Apple Flour in a Sweet Gluten-Free Bread Formulation: Impact on Nutritional Value, Glycemic Index, Structure and Sensory Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents
2.2. Apple Flour Characterization
2.3. GF Bread Formulations and Sampling
2.4. GF Dough Properties
2.4.1. Mixing and Pasting Properties
2.4.2. GF Dough Rheology
2.5. GF Bread Technological Performance
2.6. GF Bread Nutritional Composition
2.7. Total Starch and Resistant Starch Content
2.8. In Vitro Starch Hydrolysis and Glycemic Index Estimation
2.9. Antioxidant Capacity and Bioactive Compounds
2.9.1. Extract Preparation
2.9.2. Total Phenols Content (TPC) Determination
2.9.3. Flavonoids Content (FlC) Determination
2.9.4. Ortho-Diphenols Content (ODC) Determination
2.9.5. Determination of Antioxidant Capacity
2.10. Sensory Evaluation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Apple Flour Characterization
3.2. Gluten Free Dough Properties
3.2.1. Mixing and Pasting Curves
3.2.2. Gluten Free Dough Rheology (SAOS)
3.3. GF Bread Technological Characterization
3.4. Nutritional Bread Analysis
3.5. Total and Resistant Starch Content, In Vitro Starch Hydrolysis and Glycemic Index Estimation
3.6. Bioactive Compounds and Antioxidant Capacity
3.7. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global Prevalence of Celiac Disease: Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.; Bhatia, S.; Chunduri, V.; Kaur, S.; Sharma, S.; Kapoor, P.; Kumari, A.; Garg, M. Pathogenesis of Celiac Disease and Other Gluten Related Disorders in Wheat and Strategies for Mitigating Them. Front. Nutr. 2020, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirkesen, I.; Ozkaya, B. Recent Strategies for Tackling the Problems in Gluten-Free Diet and Products. Crit. Rev. Food Sci. Nutr. 2020, 63, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Kaur, A.; Chopra, C.S. Gluten-Free Products for Celiac Susceptible People. Front. Nutr. 2018, 5, 116. [Google Scholar] [CrossRef] [PubMed]
- Markets and Markets Gluten-Free Products Analysis. 2020. Available online: https://www.marketsandmarkets.com/Market-Reports/gluten-free-products-market-738.html (accessed on 8 July 2022).
- Gallagher, E.; Gormley, T.R.; Arendt, E.K. Recent Advances in the Formulation of Gluten-Free Cereal-Based Products. Trends Food Sci. Technol. 2004, 15, 143–152. [Google Scholar] [CrossRef]
- Matos, M.E.; Rosell, C.M. Understanding Gluten-Free Dough for Reaching Breads with Physical Quality and Nutritional Balance. J. Sci. Food Agric. 2015, 95, 653–661. [Google Scholar] [CrossRef]
- Lerner, A.; O’Bryan, T.; Matthias, T. Navigating the Gluten-Free Boom: The Dark Side of Gluten Free Diet. Front. Pediatr. 2019, 7, 414. [Google Scholar] [CrossRef] [Green Version]
- Olusanya, B.O.; Davis, A.C.; Hoffman, H.J. Bulletin of the World Health Organization _ Enhanced Reader.Pdf. Bull. World Health Organ. 2019, 97, 725–728. [Google Scholar] [CrossRef]
- Toussaint-Samat, M. A History of Food, 2nd ed.; Blackwell Publishing Ltd.: West Sussex, UK, 2009. [Google Scholar]
- Vatankhah, M.; Garavand, F.; Mohammadi, B.; Elhamirad, A. Quality Attributes of Reduced-Sugar Iranian Traditional Sweet Bread Containing Stevioside. J. Food Meas. Charact. 2017, 11, 1233–1239. [Google Scholar] [CrossRef]
- Barbosa-Ríos, J.A.; Castillón-Jardón, J.; Guadarrama-Lezama, A.Y.; Alvarez-Ramirez, J.; Meraz, M.; Carrillo-Navas, H. Effect of New Generation Enzymes Addition on the Physical, Viscoelastic and Textural Properties of Traditional Mexican Sweet Bread. J. Cereal Sci. 2018, 79, 160–167. [Google Scholar] [CrossRef]
