Effect of Bacteria Content in Wheat Flour on Storage Stability of Fresh Wet Noodles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Storage of FWNs
2.3. Microbial Analysis of Wheat Flour and FWNs
2.4. Color Measurement of FWNs Sheets
2.5. Determination of pH Value and Acidity of FWNs
2.6. Textural Profile Analysis (TPA)
2.7. Pasting Property Analysis
2.8. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) Analysis
2.9. Statistical Analysis
3. Result and Discussion
3.1. Effect of Bacteria Content in Flour on Shelf Life of FWNs1-FWNs9
3.1.1. Analysis of Wheat Flour Characteristics
3.1.2. Microbial Growth in FWNs1-FWNs9 during Storage
3.2. pH Value and Acidity Changes of FWNs1–FWNs9
3.3. Color Changes of FWNs1−FWNs9
3.4. Texture Changes of FWNs1, FWNs6 and FWNs7
3.5. Changes of the Starch Components in FWNs1, FWNs6 and FWNs7
3.6. SDS-PAGE Analysis of FWNs1, FWNs6 and FWNs7
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Q.; Cai, J.; Ren, C.; Li, Y.; Farooq, M.A.; Xu, B. A new strategy for the shelf life extension of fresh noodles by accurately targeting specific microbial species. Food Control. 2022, 138, 109037. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Li, M.; Sun, Q. Inhibitory effects of sorbitol on the collapse and deterioration of gluten network in fresh noodles during storage. Food Chem. 2021, 344, 128638. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ma, M.; Zhu, K.-X.; Guo, X.-N.; Zhou, H.-M. Critical conditions accelerating the deterioration of fresh noodles: A study on temperature, pH, water content, and water activity. J. Food Process. Preserv. 2017, 41, e13173. [Google Scholar] [CrossRef]
- Li, M.; Zhu, K.-X.; Sun, Q.-J.; Amza, T.; Guo, X.-N.; Zhou, H.-M. Quality characteristics, structural changes, and storage stability of semi-dried noodles induced by moderate dehydration. Food Chem. 2016, 194, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Han, T.Y.; Yang, Z.; Yu, C.; Xing, J.J.; Guo, X.N.; Zhu, K.X. Effect of acidity regulators on the shelf life, quality, and physicochemical characteristics of fresh wet noodles. J. Cereal Sci. 2022, 103, 103409. [Google Scholar] [CrossRef]
- Huang, J.; Qi, Y.; Faisal Manzoor, M.; Guo, Q.; Xu, B. Effect of superheated steam treated wheat flour on quality characteristics and storage stability of fresh noodles. Food Control. 2022, 133, 108666. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Zhang, M.; Duan, M.; Tuersuntuoheti, T.; Li, M.; Wang, J.; Ren, X. Effect of electron beam irradiation on shelf life, noodle quality, and volatile compounds of fresh millet-wheat noodles. J. Food Process. Preserv. 2021, 45, e16064. [Google Scholar] [CrossRef]
- Li, M.; Zhu, K.-X.; Wang, B.-W.; Guo, X.-N.; Peng, W.; Zhou, H.-M. Evaluation the quality characteristics of wheat flour and shelf-life of fresh noodles as affected by ozone treatment. Food Chem. 2012, 135, 2163–2169. [Google Scholar] [CrossRef]
- Hong, T.; Zhao, Q.; Xu, D.; Yuan, Y.; Ma, Y.; Wu, F.; Xu, X. Effect of heat-treated flour on the quality and storage stability of fresh noodles. LWT-Food Sci. Technol. 2021, 146, 111463. [Google Scholar] [CrossRef]
- Xing, J.-J.; Jiang, D.-H.; Guo, X.-N.; Yang, Z.; Zhu, K.-X. Effect of dough mixing with slightly acidic electrolyzed water on the shelf-life and quality characteristics of fresh wet noodles. Food Control. 2021, 124, 107891. [Google Scholar] [CrossRef]
- Bai, Y.-P.; Zhou, H.-M. Impact of aqueous ozone mixing on microbiological, quality and physicochemical characteristics of semi-dried buckwheat noodles. Food Chem. 2021, 336, 127709. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Li, M.; Ma, M.; Sun, Q. Evaluation of the Storage Stability and Quality Properties of Fresh Noodles Mixed with Plasma-Activated Water. Foods. 2022, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Li, Y.-Q.; Wang, Z.-S.; Sun, G.-J.; Mo, H.-Z. Applicative effect of glycinin basic polypeptide in fresh wet noodles and antifungal characteristics. LWT-Food Sci. Technol. 2017, 83, 267–274. [Google Scholar] [CrossRef]
