the changes in the particle size of quinoa
protein under different temperature and time hydrothermal treatments; (2) investigate the
effects of hydrothermal treatment conditions on the thermal stability of quinoa protein;
(3) study how hydrothermal treatment affects the secondary and tertiary structure of
quinoa protein; and (4) measure the different functional properties of quinoa protein after
hydrothermal treatments.

2. Materials and Methods
2.1. Materials

The “Longli-1” quinoa was kindly supplied by Gansu Academy of Agricultural Sci-
ences (Lanzhou, China). After mechanical shelling, quinoa was packed in woven bags and
the samples were stored at room temperature (22 ± 3 ◦C, RH 55–60%) for 7 d. Sodium
dodecyl sulfate (SDS) and phosphate buffer saline were purchased from Shanghai Yuanye
Biological Technology Co., Ltd., (Shanghai, China). Edible soybean oil was purchased from
a local supermarket.

2.2. Isolation of QPI

The quinoa seeds were crushed and passed through a 60-mesh sieve. The quinoa
powder was defatted (petroleum ether, 30–60 ◦C) 3 times and placed in a fume hood to air
dry. The defatted quinoa flour and deionized water were mixed in a ratio of 1:20 g·mL−1

and the suspension was then prepared. This suspension was adjusted to pH 10, stirred for
2 h in a water bath at 47 ◦C, and centrifugated (5000 rpm, 15 min) to take the supernatant.
The pH of the supernatant was adjusted to 4.5 (1 M HCl) and the precipitate was collected
by centrifugation (5000 rpm, 15 min, 4 ◦C). The precipitate was reconstituted and washed
with deionized water 5 times. The washed precipitate was redissolved in phosphate buffer
saline solution at pH 7.0 and placed in a dialysis bag with a molecular retention of 8 kDa.
Then the dialysis bag was placed in primary water for dialysis for 48 h (4 ◦C), and the water
was replaced every 3 h. The suspension was vacuum freeze-dried (LyoQuest-85, Telstar
Lab, Madrid, Spain) to obtain QPI [26].
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2.3. Hydrothermal Treatment of QPI

A 5% QPI solution was prepared using phosphate buffer saline and treated at different
temperatures of 25, 60, 70, 80, 90, 100, and 121 ◦C for 5, 10, 20, and 30 min (60–100 ◦C
was carried out in a water bath, HH-4, Guohua Electric Co., Ltd., Shanghai, China, 121 ◦C
was carried out in an autoclave, MLS-3750, SANYO Corporation, Osaka, Japan), and then
quickly cooled. (25 ◦C in the text refers to QPI without hydrothermal treatment, i.e., natural
QPI, which is recorded as control.) The hydrothermally treated QPI solution was vacuum
freeze-dried (LyoQuest-85, Telstar Lab, Madrid, Spain) to obtain freeze-dried QPI [27].

2.4. Structural Properties of QPI
2.4.1. Particle Size

Laser particle size analyzer (Bettersize 2600, Dandong Better Instruments Co., Ltd.,
Dandong, China) was used to measure the particle size of the QPI. The measurement
temperature was 25 ◦C, the refractive index of the sample and the dispersant were 1.46 and
1.33, respectively, and the refractive index was 1.20–1.40% when measured. The QPI was
added to cuvette dropwise till the refractive index reached between 5.00% and 10.0% [28].

2.4.2. Thermogravimetric Characteristics

The thermogravimetric analysis of QPI was determined by TGA (TGA 550, TA In-
struments Co., Ltd., New Castle, DE, USA). Freeze-dried QPI (5–10 mg) was placed in a
platinum–rhodium alloy tray, the scan rate was set to 50 ◦C/min, and the temperature
range was 50 to 700 ◦C. TGA was performed on QPI under nitrogen atmosphere [29].

2.4.3. Intrinsic Fluorescence Spectrum

Intrinsic fluorescence of QPI was determined using a Fluorescence spectrophotometer
(F-4700, Hitachi High-Tech Science Co., Ltd. Naka Office, Naka, Japan). Freeze-dried QPI
was mixed with phosphate buffer saline to prepare 0.15 mg/mL QPI solutions (the solution
was filtered through a 0.45 µm aqueous filter). The setting parameters were: excitation
wavelength 290 nm, emission spectrum was recorded in the range of 300–460 nm, and
excitation and emission slits were both 5 nm [30].

2.4.4. Ultra-Violet (UV) Spectrum

Freeze-dried QPI was mixed with phosphate buffer saline to prepare 1 mg/mL QPI
solutions (the solution was filtered through a 0.45 µm aqueous filter), and performed UV
spectrum scanning (UV-2450, Shimadzu Instruments Co., Ltd., Tokyo, Japan). The scanning
wavelength and scanning rate were set to 200–400 nm and 2 nm/s, respectively [31].