- Santos, D.; Lopes da Silva, J.A.; Pintado, M. Fruit and Vegetable By-Products’ Flours as Ingredients: A Review on Production Process, Health Benefits and Technological Functionalities. LWT 2022, 154, 112707. [Google Scholar] [CrossRef]
- Betoret, E.; Rosell, C.M. Enrichment of Bread with Fruits and Vegetables: Trends and Strategies to Increase Functionality. Cereal Chem. 2020, 97, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Mir, S.A.; Bosco, S.J.D.; Shah, M.A.; Santhalakshmy, S.; Mir, M.M. Effect of Apple Pomace on Quality Characteristics of Brown Rice Based Cracker. J. Saudi Soc. Agric. Sci. 2017, 16, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Rocha Parra, A.F.; Ribotta, P.D.; Ferrero, C. Apple Pomace in Gluten-Free Formulations: Effect on Rheology and Product Quality. Int. J. Food Sci. Technol. 2015, 50, 682–690. [Google Scholar] [CrossRef]
- Djeghim, F.; Bourekoua, H.; Różyło, R.; Bieńczak, A.; Tanaś, W.; Zidoune, M.N. Effect of By-Products from Selected Fruits and Vegetables on Gluten-Free Dough Rheology and Bread Properties. Appl. Sci. 2021, 11, 4605. [Google Scholar] [CrossRef]
- Kırbaş, Z.; Kumcuoglu, S.; Tavman, S. Effects of Apple, Orange and Carrot Pomace Powders on Gluten-Free Batter Rheology and Cake Properties. J. Food Sci. Technol. 2019, 56, 914–926. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; Korus, J.; Kruczek, M. Apple Pomace as a Source of Bioactive Polyphenol Compounds in Gluten-Free Breads. Antioxidants 2021, 10, 807. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple Pomace as a Source of Dietary Fiber and Polyphenols and Its Effect on the Rheological Characteristics and Cake Making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Djordjević, M.; Šoronja-Simović, D.; Nikolić, I.; Djordjević, M.; Šereš, Z.; Milašinović-Šeremešić, M. Sugar Beet and Apple Fibres Coupled with Hydroxypropylmethylcellulose as Functional Ingredients in Gluten-Free Formulations: Rheological, Technological and Sensory Aspects. Food Chem. 2019, 295, 189–197. [Google Scholar] [CrossRef]
- Föste, M.; Verheyen, C.; Jekle, M.; Becker, T. Fibres of Milling and Fruit Processing By-Products in Gluten-Free Bread Making: A Review of Hydration Properties, Dough Formation and Quality-Improving Strategies. Food Chem. 2020, 306, 125451. [Google Scholar] [CrossRef]
- Espinosa-Solis, V.; Zamudio-Flores, P.B.; Tirado-Gallegos, J.M.; Ramírez-Mancinas, S.; Olivas-Orozco, G.I.; Espino-Díaz, M.; Hernández-González, M.; García-Cano, V.G.; Sánchez-Ortíz, O.; Buenrostro-Figuerosa, J.J.; et al. Evaluation of Cooking Quality, Nutritional And. Foods 2019, 8, 299. [Google Scholar]
- Ishartati, E.; Sukardi, S.; Roeswitawati, D.; Zakia, A.; Ulfah, U. The Study of Apple Flour Formulation for Functional Cookies. IOP Conf. Ser. Earth Environ. Sci. 2019, 379, 12012. [Google Scholar] [CrossRef]
- Salehi, F.; Kashaninejad, M.; Alipour, N. Evaluation of Physicochemical, Sensory and Textural Properties of Rich Sponge Cake with Dried Apples Powder. Innov. Food Technol. 2016, 3, 39–47. [Google Scholar]
- Lončar, B.; Pezo, L.; Filipović, V.; Nićetin, M.; Filipović, J.; Pezo, M.; Šuput, D.; Aćimović, M. Physico-Chemical, Textural and Sensory Evaluation of Spelt Muffins Supplemented with Apple Powder Enriched with Sugar Beet Molasses. Foods 2022, 11, 1750. [Google Scholar] [CrossRef]
- Barros, A.; Gironés-Vilaplana, A.; Texeira, A.; Baenas, N.; Domínguez-Perles, R. Grape Stems as a Source of Bioactive Compounds: Application towards Added-Value Commodities and Significance for Human Health. Phytochem. Rev. 2015, 14, 921–931. [Google Scholar] [CrossRef]