- Zhu, K.-X.; Li, J.; Li, M.; Guo, X.-N.; Peng, W.; Zhou, H.-M. Functional properties of chitosan–xylose Maillard reaction products and their application to semi-dried noodle. Carbohydr. Polym. 2013, 92, 1972–1977. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.-J.; Jiang, D.-H.; Yang, Z.; Guo, X.-N.; Zhu, K.-X. Effect of Humidity-Controlled Dehydration on Microbial Growth and Quality Characteristics of Fresh Wet Noodles. Foods. 2021, 10, 844. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, J.; Liu, C.; Zheng, X.; Bian, K.; Guan, E. Quality changes in fresh noodles prepared by different heat treatments during storage. J. Food Process. Preserv. 2021, 45, e15506. [Google Scholar] [CrossRef]
- Soraya, A.; Chay, S.Y.; Shukri, R.; Mohamad Ghazali, F.; Muhammad, K.; Noranizan, M.A.; Karim, R. Reduction of microbial load in yellow alkaline noodle using optimized microwave and pulsed-UV treatment to improve storage stability. J. Food Sci. Technol. 2019, 56, 1801–1810. [Google Scholar] [CrossRef]
- Diez, A.M.; Santos, E.M.; Jaime, I.; Rovira, J. Effectiveness of combined preservation methods to extend the shelf life of Morcilla de Burgos. Meat Sci. 2009, 81, 171–177. [Google Scholar] [CrossRef]
- Obadi, M.; Zhang, J.; Xu, B. The role of inorganic salts in dough properties and noodle quality—A review. Food Res. Int. 2022, 157, 111278. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (AACC). Approved Methods of the American Association of Cereal Chemists, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- GB/T 4789.2; Code of National Food Safety Standard of China. Food Microbiological Examination: Aerobic Plate Count. The State Food and Drug Administration: Beijing, China, 2016.
- GB/T 4789.15; Code of National Food Safety Standard of China. Food Microbiological Examination: Mold and Yeast Count. The State Food and Drug Administration: Beijing, China, 2016.
- Li, M.; Ma, M.; Zhu, K.-X.; Guo, X.-N.; Zhou, H.-M. Delineating the physico-chemical, structural, and water characteristic changes during the deterioration of fresh noodles. Food Chem. 2017, 216, 374–381. [Google Scholar] [CrossRef]
- Ren, S.; Ma, R.; Wang, N. Microbial Changes and Fresh-Keeping of Fresh Noodles under Refrigerated Condition. Inf. Technol. Agric. Eng. 2012, 134, 973–980. [Google Scholar] [CrossRef]
- Zhao, T.-T.; Guo, X.-N.; Zhu, K.-X. Effect of phosphate salts on the shelf-life and quality characteristics of semi-dried noodles. Food Chem. 2022, 384, 132481. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.X. Asian noodles: History, classification, raw materials, and processing. Food Res. Int. 2008, 41, 888–902. [Google Scholar] [CrossRef]
- Ghaffar, S.; AS, A.; Abu Bakar, F.; Karim, R.; Saari, N. Microbial Growth, Sensory Characteristic and pH as Potential Spoilage Indicators of Chinese Yellow Wet Noodles from Commercial Processing Plants. A. J. Sci. 2009, 6, 1059–1066. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhu, K.; Guo, X.; Peng, W.; Zhou, H. Effect of water activity (aw) and irradiation on the shelf-life of fresh noodles. Innov Food Sci Emerg Technol. 2011, 12, 526–530. [Google Scholar] [CrossRef]
- Gram, L.; Ravn, L.; Rasch, M.; Bruhn, J.B.; Christensen, A.B.; Givskov, M. Food spoilage—interactions between food spoilage bacteria. Int. J. Food Microbiol. 2002, 78, 79–97. [Google Scholar] [CrossRef]
