Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Chicken Samples
2.2. Isolates Identification and Screening for Antimicrobial Resistance
2.3. Whole-Genome Sequencing Analysis
2.4. Genome Sequence Data Availability
3. Results
3.1. Phenotypic and PCR-Based Confirmation of Linezolid Resistance
3.2. Population Structure and Clonal Relationship
3.3. Genomic Analysis of Antimicrobial Resistance
3.4. Genomic Insight into Virulence Traits
4. Discussion
4.1. A Concern for the Chicken Industry and Human Health
4.2. Clonal Relationship from a One Health Perspective
4.3. Genomic Insight into Multidrug Resistance and Virulence Traits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cattoir, V. The multifaceted lifestyle of enterococci: Genetic diversity, ecology and risks for public health. Curr. Opin. Microbiol. 2022, 65, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Somily, A.M.; Al-Mohizea, M.M.; Absar, M.M.; Fatani, A.J.; Ridha, A.M.; Al-Ahdal, M.N.; Senok, A.C.; Al-Qahtani, A.A. Molecular epidemiology of vancomycin resistant enterococci in a tertiary care hospital in Saudi Arabia. Microb. Pathog. 2016, 97, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.; Stack, H.; Rea, R. Safety, beneficial and technological properties of enterococci for use in functional food applications—A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3836–3861. [Google Scholar] [CrossRef] [PubMed]
- Hammerum, A.M.; Lester, C.H.; Heuer, O.E. Antimicrobial-resistant enterococci in animals and meat: A human health hazard? Foodborne Pathog. Dis. 2010, 7, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.A.; Bodolea, C.; Vlase, L.; Hiriscau, E.I.; Popa, A. Linezolid Administration to Critically Ill Patients: Intermittent or Continuous Infusion? A Systematic Literature Search and Review. Antibiotics 2022, 11, 436. [Google Scholar] [CrossRef] [PubMed]
- Sadowy, E. Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid 2018, 99, 89–98. [Google Scholar] [CrossRef]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; Leon-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiol. Spectr. 2018, 6, 185–227. [Google Scholar] [CrossRef]
- Habib, I.; Lakshmi, G.B.; Mohamed, M.I.; Ghazawi, A.; Khan, M.; Li, D. Enumeration, Antimicrobial Resistance, and Virulence Genes Screening of Enterococcus spp. Isolated from Retail Chicken Carcasses in the United Arab Emirates. Foodborne Pathog. Dis. 2022, 19, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Rantsiou, K.; Kathariou, S.; Winkler, A.; Skandamis, P.; Saint-Cyr, M.J.; Rouzeau-Szynalski, K.; Amezquita, A. Next generation microbiological risk assessment: Opportunities of whole genome sequencing (WGS) for foodborne pathogen surveillance, source tracking and risk assessment. Int. J. Food Microbiol. 2018, 287, 3–9. [Google Scholar] [CrossRef]
- Boss, R.; Overesch, G.; Baumgartner, A. Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland. J. Food Prot. 2016, 79, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Egan, S.A.; Shore, A.C.; O’Connell, B.; Brennan, G.I.; Coleman, D.C. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: High prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds. J. Antimicrob. Chemother. 2020, 75, 1704–1711. [Google Scholar] [CrossRef]