- Francini, A.; Sebastiani, L. Phenolic Compounds in Apple (Malus x Domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing. Antioxidants 2013, 2, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Serra, A.T.; Rocha, J.; Sepodes, B.; Matias, A.A.; Feliciano, R.P.; De Carvalho, A.; Bronze, M.R.; Duarte, C.M.M.; Figueira, M.E. Evaluation of Cardiovascular Protective Effect of Different Apple Varieties—Correlation of Response with Composition. Food Chem. 2012, 135, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Thilakarathna, S.H.; Rupasinghe, H.P.V.; Needs, P.W. Apple Peel Bioactive Rich Extracts Effectively Inhibit in Vitro Human LDL Cholesterol Oxidation. Food Chem. 2013, 138, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Rabetafika, H.N.; Bchir, B.; Blecker, C.; Richel, A. Fractionation of Apple By-Products as Source of New Ingredients: Current Situation and Perspectives. Trends Food Sci. Technol. 2014, 40, 99–114. [Google Scholar] [CrossRef]
- Gorjanović, S.; Micić, D.; Pastor, F.; Tosti, T.; Kalušević, A.; Ristić, S.; Zlatanovic, S. Evaluation of Apple Pomace Flour Obtained Industrially by Dehydration as a Source of Biomolecules with Antioxidant, Antidiabetic and Antiobesity Effects. Antioxidants 2020, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Arcot, J.; Gill, T.; Louie, J.C.Y.; Rangan, A. A Review of Food Reformulation of Baked Products to Reduce Added Sugar Intake. Trends Food Sci. Technol. 2019, 86, 412–425. [Google Scholar] [CrossRef]
- Southgate, A.N.N.; Scheuer, P.M.; Martelli, M.F.; Menegon, L.; de Francisco, A. Quality Properties of a Gluten-Free Bread with Buckwheat. J. Culin. Sci. Technol. 2017, 15, 339–348. [Google Scholar] [CrossRef]
- Beltrão Martins, R.; Gouvinhas, I.; Nunes, M.C.; Alcides Peres, J.; Raymundo, A.; Barros, A.I.R.N.A. Acorn Flour as a Source of Bioactive Compounds in Gluten-Free Bread. Molecules 2020, 25, 3568. [Google Scholar] [CrossRef]
- Martins, R.B.; Nunes, M.C.; Ferreira, L.M.M.; Peres, J.A.; Barros, A.I.R.N.A.; Raymundo, A. Impact of Acorn Flour on Gluten-Free Dough Rheology Properties. Foods 2020, 9, 560. [Google Scholar] [CrossRef]
- Nogueira, A.C.; Sehn, G.A.R.; Rebellato, A.P.; Coutinho, J.P.; Godoy, H.T.; Chang, Y.K.; Steel, C.J.; Clerici, M.T.P.S. Yellow Sweet Potato Flour: Use in Sweet Bread Processing to Increase β-Carotene Content and Improve Quality. An. Acad. Bras. Cienc. 2018, 90, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Franco, V.A.; Garcia, L.G.C.; da SILVA, F.A. Addition of Hydrocolidics in Gluten-Free Bread and Replacement of Rice Flour for Sweet Potato Flour. Food Sci. Technol. 2020, 40, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Ketnawa, S.; Kaur, L.; Ogawa, Y.; Singh, J. Sweet Potato Microstructure, Starch Digestion, and Glycemic Index; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128136379. [Google Scholar]
- Villarino, C.B.J.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S.K. Nutritional, Health, and Technological Functionality of Lupin Flour Addition to Bread and Other Baked Products: Benefits and Challenges. Crit. Rev. Food Sci. Nutr. 2016, 56, 835–857. [Google Scholar] [CrossRef] [Green Version]
- D’Amore, T.; Russell, I.; Stewart, G.G. Sugar Utilization by Yeast during Fermentation. J. Ind. Microbiol. 1989, 4, 315–323. [Google Scholar] [CrossRef]
- AACC 54-21.02. International Method Rheological Behavior of Flour by Farinograph: Constant Flour Weight Procedure. Approved Methods of Analisys. 11th Ed. Method 54-21.02. 2011, pp. 1–8. Available online: https://www.cerealsgrains.org/resources/Methods/Pages/54PhysicalDoughTests.aspx (accessed on 30 August 2022).