- Boddy, L.; Wimpenny, J.W. Ecological concepts in food microbiology. Soc. Appl. Bacteriol. Symp. Ser. 1992, 21, 23S–38S. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liang, S.; Zheng, Y.; Zhang, M. Volatile Compounds of Different Fresh Wet Noodle Cultivars Evaluated by Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. An. Acad. Bras. Cienc. 2020, 92, e20190063. [Google Scholar] [CrossRef]
- Xue, W.; Zhang, C.; Wang, K.; Guang, M.; Chen, Z.; Lu, H.; Feng, X.; Xu, Z.; Wang, L. Understanding the deterioration of fresh brown rice noodles from the macro and micro perspectives. Food Chem. 2021, 342, 128321. [Google Scholar] [CrossRef]
- Chubukov, V.; Gerosa, L.; Kochanowski, K.; Sauer, U. Coordination of microbial metabolism. Nat. Rev. Microbiol. 2014, 12, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Asenstorfer, R.E.; Appelbee, M.J.; Mares, D.J. Impact of protein on darkening in yellow alkaline noodles. J. Agric. Food Chem. 2010, 58, 4500–4507. [Google Scholar] [CrossRef] [PubMed]
- Feillet, P.; Autran, J.-C.; Icard-Vernière, C. Pasta brownness: An Assessment. J. Cereal Sci. 2000, 32, 215–233. [Google Scholar] [CrossRef]
- Hu, R.B.; Tian, J.C. Influencing Factors for Wet Noodle Color. J. Chin. Cereals Oils Assoc. 2004, 19, 18–22, (In Chinese with English abstract). [Google Scholar]
- Fuerst, E.P.; Anderson, J.V.; Morris, C.F. Delineating the role of polyphenol oxidase in the darkening of alkaline wheat noodles. J. Agric. Food Chem. 2006, 54, 2378–2384. [Google Scholar] [CrossRef]
- Wu, X.-T.; Guo, X.-N.; Zhu, K.-X. Inhibition of aspartic acid on the darkening of fresh wet noodles. Int. J. Food Sci. Technol. 2022, 57, 390–399. [Google Scholar] [CrossRef]
- Liao, H.-J.; Chen, Y.-L. Characteristics and Protein Subunit Composition of Flour Mill Streams from Different Commercial Wheat Classes and Their Relationship to White Salted Noodle Quality. Cereal Chem. 2015, 92, 302–311. [Google Scholar] [CrossRef]
- Morris, C.F. Determinants of wheat noodle color. J. Sci. Food Agric. 2018, 98, 5171–5180. [Google Scholar] [CrossRef]
- Epstein, J.; Morris, C.F.; Huber, K.C. Instrumental Texture of White Salted Noodles Prepared from Recombinant Inbred Lines of Wheat Differing in the Three Granule Bound Starch Synthase (Waxy) Genes. J. Cereal Sci. 2002, 35, 51–63. [Google Scholar] [CrossRef]
- Shi, F.; Zhao, H.; Song, H.; Guo, W.; Wang, L.; Cui, X.; Zhang, W.; Li, S. Effects of electron-beam irradiation on inoculated Listeria innocua, microbiological and physicochemical quality of fresh noodles during refrigerated storage. Food Sci. Nutr. 2020, 8, 114–123. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, X.-N.; Zhu, K.-X. Effects of frozen storage on the quality characteristics of frozen cooked noodles. Food Chem. 2019, 283, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Han, C.-W.; Li, M.; Song, X.-Q.; Sun, Q.-J.; Zhu, K.-X. Inhibiting effect of low-molecular weight polyols on the physico-chemical and structural deteriorations of gluten protein during storage of fresh noodles. Food Chem. 2019, 287, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Tuersuntuoheti, T.; Wang, Z.; Zhang, M.; Asimi, S.; Liang, S.; Wang, Z.; Ren, X.; Sohail, A. Changes of microbial diversity and volatile compounds in edible and deteriorated Qingke barley fresh noodles stored at 25 °C. Int. J. Food Sci. Technol. 2021, 56, 885–896. [Google Scholar] [CrossRef]
- Li, M.; Dhital, S.; Wei, Y. Multilevel Structure of Wheat Starch and Its, Sushil Dhital, and Yimin Wei Relationship to Noodle Eating Qualities. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1042–1055. [Google Scholar] [CrossRef] [Green Version]
- Valerio, F.; de Bellis, P.; Di Biase, M.; Lonigro, S.L.; Giussani, B.; Visconti, A.; Lavermicocca, P.; Sisto, A. Diversity of spore-forming bacteria and identification of Bacillus amyloliquefaciens as a species frequently associated with the ropy spoilage of bread. Int. J. Food Microbiol. 2012, 156, 278–285. [Google Scholar] [CrossRef]