2.4.5. FTIR

FTIR of freeze-dried QPI was characterized using an FTIR spectrum (FTIR920, Tianjin
Tuopu Instrument Co., Ltd., Tianjin, China). The freeze-dried QPI and KBr were mixed
uniformly at a ratio of 1:200, then pulverized and compressed for determination. The mea-
surement temperature was the ambient temperature (25 ◦C), the wave number, resolution
and wave number accuracy were set to 400–4000 cm−1, 4 cm−1 and 0.01 cm, respectively,
and the number of scans was 64 times [32].

2.5. Determination of Functional Properties of QPI
2.5.1. Solubility

The freeze-dried QPI was dissolved in phosphate buffer saline pH 7 (0.500%), magnet-
ically stirred at ambient temperature (25 ◦C) for 20 min, and then centrifuged (4000 rpm,
20 min) [33].

The solubility of QPI was expressed as follows:

Solubility/ % =
Protein content in supernatant

Total protein content in the sample
× 100 (1)
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The protein content in the supernatant, i.e., the content of soluble protein, was de-
termined by the Coomassie brilliant blue method (CCB) [34]. The specific steps were as
follows: Coomassie brilliant blue G-250 was used for color development, and bovine serum
albumin (BSA) was used as the reference substance. The content of soluble protein was
determined by visible spectrophotometry at the detection wavelength of 595 nm (2700,
UV–Vis Spectrophotometer, Co., Ltd. Shimadzu, Tokyo, Japan). The standard curve used
was Y = 0.0009X + 0.1834 (R2 = 0.9898). The total protein content was determined by
Kjeldahl method (total nitrogen × 6.38). In this method, 0.5 g freeze-dried quinoa protein
powder was used as a sample for determination.

2.5.2. Water-Holding Capacity (WHC) and Oil-Holding Capacity (OHC)

Freeze-dried QPI (0.5 g) was placed in a dry centrifuge tube and mixed with 10 mL
of deionized water. The mixture was magnetically stirred at 25 ◦C for 30 min and then
centrifuged (4000 rpm, 30 min). After decanting the supernatant, the centrifuge tube
was tilted (45◦) for 30 min to remove excess water. The total mass of the centrifuge tube
and sediment was recorded. The water-holding capacity (WHC) was calculated using
the equation:

WHC/ % =
m2 − m1

0.5
× 100 (2)

where m1 is the mass of freeze-dried QPI and centrifuge tube (g), m2 is the mass of sediment
and centrifuge tube (g).

Freeze-dried QPI (0.5 g) was placed in a dry centrifuge tube and mixed with 3 mL of
soybean oil. The mixture was vortexed at room temperature (25 ◦C) for 30 min and then
centrifuged (4000 rpm, 30 min). After decanting the supernatant, the centrifuge tube was
tilted (45◦) for 30 min to remove excess oil. The mass of the sediment is recorded. The
oil-holding capacity (OHC) was calculated as follows:

OHC/ % =
m2 − m1

0.5
× 100 (3)

where m1 is the mass of QPI (g), and m2 is QPI’s sediment (g) [35].

2.5.3. Emulsifying Activity (EA) and Emulsion Stability (ES)

A mixed solution of 24 mL hydrothermal treatment QPI solution (1.00%, w/v) and
8 mL soybean oil was whipped with a high-speed shearing dispersing emulsifier (FA25,
FLUKO Equipment Shanghai Co., Ltd., Shanghai, China) at 10,000 rpm for 5 min at 25 ◦C.
The emulsion (0.05 mL) and 5 mL of sodium dodecyl sulfate (SDS) solution (0.100%) were
mixed and immediately shaken to mix. The absorbance of the emulsion after being placed
for 0 min and 10 min were measured at a wavelength of 500 nm with 0.100% SDS solution
as a control. The emulsifying activity (EA) was calculated using the equation:

EA
(

m2/g
)
=

2 × 2.303 × A0 × DF
C × ρ× θ× 10000

(4)

where A0, DF, ρ, and θ are the absorbance value of the sample, dilution factor (100), optical
path (1 cm), and oil volume fraction (0.25), respectively.

The emulsion stability (ES) was calculated as follows:

ES/ % =
EA10

EA
× 100 (5)

where EA10 is the emulsifying activity (m2/g) at 10 min after being placed [36].

2.6. Data Analysis

The indicators involved in the test were measured three times. All data were calculated
using Excel 2007 (Microsoft, Redmond, WA, USA) to calculate the mean and standard devi-
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ation, Origin 8.5 (Origin Lab, Northampton, MA, USA) was used for graphing, SPSS 17.0
(International Business Machines, Armonk, NY, USA) was used for one-way ANOVA, and
Peak Fit V4.12 (Reachsoft, Beijing, China) was used for fitting analysis of infrared spectra.