- Morroni, G.; Brenciani, A.; Antonelli, A.; D’Andrea, M.M.; Di Pilato, V.; Fioriti, S.; Mingoia, M.; Vignaroli, C.; Cirioni, O.; Biavasco, F.; et al. Characterization of a Multiresistance Plasmid Carrying the optrA and cfr Resistance Genes from an Enterococcus faecium Clinical Isolate. Front. Microbiol. 2018, 9, 2189. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, X.; Yin, Y.; Li, S.; Zhang, Y.; Wang, Q.; Wang, H. Molecular characteristics of oxazolidinone resistance in enterococci from a multicenter study in China. BMC Microbiol. 2019, 19, 162. [Google Scholar] [CrossRef] [Green Version]
- Nuesch-Inderbinen, M.; Haussmann, A.; Treier, A.; Zurfluh, K.; Biggel, M.; Stephan, R. Fattening Pigs Are a Reservoir of Florfenicol-Resistant Enterococci Harboring Oxazolidinone Resistance Genes. J. Food Prot. 2022, 85, 740–746. [Google Scholar] [CrossRef]
- Freitas, A.R.; Tedim, A.P.; Novais, C.; Lanza, V.F.; Peixe, L. Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes. Microb. Genom. 2020, 6, e000350. [Google Scholar] [CrossRef]
- Verraes, C.; Van Boxstael, S.; Van Meervenne, E.; Van Coillie, E.; Butaye, P.; Catry, B.; de Schaetzen, M.A.; Van Huffel, X.; Imberechts, H.; Dierick, K.; et al. Antimicrobial resistance in the food chain: A review. Int. J. Environ. Res. Public Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.B.; Seo, K.W.; Jeon, H.Y.; Lim, S.K.; Sung, H.W.; Lee, Y.J. Molecular characterization of erythromycin and tetracycline-resistant Enterococcus faecalis isolated from retail chicken meats. Poult. Sci. 2019, 98, 977–983. [Google Scholar] [CrossRef]
- Cauwerts, K.; Decostere, A.; De Graef, E.M.; Haesebrouck, F.; Pasmans, F. High prevalence of tetracycline resistance in Enterococcus isolates from broilers carrying the erm(B) gene. Avian Pathol. 2007, 36, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Zaheer, R.; Cook, S.R.; Barbieri, R.; Goji, N.; Cameron, A.; Petkau, A.; Polo, R.O.; Tymensen, L.; Stamm, C.; Song, J.; et al. Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci. Rep. 2020, 10, 3937. [Google Scholar] [CrossRef]
- Sanderson, H.; Ortega-Polo, R.; Zaheer, R.; Goji, N.; Amoako, K.K.; Brown, R.S.; Majury, A.; Liss, S.N.; McAllister, T.A. Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants. BMC Microbiol. 2020, 20, 20. [Google Scholar] [CrossRef] [Green Version]
- Ben Said, L.; Klibi, N.; Dziri, R.; Borgo, F.; Boudabous, A.; Ben Slama, K.; Torres, C. Prevalence, antimicrobial resistance and genetic lineages of Enterococcus spp. from vegetable food, soil and irrigation water in farm environments in Tunisia. J. Sci. Food Agric. 2016, 96, 1627–1633. [Google Scholar] [CrossRef]
- Sparo, M.; Urbizu, L.; Solana, M.V.; Pourcel, G.; Delpech, G.; Confalonieri, A.; Ceci, M.; Sanchez Bruni, S.F. High-level resistance to gentamicin: Genetic transfer between Enterococcus faecalis isolated from food of animal origin and human microbiota. Lett. Appl. Microbiol. 2012, 54, 119–125. [Google Scholar] [CrossRef]
- Choi, J.M.; Woo, G.J. Transfer of tetracycline resistance genes with aggregation substance in foodborne Enterococcus faecalis. Curr. Microbiol. 2015, 70, 476–484. [Google Scholar] [CrossRef] [Green Version]
- O’Dea, M.; Sahibzada, S.; Jordan, D.; Laird, T.; Lee, T.; Hewson, K.; Pang, S.; Abraham, R.; Coombs, G.W.; Harris, T.; et al. Genomic, Antimicrobial Resistance, and Public Health Insights into Enterococcus spp. from Australian Chickens. J. Clin. Microbiol. 2019, 57, e00319-19. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.; Diarra, M.S.; Checkley, S.; Bohaychuk, V.; Masson, L. Characterization of antimicrobial resistance and virulence genes in Enterococcus spp. isolated from retail meats in Alberta, Canada. Int. J. Food Microbiol. 2012, 156, 222–230. [Google Scholar] [CrossRef]