- Dang, J.M.C.; Bason, M.L. Comparison of Old and New Dough Mixing Methods and Their Utility in Predicting Bread Quality. In Proceedings of the 65th Australian Cereal Chemistry Conference, Coogee, NSW, Australia, 16–18 September 2015; pp. 1–5. [Google Scholar]
- Turkut, G.M.; Cakmak, H.; Kumcuoglu, S.; Tavman, S. Effect of Quinoa Flour on Gluten-Free Bread Batter Rheology and Bread Quality. J. Cereal Sci. 2016, 69, 174–181. [Google Scholar] [CrossRef]
- AACC. AACC International Method 10-05.01. Guidelines for Measurement of Volume by Rapeseed Displacement; Cereals & Grains Association: St. Paul, MN, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC INTERNATIONAL, 20th ed.; AOAC International: Arlington, VA, USA, 2016. [Google Scholar]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A Starch Hydrolysis Procedure to Estimate Glycemic Index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Germaine, K.A.; Samman, S.; Fryirs, C.G.; Griffiths, P.J.; Johnson, S.K.; Quail, K.J. Comparison of in Vitro Starch Digestibility Methods for Predicting the Glycaemic Index of Grain Foods. J. Sci. Food Agric. 2008, 88, 652–658. [Google Scholar] [CrossRef]
- Machado, N.F.L.; Domínguez-Perles, R. Addressing Facts and Gaps in the Phenolics Chemistry of Winery By-Products. Molecules 2017, 22, 286. [Google Scholar] [CrossRef]
- Teixeira-Guedes, C.I.; Oppolzer, D.; Barros, A.I.; Pereira-Wilson, C. Impact of Cooking Method on Phenolic Composition and Antioxidant Potential of Four Varieties of Phaseolus vulgaris L. and Glycine max L. LWT 2019, 103, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Gouvinhas, I.; Santos, R.A.; Queiroz, M.; Leal, C.; Saavedra, M.J.; Domínguez-Perles, R.; Rodrigues, M.; Barros, A.I.R.N. Monitoring the Antioxidant and Antimicrobial Power of Grape (Vitis vinifera L.) Stems Phenolics over Long-Term Storage. Ind. Crops Prod. 2018, 126, 83–91. [Google Scholar] [CrossRef]
- ISO 11136:2014; Sensory Analysis—Methodology—General Guidance for Conducting Hedonic Tests with Consumers in a Controlled Area. International Standard Organization: Geneva, Switzerland, 2014.
- Feliciano, R.P.; Antunes, C.; Ramos, A.; Serra, A.T.; Figueira, M.E.; Duarte, C.M.M.; de Carvalho, A.; Bronze, M.R. Characterization of Traditional and Exotic Apple Varieties from Portugal. Part 1—Nutritional, Phytochemical and Sensory Evaluation. J. Funct. Foods 2010, 2, 35–45. [Google Scholar] [CrossRef]
- Kruczek, M.; Gumul, D.; Kacániová, M.; Ivanišhová, E.; Marecek, J.; Gambus, H. Industrial Apple Pomace By-Products as a Potential Source of pro-Health Compounds in Functional Food. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 22–26. [Google Scholar] [CrossRef]
- Rhodes, D.; Morton, S.; Hymes, M.; Friday, J.; Martin, C.; Steinfeldt, L.; Moshfegh, A. USDA Food and Nutrient Database for Dietary Studies 2017–2018. US Dep. Agric. 2020. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/fndds/2017_2018_FNDDS_Doc.pdf (accessed on 7 July 2022).