3. Results and Discussion
3.1. Structural Properties of QPI
3.1.1. Particle Size

The functional properties of proteins are affected by protein particle size [37]. The
results showed that compared with the control, the particle size distribution of QPI after
hydrothermal treatment became wider, and the overall distribution shifted to the right
with the increase in hydrothermal treatment time and temperature, and 121 ◦C had the
most significant effect on it (Figure 1A–D). The volumetric mean particle size D[4,3] of
QPI gradually increased with increasing hydrothermal treatment time and temperature,
and the effect was most significant of 121 ◦C, reaching a maximum at 121 ◦C for 30 min,
which was 3.31 times higher than the control (p < 0.05) (Table 1). D[5,0] can reflect to some
extent the aggregation of proteins, a key factor in the evaluation of protein quality [36].
D[5,0] of QPI increased with increasing hydrothermal treatment time and temperature,
reaching a maximum at hydrothermal treatment conditions of 121 ◦C for 30 min, which
was significantly higher than the control by 3.93 times (p < 0.05) (Table 1).

Table 1. Effects of different hydrothermal treatment conditions on D[4,3] and D[5,0], nm. A–F indicates
the significant differences between different temperatures and a–c indicates the significant differences
between different times (p < 0.05).

Size (nm) Temperature (◦C)
Time (min)

5 10 20 30

25 11.54 ± 1.10 Ea 11.54 ± 1.10 Fa 11.54 ± 1.10 Ea 11.54 ± 1.10 Fa

60 13.57 ± 0.53 Db 14.23 ± 0.99 Eab 14.35 ± 0.59 Dab 15.67 ± 1.09 Ea

70 14.78 ± 0.65 Db 16.13 ± 0.53 Db 16.44 ± 1.10 Cb 18.61 ± 0.96 Da

D[4,3] 80 16.76 ± 0.64 Cc 18.84 ± 0.98 Cb 21.09 ± 0.79 Ba 22.01 ± 0.77 Ca

90 18.11 ± 0.45 Cb 20.59 ± 1.11 BCb 21.24 ± 0.61 Bb 21.64 ± 1.30 Ca

100 20.20 ± 0.31 Bc 21.87 ± 0.48 Bb 20.52 ± 0.46 Bc 24.47 ± 0.74 Ba

121 34.49 ± 0.41 Ac 143.02 ± 0.49 Ab 49.58 ± 0.41 Aa 49.69 ± 0.87 Aa

25 7.37 ± 0.52 Da 7.37 ± 0.52 Da 7.37 ± 0.52 Da 7.37 ± 0.52 Ea

60 10.90 ± 0.40 Cb 9.62 ± 0.54 Cc 10.04 ± 0.43 Cbc 12.94 ± 0.62 Da

70 9.69 ± 0.44 Cc 10.37 ± 0.45 Cbc 10.92 ± 0.34 Cb 11.95 ± 0.62 Da

D[5,0] 80 9.85 ± 0.36 Cb 10.36 ± 0.46 Cb 14.60 ± 0.30 Ba 15.49 ± 0.35 Ca

90 9.84 ± 0.13 BCd 13.05 ± 0.44 Bc 14.87 ± 0.37 Bb 15.72 ± 0.35 Ca

100 12.33 ± 0.28 Bd 13.94 ± 0.36 Bc 15.03 ± 0.18 Bb 17.87 ± 0.61 Ba

121 24.51 ± 0.42 Ac 30.55 ± 0.39 Ab 36.16 ± 0.16 Aa 36.36 ± 0.65 Aa

We also found that the average particle size of QPI increased with the increase in
temperature, and the degree of particle size inhomogeneity also increased, which is similar
to the results from the study of the influence of heating on the particle size of lotus (Nelumbo
nucifera Gaertn.) seed protein. The results showed that all heat treatments resulted in a
significant increase in protein particle size compared to native QPI [38]. Previous studies
showed that the particle size of rice gluten increased gradually during heat treatment [39].
The possible reasons may be due to hydrothermal treatment, which causes the 7S and 11S
globulins in the protein to cross-link through disulfide bonds to form aggregates and the
intact 11S globulin monomers to readily form covalent aggregates, leading to an increase in
the particle size of the protein [40]. It is suggested that the hydrothermal treatment causes
changes such as cross-linking or aggregation between protein molecules, generating a large
number of aggregates, and the degree of protein aggregation increases during the heat
treatment, which is consistent with the findings of Wang et al., (2020) [22]. In addition,
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similar results were found in a study on the effect of heat treatment on the particle size of
sunflower protein isolates [21]. This suggests that hydrothermal treatment causes QPI to
form aggregates leading to a significant increase in its particle size. However, the results
are in contradiction with the results of Mir et al., (2021) who observed a reverse kind of
trend whereby the particle size of all QPI samples after heat treatment was smaller than
that of native QPI [25]. Among all the heat-treated QPI, the decrease in QPI particle size
was the highest at 80 ◦C for 30 min, and the decrease in QPI particle size was the lowest at
100 ◦C for 30 min. However, in our results hydrothermal treatment significantly increased
the particle size of QPI. The possible reasons for this may be due to the quinoa used in this
study is a new variety, Longli-1, which is cultivated in China. Studies have shown that the
chemical composition and amino acid profile of different varieties of grains are different,
which has a great impact on the physicochemical properties of proteins, therefore affecting
the degree of aggregation and particle size [41,42].
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Figure 1. Effects of hydrothermal treatment of 5 min (A), 10 min (B), 20 min (C), 30 min (D) on
particle size distribution of QPI.