- Hancock, L.E.; Perego, M. The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J. Bacteriol. 2004, 186, 5629–5639. [Google Scholar] [CrossRef] [Green Version]
- Thurlow, L.R.; Thomas, V.C.; Narayanan, S.; Olson, S.; Fleming, S.D.; Hancock, L.E. Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect. Immun. 2010, 78, 4936–4943. [Google Scholar] [CrossRef] [Green Version]
- Semedo, T.; Santos, M.A.; Lopes, M.F.; Figueiredo Marques, J.J.; Barreto Crespo, M.T.; Tenreiro, R. Virulence factors in food, clinical and reference Enterococci: A common trait in the genus? Syst. Appl. Microbiol. 2003, 26, 13–22. [Google Scholar] [CrossRef]
- Seputiene, V.; Bogdaite, A.; Ruzauskas, M.; Suziedeliene, E. Antibiotic resistance genes and virulence factors in Enterococcus faecium and Enterococcus faecalis from diseased farm animals: Pigs, cattle and poultry. Pol. J. Vet. Sci. 2012, 15, 431–438. [Google Scholar]
- Eaton, T.J.; Gasson, M.J. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 2001, 67, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
Species | Strains | Company | Antimicrobial Resistance Phenotype * |
---|---|---|---|
Enterococcus faecalis | 171B | A | CIP-ERYTH-LIN-TET |
223B | A | CIP-ERYTH-LIN | |
227B | A | CIP-ERYTH-LIN-TET | |
173B | A | CIP-ERYTH-LIN-TET | |
176B | A | CIP-ERYTH-LIN-TET | |
180B | A | HLS-CIP-ERYTH-LIN-TET | |
295B | D | HLG-CIP-ERYTH-LIN-TET | |
279B | G | HLG-CIP-ERYTH-LIN-TET | |
302B | G | HLG-HLS-CIP-ERYTH-LIN-TET | |
240B | G | HLG-HLS-CIP-ERYTH-LIN-TET | |
288B ** | G | HLG-CIP-ERYTH-LIN-TET | |
Enterococcus faecium | 227E | A | HLG-CIP-ERYTH-LIN-TET |
222A | A | HLG-HLS-CIP-ERYTH-LIN-TET | |
225A | A | ERYTH-LIN-TET | |
228A | A | HLS-CIP-ERYTH-LIN-TET | |
170C | G | HLG-HLS-CIP-ERYTH-LIN-TET | |
232A | G | HLG-HLS-CIP-ERYTH-LIN-TET |
Species | Strains | ST | Quinolone Point Mutation | Antimicrobial Resistance Genes * | Plasmid Replicon Type | MGEs Associated with ARGs | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Linezolid | Lincosamide | Aminoglycoside | Macrolide | Tetracycline | Trimethoprim | Phenicol | ||||||
Enterococcus faecalis | 171B | 476 | gyrA_S83I and parC_S80I | optrA | - | ant(9)-la and aph(3’)-lll | erm(A), lsa(A), and erm(B) | tet(L) | - | cat and fexA | - | - |
223B | 476 | optrA | - | ant(9)-la | erm(A), Isa(A), and erm(B) | - | - | fexA | - | - | ||
227B | 476 | gyrA_S83I and parC_S80I | optrA | - | ant(9)-la and aph(3’)-lll | erm(A), lsa(A), and erm(B) | tet(L) | dfrG | cat and fexA | rep9a | - | |
173B | 1184 | gyrA_S83I and parC_S80I | optrA | lnu(G) | aph(3’)-lll | Isa(A), erm(A), and erm(B) | tet(L) | dfrG | cat and fexA | rep9a and repUS43 | tet(L), erm(B), aph(3’)-lll, and cat on repUS43 | |
176B | 1184 | gyrA_S83I and parC_S80I | optrA | lnu(G) | aph(3’)-lll | Isa(A), erm(A), and erm(B) | tet(L) | dfrG | cat and fexA | rep9a and repUS43 | tet(L), erm(B), aph(3’)-lll, and cat on repUS43 | |
180B | 1291 * | gyrA_S83Y and parC_S80I | optrA | lnu(G) | aph(3’)-lll and ant(6)-la | Isa(A) and erm(B) | tet(L) | - | fexA | rep6, rep1, rep9b, and repUS43 | tet(L) on repUS43--- aph(3’)-lll, and ant(6)-la on rep1 | |
295B | 476 | gyrA_S83I and parC_S80I | optrA | - | aph(3’)-lll, ant(9)-la, and aac(6’)-aph(2’’) | erm(A), erm(B), and lsa(A) | tet(L) | - | fexA | repUS11 and rep9b | - | |