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant and Antimicrobial Properties of Dried Portuguese Apple Variety (Malus Domestica Borkh. Cv Bravo de Esmolfe). Food Chem. 2018, 240, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Sethi, S.; Joshi, A.; Arora, B.; Bhowmik, A.; Sharma, R.R.; Kumar, P. Significance of FRAP, DPPH, and CUPRAC Assays for Antioxidant Activity Determination in Apple Fruit Extracts. Eur. Food Res. Technol. 2020, 246, 591–598. [Google Scholar] [CrossRef]
- Monteiro, M.; Santos, R.A.; Iglesias, P.; Couto, A.; Serra, C.R.; Gouvinhas, I.; Barros, A.; Oliva-Teles, A.; Enes, P.; Díaz-Rosales, P. Effect of Extraction Method and Solvent System on the Phenolic Content and Antioxidant Activity of Selected Macro- and Microalgae Extracts. J. Appl. Phycol. 2020, 32, 349–362. [Google Scholar] [CrossRef]
- Cornejo, F.; Rosell, C.M. Physicochemical Properties of Long Rice Grain Varieties in Relation to Gluten Free Bread Quality. LWT-Food Sci. Technol. 2015, 62, 1203–1210. [Google Scholar] [CrossRef] [Green Version]
- Rocha Parra, A.F.; Ribotta, P.D.; Ferrero, C. Starch–Apple Pomace Mixtures: Pasting Properties and Microstructure. Food Bioprocess Technol. 2015, 8, 1854–1863. [Google Scholar] [CrossRef]
- Hager, A.S.; Wolter, A.; Jacob, F.; Zannini, E.; Arendt, E.K. Nutritional Properties and Ultra-Structure of Commercial Gluten Free Flours from Different Botanical Sources Compared to Wheat Flours. J. Cereal Sci. 2012, 56, 239–247. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple Pomace as Food Fortification Ingredient: A Systematic Review and Meta-Analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef] [PubMed]
- Rogowska, A.M. Synaesthesia and Individual Differences; Cambridge University Press: Cambridge, UK, 2015; ISBN 1107096189. [Google Scholar]
- Klug, L.; Daum, G. Yeast Lipid Metabolism at a Glance. FEMS Yeast Res. 2014, 14, 369–388. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Zhu, Z.; Nielsen, J.; Siewers, V. Engineering Saccharomyces Cerevisiae Cells for Production of Fatty Acid-Derived Biofuels and Chemicals. Open Biol. 2019, 9, 190049. [Google Scholar] [CrossRef] [Green Version]
- Matos Segura, M.E.; Rosell, C.M. Chemical Composition and Starch Digestibility of Different Gluten-Free Breads. Plant Foods Hum. Nutr. 2011, 66, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Romão, B.; Botelho, R.B.A.; Alencar, E.R.; da Silva, V.S.N.; Pacheco, M.T.B.; Zandonadi, R.P. Chemical Composition and Glycemic Index of Gluten-Free Bread Commercialized in Brazil. Nutrients 2020, 12, 2234. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.; Fielden, H.; Baldwin, J.M.; Bowling, A.C.; Newman, H.C.; Jenkins, A.L.; Goff, D. V Glycemic Index of Foods: A Physiological Basis for Carbohydrate Exchange. Am. J. Clin. Nutr. 1981, 34, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [Green Version]
- WHO Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 17 March 2022).