3.1.2. Thermogravimetric Characteristics

The effect of hydrothermal treatment on the thermal stability of QPI was investigated
by thermogravimetric analysis of QPI. The results showed that different temperatures had
significant effects on the thermogravimetric properties of QPI. The thermal degradation
of QPI was divided into three stages, the first stage was from 50 to 200 ◦C; the weight
loss in this stage was due to the evaporation of residual water and the degradation of low
molecular weight volatiles. The second stage was from 200 to 400 ◦C. As the temperature
increased further, both non-covalent and covalent bonds in QPI broke, including covalent
peptide bonds, disulfide bonds, O-O and O-N, resulting in the complete breakdown of the
QPI protein backbone and the release of various gases, such as CO, CO2, and NH3 [43]. The
third stage was from 400 to 700 ◦C, during which the slope of the TGA curve changed, the
weight loss slowed down, and the degradation of the control began at about 200 ◦C, while
the degradation of the QPI hydrothermally treated at 121 ◦C began at about 230 ◦C. This
showed that the QPI after heat treatment had higher thermal stability, and when the heat
treatment temperature was 121 ◦C, the thermal stability of QPI was the highest (Figure 2A).
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In all three degradation stages, the weight loss of QPI was lower after hydrothermal
treatment compared to the control. A similar phenomenon was also found in phosphate-
modified peanut protein isolates [44] and protein concentrate of an edible seaweed named
Kappaphycus alvarezii (Doty) Doty [45]. Similar trends were observed when Malik and Saini
investigated the thermogravimetric properties of heat-treated sunflower protein [46].
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Figure 2. Effects of different hydrothermal treatment temperatures on thermogravimetric (A) and
derivative thermogravimetric curve (B) of QPI.

The derivative thermogravimetric (DTG) curve of QPI showed a unimodal change
with a distinct peak (Figure 2B). Corresponding to TGA curve analysis, this peak was
mainly caused by the breakage of both non-covalent bonds and covalent bonds in QPI. QPI
obtained the maximum decomposition rate at the DTG peak [23]. The decomposition rate
of the control was the highest and the decomposition rate of QPI treated at 121 ◦C was
the smallest, which was consistent with the results of TGA. Similar results were reported
by Zhang et al., (2019) [47]. The possible reasons for this may be due to hydrothermal
treatment of QPI led to protein defolding and subsequent cross-linking of denatured protein
molecules, resulting in higher thermal stability [21]. In conclusion, hydrothermal treatment
increased the thermal stability of QPI. In addition, Mir et al., (2021) also found that the
thermal stability of QPI was significantly improved after heat treatment by a DSC study of
quinoa protein [25]. This is consistent with our results in this study.

3.1.3. Intrinsic Fluorescence Spectrum

The QPI after hydrothermal treatment had the same peak shape as the control
(Figure 3A–D). However, the hydrothermal treatment significantly affected its maximum
absorption wavelength and its corresponding maximum fluorescence intensity. The maxi-
mum absorption wavelength of QPI increased gradually with the increase in hydrothermal
treatment time and temperature, and reached the maximum when the hydrothermal treat-
ment condition was 121 ◦C for 20 min, which was 2.25% higher than that of the control
(Figure 3E). The maximum fluorescence intensity of QPI decreased gradually with the
increase of hydrothermal treatment time and temperature, and dropped to the lowest
when the hydrothermal treatment condition was 121 ◦C for 30 min, which was lower than
that of control by 55.3% (Figure 3F). This was probably because hydrothermal treatment
increased the hydrophobicity of the QPI and subsequently enhanced the intermolecular
hydrophobic interactions of the exposed tryptophan residues, resulting in a decrease in
intrinsic fluorescence intensity [21]. A similar phenomenon was observed in the study of
heat treatment on sunflower protein isolates near an isoelectric point [46]. However, the
results are in contradiction with the results of Chao et al., (2018) who observed a reverse
kind of trend whereby the 100 ◦C pretreated cowpea protein isolates had an increased
fluorescence intensity at pH 7.0 when compared to the untreated protein [48]. A plausible
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reason is that the QPI used in this work had higher surface hydrophobicity, which could
enhance protein–protein interactions as compared to the cowpea proteins.
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Figure 3. Effects of hydrothermal treatment of 5 min (A), 10 min (B), 20 min (C), and 30 min
(D) on endogenous fluorescence spectrum, maximum absorption wavelength (E), and maximum
fluorescence intensity (F) of QPI.