- Sriburi, P.; Hill, S.E. Extrusion of cassava starch with either variations in ascorbic acid concentration or pH. Int. J. Food Sci. Technol. 2000, 35, 141–154. [Google Scholar] [CrossRef]
- Chaudhary, N.; Dangi, P.; Khatkar, B.S. Assessment of molecular weight distribution of wheat gluten proteins for chapatti quality. Food Chem. 2016, 199, 28–35. [Google Scholar] [CrossRef]
- Collar, C.; Mascars, A.; Brito, M.; Barber, C.B. Contribution of the microbial mass to the nitrogen profile of wheat bread doughs started with pure and mixed cultures of yeast and lactic acid bacteria. Z Lebensm. Unters. Forch. 1991, 193, 332–336. [Google Scholar] [CrossRef]
Flour Sample | Water (%) | Protein (%) | Ash (%) | TPC (CFU/g) | MYC (CFU/g) |
---|---|---|---|---|---|
F1 | 12.13 ± 0.00 g | 11.01 ± 0.01 d | 0.41 ± 0.01 d | 120 ± 10 e | 530 ± 0 d |
F2 | 12.62 ± 0.09 e | 13.38 ± 0.11 a | 0.42 ± 0.03 d | 120 ± 10 e | 130 ± 20 f |
F3 | 12.70 ± 0.01 e | 12.09 ± 0.02 c | 0.47 ± 0.02 c | 220 ± 20 e | 210 ± 10 f |
F4 | 13.74 ± 0.02 a | 11.34 ± 0.00 d | 0.43 ± 0.01 d | 280 ± 10 e | 410 ± 10 e |
F5 | 13.32 ± 0.00 b | 12.26 ± 0.05 b | 0.47 ± 0.00 c | 940 ± 30 d | 720 ± 0 c |
F6 | 12.31 ± 0.05 f | 12.18 ± 0.03 c | 0.43 ± 0.01 d | 990 ± 10 d | 580 ± 20 d |
F7 | 13.18 ± 0.03 c | 12.02 ± 0.01 c | 0.50 ± 0.00 b | 2400 ± 200 c | 720 ± 30 c |
F8 | 13.00 ± 0.04 d | 12.15 ± 0.01 c | 0.54 ± 0.01 a | 2600 ± 100 b | 900 ± 50 b |
F9 | 13.30 ± 0.06 b | 10.96 ± 0.00 d | 0.43 ± 0.00 d | 5500 ± 100 a | 1400 ± 100 a |
Sample | Storage Time (d) | Hardness (g) | Adhesiveness (g·s) | Springiness | Chewiness |
---|---|---|---|---|---|
FWNs1 | 0 | 3880 ± 146 d | −88 ± 15 a | 0.92 ± 0.01 a | 2461 ± 51 ab |
5 | 4136 ± 102 bcd | −90 ± 15 a | 0.94 ± 0.02 a | 2556 ± 78 a | |
9 | 4320 ± 40 b | −101 ± 11 ab | 0.94 ± 0.01 a | 2538 ± 80 a | |
13 | 4699 ± 158 a | −129 ± 29 b | 0.92 ± 0.02 a | 2575 ± 75 a | |
17 | 4010 ± 225 cd | −88 ± 14 a | 0.93 ± 0.01 a | 2238 ± 91 c | |
21 | 4245 ± 186 bc | −110 ± 17 ab | 0.93 ± 0.02 a | 2396 ± 48 b | |
FWNs6 | 0 | 3807 ± 100 c | −93 ± 20 a | 0.92 ± 0.03 a | 2411 ± 95 b |
5 | 4628 ± 188 a | −143 ± 21 ab | 0.92 ± 0.01 a | 2643 ± 116 b | |
9 | 4560 ± 164 a | −134 ± 36 ab | 0.92 ± 0.01 a | 2626 ± 151 a | |
13 | 4811 ± 111 a | −164 ± 38 b | 0.89 ± 0.02 a | 2625 ± 51 a | |
17 | 4254 ± 115 b | −117 ± 28 ab | 0.92 ± 0.03 a | 2396 ± 98 a | |
21 | 4294 ± 157 b | −131 ± 19 ab | 0.91 ± 0.03 a | 2390 ± 134 b | |
FWNs7 | 0 | 3579 ± 117 c | −68 ± 13 a | 0.90 ± 0.01 ab | 2224 ± 40 c |
5 | 4522 ± 145 ab | −105 ± 10 b | 0.92 ± 0.01 a | 2553 ± 170 ab | |
9 | 4694 ± 66 a | −119 ± 11 bc | 0.92 ± 0.03 a | 2725 ± 35 a | |
13 | 4492 ± 124 ab | −142 ± 22 c | 0.89 ± 0.02 ab | 2393 ± 110 bc | |
17 | 4290 ± 251 b | −106 ± 25 b | 0.89 ± 0.05 ab | 2311 ± 254 bc | |
21 | 4331 ± 237 b | −135 ± 25 bc | 0.88 ± 0.02 b | 2302 ± 165 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Zhu, K.; Guo, X. Effect of Bacteria Content in Wheat Flour on Storage Stability of Fresh Wet Noodles. Foods 2022, 11, 3093. https://doi.org/10.3390/foods11193093
Yang W, Zhu K, Guo X. Effect of Bacteria Content in Wheat Flour on Storage Stability of Fresh Wet Noodles. Foods. 2022; 11(19):3093. https://doi.org/10.3390/foods11193093
Chicago/Turabian StyleYang, Wen, Kexue Zhu, and Xiaona Guo. 2022. "Effect of Bacteria Content in Wheat Flour on Storage Stability of Fresh Wet Noodles" Foods 11, no. 19: 3093. https://doi.org/10.3390/foods11193093
APA StyleYang, W., Zhu, K., & Guo, X. (2022). Effect of Bacteria Content in Wheat Flour on Storage Stability of Fresh Wet Noodles. Foods, 11(19), 3093. https://doi.org/10.3390/foods11193093