- Domínguez-Perles, R.; Guedes, A.; Queiroz, M.; Silva, A.M.; Barros, A.I.R.N.A. Oxidative Stress Prevention and Anti-Apoptosis Activity of Grape (Vitis vinifera L.) Stems in Human Keratinocytes. Food Res. Int. 2016, 87, 92–102. [Google Scholar] [CrossRef]
Ingredients (%) | Control (C) | Apple 17% (A17) | Apple 23% (A23) |
---|---|---|---|
Buckwheat flour | 46.0 | 29.0 | 23.0 |
Sweet potato flour | 29.0 | 29.0 | 29.0 |
White lupin flour | 25.0 | 25.0 | 25.0 |
Apple flour | 0.0 | 17.0 | 23.0 |
Cinnamon (in relation to flours) | 1.7 | 1.7 | 1.7 |
Sunflower oil (in relation to flours) | 5.5 | 5.5 | 5.5 |
HPMC (in relation to flours) | 4.6 | 4.6 | 4.6 |
Dried yeast (in relation to flours) | 2.8 | 2.8 | 2.8 |
Sugar (in relation to flours) | 2.8 | 2.8 | 2.8 |
Salt (in relation to flours) | 1.5 | 1.5 | 1.5 |
Water absorption (14% moisture basis) * | 95.0 | 81.0 | 79.0 |
Amount of water (in relation to flours after adjustment to 14% moisture basis) | 107.5 | 95.5 | 93.7 |
Apple Flour | Moisture | Ash | Protein | Lipids | Total Fiber | Ins. Fiber | Sol. Fiber |
(g 100 g−1 DW) | |||||||
3.98 ± 0.42 | 5.47 ± 0.14 | 1.34 ± 0.11 | 0.49 ± 0.02 | 12.85 ± 0.21 | 10.00 ± 0.28 | 2.85 ± 0.07 | |
Carbohydrates (g 100 g−1 DW) | TPC | ODC | FlC | ABTS | DPPH | FRAP | |
(mg GA g−1 DW) | (mg Cat g−1 DW) | (mmol Trolox g−1 DW) | |||||
76.17 ± 0.62 | 8.86 ± 0.50 | 6.83 ± 0.58 | 9.46 ± 1.02 | 0.108 ± 0.011 | 0.073 ± 0.007 | 0.069 ± 0.002 |
C | A17 | A23 | ||||
---|---|---|---|---|---|---|
WA | 95.0% | 81.0% | 79.0% | |||
DDT (min) | 0.95 | 1.09 | 1.19 | |||
Stability (min) | 0.85 | 1.25 | 1.40 | |||
Softening (mN·m) | 9.0 | 12.5 | 12.5 | |||
Torque (mN·m) | T (°C) | Torque (mN·m) | T (°C) | Torque (mN·m) | T (°C) | |
C | A17 | A23 | ||||
C1 | 47.0 | 30.0 | 47.0 | 30.0 | 47.0 | 30.0 |
C2 | 9.0 | 70.0 | 11.0 | 67.0 | 10.0 | 75.0 |
C3 (gelatinization) | 52.0 | 83.0 | 60.0 | 83.0 | 55.0 | 90.0 |
C4 | 48.0 | 90.0 | 36.0 | 90.0 | 36.0 | 90.0 |
Breakdown (C3–C4) | 4.0 | - | 24.0 | - | 19.0 | - |
C5 (retrogradation) | 78.0 | 50.0 | 71.0 | 50.0 | 65.0 | 50.0 |
Setback (C5–C4) | 30.0 | - | 35.0 | - | 29.0 | - |
C | A17 | A23 | ||
---|---|---|---|---|
Baking loss (%) | 11.69 ± 0.80 a | 11.89 ± 0.81 a | 11.72 ± 0.79 a | |
Specific Volume (cm3/g) | 1.38 ± 0.11 a | 1.18 ± 0.07 b | 1.13 ± 0.07 b | |
Firmness 2h (N) | 21.01 ± 2.60 c | 26.34 ± 2.21 a | 23.88 ± 2.40 b | |
Firmness 24h (N) | 24.01 ± 2.70 c | 28.58 ± 1.70 a | 26.77 ± 3.33 b | |
Cohesiveness 2h | 0.51 ± 0.04 a | 0.46 ± 0.04 a | 0.45 ± 0.07 a | |
Cohesiveness 24h | 0.47 ± 0.02 a | 0.43 ± 0.04 a,b | 0.41 ± 0.05 b | |
aw | 0.957 ± 0.00 a | 0.95 ± 0.01 b | 0.93 ± 0.00 c | |
Crumb Color | L * | 53.69 ± 1.24 a | 51.83 ± 0.94 b | 51.90 ± 0.87 b |
a * | 5.87 ± 0.22 b | 6.94 ± 0.25 a | 7.10 ± 0.28 a | |
b * | 27.53 ± 0.54 b | 28.55 ± 0.55 a | 28.63 ± 0.63 a |