In addition, this study found that hydrothermal treatment at 121 ◦C for 20 min had the
most significant effect on the endogenous fluorescence intensity of tryptophan in QPI, and
the maximum endogenous fluorescence emission wavelength was significantly red-shifted
(increased from 355.4 nm to 363.4 nm), which was 2.25% higher than that of the control.
This result indicated that the degree of denaturation of QPI was greater at this time, the
tertiary structure of QPI was destroyed, and tryptophan residues were gradually exposed
on the protein surface. At the same time, some amide groups initially located on the main
peptide chain of the protein were exposed [49]. A similar phenomenon was observed in
the study of heat treatment on the tertiary structure of salt-soluble proteins of Pacific oyster
(Crassostrea gigas) [50]. This suggests that hydrothermal treatment could alter the tertiary
structure of QPI.
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3.1.4. Ultra-Violet (UV) Spectrum

In this study, we found that the hydrothermally treated QPI had the same UV ab-
sorption peak shape as the control, but its absorption peak intensity decreased with the
increase in hydrothermal treatment temperature and time (Figure 4A–D). This is probably
because the tyrosine or tryptophan content of QPI decreases during the hydrothermal
treatment [51]. The minimum absorption peaks at 220 nm and 280 nm were observed
in QPI hydrothermally treated at 121 ◦C for 30 min, which were 5.07% and 6.35% lower
than the control, respectively (p < 0.05) (Figure 4E,F). Furthermore, the wavelength of the
maximum absorption peak near 220 nm was blueshifted by 6 nm compared to the control.
This is probably due to the aggregation of the microstructure of QPI by high-temperature
treatment, where the color-emitting groups are wrapped and the UV-absorbing groups are
reduced [52]. It was shown that hydrothermal treatment reduced the tyrosine, phenylala-
nine and tryptophan in QPI and the framework structure of QPI was changed. However,
the result was inconsistent with the report of He et al., (2014). They observed that the
UV absorption peak intensity of rapeseed protein increased after heat treatment [53]. In
addition, when compared to the native rapeseed protein, the near-UV CD spectra peak at
262 nm underwent a red shift of 3–5 nm after heat treatment. The possible reasons for this
may be due to the difference in the type and quantity of amino acids contained in rapeseed
protein and QPI.
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Figure 4. Effects of hydrothermal treatment of 5 min (A), 10 min (B), 20 min (C), and 30 min (D) on
the UV absorption spectrum of QPI and the absorption value at wavelengths of 280 nm (E) and 220
nm (F), respectively.
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3.1.5. Fourier Transform Infrared Spectrum (FTIR)

Conformational information on protein secondary structure could be efficiently ana-
lyzed by FTIR [54]. Figure 5A–D showed the original infrared spectra of QPI for different
hydrothermal treatment conditions. Previous studies have shown that the FTIR region of
the amide I band corresponds to the secondary structure in proteins as follows: 1610–1640
cm−1 belongs to β-sheet, 1660–1670 cm−1 belongs to β-turn, 1650–1658 cm−1 belongs to
α-helix, and 1640–1650 cm−1 belongs to random coil [31]. The deconvolution and curve-
fitting of the amide I region of QPI to obtain its second derivative spectrum (Figure S1).
The relative content of each secondary structure was obtained according to the second
derivative spectrum of the amide I band of QPI (Figure 5E–H).
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Figure 5. Effects of hydrothermal treatment of 5 min (A), 10 min (B), 20 min (C), and 30 min (D) on
the Fourier infrared spectrum of QPI, 60 ◦C (E), 70 ◦C (F), 80 ◦C (G), 90 ◦C (H), 100 ◦C (I) and 121 ◦C
(J) on the relative content of the secondary structure of QPI.

The relative contents of α-helix, β-sheet, β-turn, and random coil in the secondary
structure of QPI all changed significantly after hydrothermal treatment (p < 0.05). When
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the temperature was kept constant, the relative contents of α-helix in the QPI secondary
structure gradually decreased with the increase in heat treatment time, while the relative
contents of β-turn showed the opposite trend. In addition, the changing trends of the
relative contents of β-sheets and random coils were irregular with the increase of heat
treatment time. However, the relative contents of β-sheet in the QPI after hydrothermal
treatment were lower than the control. In addition, when the temperature was lower than
100 ◦C and the hydrothermal treatment was performed for 30 min, the relative contents of
random coils of QPI were greater than that of the control (Figure 5E–H). This is probably
due to the destruction of the hydrogen bonds between adjacent peptide chains in the QPI
during the heating process, resulting in the unfolding of the most compact α-helix in the
protein molecule and the β-sheet aggregated inside the protein [55]. The relative content of
α-helix in the protein gradually decreased with the heating time, which is consistent with
our results. Moreover, similar results were found in the study of the effect of heat treatment
on the secondary structure of camelina seeds protein isolates [56].

The results of this study indicated that theα-helix andβ-sheet of QPI were transformed
into β-turn and random coil. This structural change might be related to the denaturation
of molecules in QPI under hydrothermal treatment [46]. The protein molecules that are
denatured have their internal hydrogen bonds broken, and the protein molecules are
unfolded, while the α-helix and β-sheet structures mainly use hydrogen bonds as the
force, so the breakdown of hydrogen bonds leads to a decrease in the content of both [57].
Furthermore, β-turn and random coil may be transformed from more ordered structural
units, and the β-sheet between the molecules of the thermal aggregates is also easily
transformed into β-turn, which leads to an increase in the relative content of β-turn and
random coil [58]. It is inferred that β-turn and random coil play an important role in the
formation of thermal aggregates. Moreover, the findings of this study are consistent with
the results of Mir et al., (2021) [25]. In the study of the secondary structure changes of

QPI after heat treatment by circular dichroism, they found that the secondary structure
of native and heat–treated QPI was dominated by α-helix and β-sheet, and heat treatment
led to the destruction of α-helix in the secondary structure of QPI.

3.2. Determination of Functional Properties of QPI
3.2.1. Solubility

Solubility, as the basis for other functional properties of proteins, is one of the most
important functional properties of proteins and has a very close relationship with emulsifi-
cation, foaming, and other properties of proteins. It also accurately reflects the degree of
aggregation of proteins and whether their internal structure is denatured [27]. It is generally
believed that proteins aggregate after heat treatment, thereby reducing solubility. However,
some studies have shown that moderate heat treatment could improve the solubility of
proteins [59]. In this study, we found that when the heat treatment time was kept constant,
the solubility of QPI showed a trend of first increasing and then decreasing in the range
of 60–121 ◦C, and reached a maximum of 90 ◦C for 30 min, which was higher than that
of the control by 33.4% (p < 0.05). Previous studies showed that the solubility of soybean
proteins after treatment at 85 ◦C was higher than those of samples treated at 55 ◦C [60].
This is probably due to the fact that poorly water-soluble proteins expose more hydrophilic
groups after proper heat treatment, and these groups can subsequently interact with water,
leading to a higher water solubility [61].

When the temperature was 100 ◦C and 121 ◦C, the solubility of QPI decreased slowly
with the increase in hydrothermal treatment time, and finally reduced to the minimum at
121 ◦C for 30 min (Figure 6). Similar results were reported by Lv et al., (2017) [62]. The
possible reason for this may be that the high temperature causes the protein to form a large
number of insoluble aggregates. This is consistent with the findings of Yu et al. (2021)
on the effect of heat treatment on the solubility of soybean protein. This suggests that
high–temperature treatment can reduce protein solubility [63]. In addition, the results
indicated that the solubility of QPI extracted by alkali-soluble acid precipitation ranged
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from 28.34% to 78.46%, while the solubility of the native QPI was 44.12%. This may be
due to differences in extraction pH, which lead to changes in the interaction between the
protein and water, resulting in different solubility [6].
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Figure 6. Effects of different hydrothermal treatment conditions on the solubility. A–F indicates the
significant differences between different temperatures and a–c indicates the significant differences
between different times (p < 0.05).

3.2.2. Water-Holding Capacity (WHC) and Oil-Holding Capacity (OHC)

WHC and OHC are the ability of a substance to bind water and oil under limited
water and oil conditions [64]. In this study, it was found that the WHC and OHC of QPI
after hydrothermal treatment were significantly higher than those of the control, and the
WHC and OHC of QPI increased first and then decreased with the increase in temperature.
In the range of 60–90 ◦C, the WHC and OHC of QPI increased gradually with the increase
in hydrothermal treatment time and reached a maximum of 90 ◦C and 30 min, which
were 12.50% and 14.18% higher than those of the control, respectively (p < 0.05) (Table 2).
Previous studies found that the WHC and OHC of peanut seed albumin increased gradually
with the increase in heat treatment temperature from 15 to 55 ◦C [65]. In addition, different
heat treatments significantly increased the WHC of guar proteins [66]. This is probably due
to the fact that the spatial structure of the protein is opened after heating, which allows
some polar groups inside to be transferred to the surface, therefore increasing its WHC
and OHC [67]. Furthermore, the findings of this study are consistent with the results of
Cerdan et al., (2019) who observed that the WHC and OHC of the heat-treated QPI were
2-fold and 10-fold higher than those of the native QPI, respectively [24]. However, such an
increase is much higher than the results of this study, which may be because they used a
method of vacuum drying at 35 ◦C is different from the method in this study.