Moisture | Ash | Protein | Fat | Total Fiber | Insoluble Fiber | Soluble Fiber | Carbohydrates | |
---|---|---|---|---|---|---|---|---|
C | 49.71 ± 1.35 a | 3.88 ± 0.04 a | 14.60 ± 0.71 a | 4.25 ± 0.32 b | 18.30 ± 0.57 b | 16.70 ± 0.57 b | 1.60 ± 0.00 a | 56.52 ± 0.71 |
A17 | 47.18 ± 0.37 b | 3.78 ± 0.04 b | 12.19 ± 1.00 b | 5.86 ± 0.65 a,b | 19.63 ± 0.04 a,b | 18.05 ± 0.21 a,b | 1.58 ± 0.18 a | 56.21 ± 0.21 |
A23 | 45.93± 0.48 c | 3.72 ± 0.05 b | 11.44 ± 1.12 b | 5.94 ± 0.77 a | 19.95 ± 0.21 a | 18.85 ± 0.64 a | 1.10 ± 0.42 a | 56.17 ± 0.58 |
Total Starch (TS) (g 100g−1) | Resistant Starch RS (g 100g−1) | Digestible Starch TS-RS (g 100g−1) | Hydrolysis Index HI | Estimated Glycemic Index (eGI) | |
---|---|---|---|---|---|
Control | 33.41 ± 1.44 a | 14.80 ± 0.37 a | 18.67 ± 1.23 | 25.86 ± 0.24 b | 53.91 ± 1.23 b |
A17 | 31.48 ± 1.08 b | 11.65 ± 0.20 b | 19.83 ± 0.80 | 29.94 ± 0.66 a | 56.15 ± 0.36 a |
A23 | 31.15 ± 0.13 b | 10.60 ± 0.02 c | 20.56 ± 0.12 | 31.14 ± 1.44 a | 56.81 ± 0.79 a |
C | A17 | A23 | |||
---|---|---|---|---|---|
Phenolic Composition | TPC | (mg GA g−1 DW) | 3.166 ± 0.162 c | 3.842 ± 0.162 b | 4.241 ± 0.105 a |
ODC | 3.004 ± 0.102 c | 4.475 ± 0.113 b | 4.881 ± 0.116 a | ||
FlC | (mg Catechin g−1) | 0.962 ± 0.067 c | 1.390 ± 0.063 b | 1.434 ± 0.085 a | |
Antioxidant activity | DPPH | (mmol Trolox g−1) | 0.012 ± 0.001 b | 0.016 ± 0.001 a | 0.017 ± 0.001 a |
ABTS | 0.021 ± 0.001 b | 0.026 ± 0.001 a | 0.027 ± 0.001 a | ||
FRAP | 0.015 ± 0.001 b | 0.023 ± 0.002 a | 0.023 ± 0.001 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrão Martins, R.; Nunes, M.C.; Gouvinhas, I.; Ferreira, L.M.M.; Peres, J.A.; Barros, A.I.R.N.A.; Raymundo, A. Apple Flour in a Sweet Gluten-Free Bread Formulation: Impact on Nutritional Value, Glycemic Index, Structure and Sensory Profile. Foods 2022, 11, 3172. https://doi.org/10.3390/foods11203172
Beltrão Martins R, Nunes MC, Gouvinhas I, Ferreira LMM, Peres JA, Barros AIRNA, Raymundo A. Apple Flour in a Sweet Gluten-Free Bread Formulation: Impact on Nutritional Value, Glycemic Index, Structure and Sensory Profile. Foods. 2022; 11(20):3172. https://doi.org/10.3390/foods11203172
Chicago/Turabian StyleBeltrão Martins, Rita, Maria Cristiana Nunes, Irene Gouvinhas, Luís Miguel Mendes Ferreira, José Alcides Peres, Ana Isabel Ramos Novo Amorim Barros, and Anabela Raymundo. 2022. "Apple Flour in a Sweet Gluten-Free Bread Formulation: Impact on Nutritional Value, Glycemic Index, Structure and Sensory Profile" Foods 11, no. 20: 3172. https://doi.org/10.3390/foods11203172
APA StyleBeltrão Martins, R., Nunes, M. C., Gouvinhas, I., Ferreira, L. M. M., Peres, J. A., Barros, A. I. R. N. A., & Raymundo, A. (2022). Apple Flour in a Sweet Gluten-Free Bread Formulation: Impact on Nutritional Value, Glycemic Index, Structure and Sensory Profile. Foods, 11(20), 3172. https://doi.org/10.3390/foods11203172