The WHC and OHC of QPI decreased gradually with the increase in hydrothermal
treatment time when the temperature was higher than 90 ◦C, and the minimum values of
145% and 157% were reached when the heat treatment conditions were 121 ◦C for 30 min,
respectively. It was also found that excessive temperature could significantly reduce its
WHC and OHC in the study of heat–treated sunflower protein [20]. This is probably due to
the complete denaturation of the protein at high temperature, leading to the exposure of
the hydrophobic groups hidden inside, which leads to the reduction in WHC and OHC.
Moreover, the OHC of the QPI in this study was slightly higher than that in the previous
report [29], which is probably due to the different quinoa varieties used, and the protein
content and composition were different. In this study, the trends of WHC and OHC of QPI
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were found to be in good agreement with solubility. Therefore, we speculate that the WHC
and OHC of QPI might be related to its solubility.

Table 2. Effects of different hydrothermal treatment conditions on the water–holding capacity and
oil–holding capacity, %. A–E indicates the significant differences between different temperatures and
a–c indicates the significant differences between different times (p < 0.05).

Capacity (%) Temperature (◦C)
Time (min)

5 10 20 30

25 143.53 ± 2.30 Da 143.53 ± 2.30 Aa 143.53 ± 2.30 Ea 143.53 ± 2.30 Ea

60 144.80 ± 0.95 Da 145.33 ± 3.97 Aa 145.87 ± 1.52 Da 146.07 ± 1.08 Da

70 147.40 ± 0.31 Cb 152.47 ± 2.36 Aa 152.07 ± 0.72 Ca 152.80 ± 0.95 Ca

water 80 153.73 ± 1.54 Ba 153.93 ± 3.62 Aa 154.27 ± 0.74 Ba 157.20 ± 2.60 Ba

90 153.00 ± 3.85 Bb 158.13 ± 1.83 Aa 161.67 ± 0.85 Aa 161.47 ± 1.15 Aa

100 161.47 ± 3.62 Aa 152.13 ± 0.99 Ab 147.60 ± 1.00 Dc 145.73 ± 1.14 Dc

121 152.33 ± 5.28 Ba 151.20 ± 0.47 Aab 146.53 ± 0.92 Dab 145.00 ± 3.59 DEc

25 151.80 ± 0.64 Ea 151.80 ± 0.64 Ea 151.80 ± 0.64 Ea 151.80 ± 0.64 Ea

60 152.87 ± 2.16 DEa 154.33 ± 1.90 Da 155.40 ± 3.60 Da 156.00 ± 1.40 Da

70 154.00 ± 1.87 Db 154.53 ± 0.63 Db 155.80 ± 2.17 Dab 159.87 ± 3.67 Ca

oil 80 159.27 ± 2.16 Cb 166.73 ± 3.38 Aa 167.40 ± 2.06 Aa 168.00 ± 1.56 Ba

90 163.40 ± 0.36 Bc 166.20 ± 1.17 Abc 167.67 ± 2.33 Ab 173.33 ± 2.42 Aa

100 171.33 ± 2.73 Aa 162.20 ± 5.46 Bb 162.13 ± 4.30 Bb 157.07 ± 0.90 Db

121 160.60 ± 2.54 Ca 159.07 ± 4.03 Ca 159.67 ± 5.49 Ca 156.60 ± 1.56 Da

3.2.3. Emulsifying Activity (EA) and Emulsion Stability (ES)

EA and ES characterize the ability of protein to adsorb to the oil-water interface and to
form a stable emulsion, respectively [68]. In this study, we found that the EA and ES of QPI
after hydrothermal treatment were significantly higher than those of the control. When
the temperature was less than 90 ◦C, the EA and ES of QPI increased with the increase
in temperature, and reached a maximum of 90 ◦C for 30 min of hydrothermal treatment,
which was significantly higher than those of the control by 84.4% and 27.1% (p < 0.05)
(Tables 3 and 4). This is similar to the results of the study in which the ES of faba bean
protein concentrate heat-treated at 95 ◦C for 15 min was significantly higher than that of the
control [26]. However, when the temperature was 100 ◦C and 121 ◦C, the EA and ES of QPI
decreased gradually with the extension of hydrothermal treatment time, and the minimum
value was reached at 121 ◦C, 30 min heat treatment; at which time, the EA was lower than
the control by 5.95%, while the ES was higher than the control by 10.1% (p < 0.05). The
reason for this result might be a change in the solubility of QPI [69].

Table 3. Effects of different hydrothermal treatment conditions on the emulsifying activity, m2·g−1. A–
D indicates the significant differences between different temperatures and a–c indicates the significant
differences between different times (p < 0.05).

Temperature
(◦C)

Time (min)

5 10 20 30

25 6.55 ± 0.38 Da 6.55 ± 0.38 Da 6.55 ± 0.38 Ca 6.55 ± 0.38 Da

60 7.65 ± 0.25 CDb 7.72 ± 0.39 CDb 8.06 ± 0.73 BCb 9.17 ± 0.30 BCa

70 7.95 ± 0.28 BCDc 8.73 ± 0.46 BCbc 9.46 ± 0.52 Bb 10.57 ± 0.64 ABa

80 9.56 ± 0.68 ABb 10.19 ± 0.40 ABb 11.57 ± 0.71 Aa 11.68 ± 0.66 Aa

90 11.05 ± 0.38 Aa 11.76 ± 0.67 Aa 11.82 ± 0.58 Aa 12.05 ± 0.38 Aa

100 10.31 ± 0.59 Aa 9.84 ± 0.80 Bab 8.68 ± 0.36 Bb 8.64 ± 0.59 Cb

121 9.28 ± 0.29 ABCa 8.46 ± 0.37 BCab 7.72 ± 0.39 BCb 6.16 ± 0.56 Dc
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Table 4. Effects of different hydrothermal treatment conditions on the emulsion stability, %. A–F
indicates the significant differences between different temperatures and a–c indicates the significant
differences between different times (p < 0.05).

Temperature
(◦C)

Time (min)

5 10 20 30

25 56.08 ± 0.59 Da 56.08 ± 0.59 Da 56.08 ± 0.59 Ca 56.08 ± 0.59 Fa

60 57.13 ± 0.88 CDb 64.37 ± 2.70 Ca 65.87 ± 0.68 Ba 66.10 ± 2.14 Ca

70 58.13 ± 1.73 Cb 65.34 ± 2.30 BCa 68.51 ± 0.86 Aa 68.00 ± 0.41 Ba

80 63.57 ± 0.66 Bb 68.62 ± 1.42 Aa 68.86 ± 1.06 Aa 64.21 ± 0.50 Db

90 64.15 ± 1.10 Bb 69.63 ± 0.39 Aab 68.62 ± 1.42 Aab 71.25 ± 1.60 Aa

100 70.49 ± 1.74 Aa 69.27 ± 1.45 Aa 67.37 ± 0.74 ABab 64.48 ± 1.79 CDb

121 70.55 ± 0.45 Aa 66.31 ± 2.20 Bb 65.80 ± 2.09 Bb 61.76 ± 1.27 Ec

It was shown that the EA and ES of vicilin-rich proteins isolated from kidney beans
after high-temperature treatment were elevated under moderate heating conditions and
decreased after excessive heating [70]. The possible reasons for this may be because
the moderate heating induced structural changes in the protein in favor of EA and ES,
which might be the driving force for improving the EA and ES of the protein [29]. A
hydrothermal treatment temperature greater than 90 ◦C will cause more unfolding of the
protein, exposing their internal hydrophobic groups, resulting in a decrease in solubility,
which in turn reduces EA and ES [71]. Therefore, we speculate that protein solubility might
have an effect on its EA and ES. The above results show that the EA and ES of QPI could
be improved by heat treatment below 121 ◦C, which is similar to the results of Mir et al.,
(2021) [25]. They found that the EA and ES of QPI increased significantly after water a bath
treatment at 80, 90 and 100 ◦C for 15 and 30 min

4. Conclusions

In this study, the QPI after hydrothermal treatment was studied from the perspective of
structure and functional properties. The results indicated that hydrothermal treatment had
significant effects on both the structural and functional properties of QPI. Hydrothermal
treatment at 60–121 ◦C for 5–30 min increased the particle size and thermal stability of QPI,
and significantly changed its secondary and tertiary structures. In addition, hydrothermal
treatment at 60–90 ◦C for 5–30 min had a positive effect on improving the functional prop-
erties of QPI such as WHC, OHC, EA, ES, and solubility, while hydrothermal treatments
at 100 and 121 ◦C damaged these properties of QPI. Overall, the functional properties of
the QPI after hydrothermal treatment were all superior to those of the control. Moreover,
several other functional properties of QPI appeared to depend on the the its solubility.
Insights gained from this study may help improve the functional properties of QPI by
adjusting the hydrothermal treatment conditions. Moreover, our findings provide further
support for studying the structure and functional properties of QPI after hydrothermal
treatment, which is crucial for their application in food. These findings demonstrate that
QPI could be added to foods involving thermal processing. Furthermore, based on the
abundant nutritional value of QPI and its good functional properties after heat treatment,
it can also be added to functional foods to increase the added value of the product.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11192954/s1, Figure S1: Deconvolution and curve fitting of
the Amide I region for QPI with different hydrothermal treatment conditions.
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