279B | 314 | eatA_T450I | optrA | lnu(G) | aph(3’)-lll and aac(6’)-aph(2’’) | erm(A), erm(B), and lsa(A) | tet(L) | - | cat and fexA | repUS11, repUS43, and rep9a | tet(L), erm(B), and cat on repUS43 | |
302B | 476 | gyrA_S83Y and parC_S80I | optrA | lnu(B) | aph(3’)-lll, ant(9)-la, and aac(6’)-aph(2’’) | erm(A), erm(B), Isa(A), and Isa(E) | tet(L) | dfrG | cat and fexA | repUS43 | tet(L) on repUS43 | |
240B | 1290 * | eatA_T450I | optrA | lnu(B) | aph(3’)-lll, ant(9)-la, and aac(6’)-aph(2’’) | erm(A), erm(B), lsa(A), and lsa(E) | tet(L) | dfrG | fexA | repUS11, rep9a, and rep6 | - | |
Enterococcus faecium | 227E | 195 | optrA, poxtA | lnu(G) | aac(6’)-li and aadD | erm(A), msr(C), and erm(B) | tet(L) | dfrG | fexA and fexB | rep2, rep14a, repUS15, and rep29 | - | |
222A | 2236 * | gyrA_S83Y and parC_S80I | optrA | - | aph(3’)-lll, aac(6’)-li, and aac(6’)-aph(2’’) | erm(A), msr(C), and erm(B) | tet(M) | dfrE | fexA | repUS1 and repUS15 | optrA, ermA, and fexA on repUS1 | |
225A | 2239 * | gyrA_S83I | optrA | - | ant(9)-la and aac(6’)-li | erm(A) and msr(C) | tet(L) | - | fexA | repUS43, repUS15, rep22, and repUS1 | tet(L) on repUS43 | |
228A | 2236 * | eatA_T450I | optrA | - | ant(6)-la, aph(3’’)-lll, and aac(6’)-li | msr(C) and ermB | tet(L) | - | fexA | rep2 and repUS15 | - | |
170C | 2236 * | eatA_T450I | optrA | - | ant(6)-la, aph(3’’)-lll, aac(6’)-li, and aac(6’)-aph(2’’) | erm(A), msr(C), and erm(B) | tet(L) | dfrE | fexA | rep2 and repUS15 | - | |
232A | 2238 * | optrA | lnu(B) | ant(6)-la, aph(3’)-lll, aac(6’)-li, and aac(6’)-aph(2’’) | erm(A), erm(B), and lsa(E) | tet(L) and tet(S) | dfrG | fexA | rep22, repUS43, and repUS15 | tet(L) on rep22 |
Strains * | Virulence Genes | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sex Pheromones | Adhesion | Invasion | Aggregation | Cytolytic Toxin | Biofilm Formation | Antiphagocytic | Immunity | Protease | |
171B | cCF10, cOB1, cad, and camE | SrtA, ebpA, ebpC, and efaAfs | hylA | - | - | - | tpx | ElrA | - |
223B | cCF10, cOB1, cad, and camE | SrtA, ebpA, ebpC, and efaAfs | hylA | - | - | - | tpx | ElrA | - |
227B | cCF10, cOB1, cad, and camE | SrtA, ebpA, ebpC, and efaAfs | - | - | - | - | tpx | ElrA | - |
173B | cCF10, cOB1, cad, and camE | SrtA, ebpA, ebpC, and efaAfs | hylB | - | - | fsrB | tpx | ElrA | gelE |
176B | cCF10, cOB1, cad, and camE | SrtA, ebpA, ebpC, and efaAfs | hylB | - | - | fsrB | tpx | ElrA | gelE |
180B | cCF10, cOB1, cad, and camE | SrtA, ebpA, ebpC, and efaAfs | hylA and hylB | - | - | fsrB | tpx | ElrA | gelE |
295B | cCF10, cOB1, cad, and camE | SrtA, ebpA, ebpC, and efaAfs | hylA | - | cylB, cylL, and cylM | - | tpx | ElrA | - |
279B | cCF10, cOB1, cad, and camE | SrtA, ebpA, ebpC, and efaAfs | hylB | - | - | fsrB | tpx | ElrA | gelE |
302B | cCF10, cOB1, cad, and camE | SrtA, ebpA, ebpC, and efaAfs | hylA | - | - | - | tpx | ElrA | - |
240B | cCF10, cOB1, cad, and camE | SrtA, ebpA, ebpC, and efaAfs | hylA | - | - | - | tpx | ElrA | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, I.; Ghazawi, A.; Lakshmi, G.B.; Mohamed, M.-Y.I.; Li, D.; Khan, M.; Sahibzada, S. Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates. Foods 2022, 11, 3190. https://doi.org/10.3390/foods11203190
Habib I, Ghazawi A, Lakshmi GB, Mohamed M-YI, Li D, Khan M, Sahibzada S. Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates. Foods. 2022; 11(20):3190. https://doi.org/10.3390/foods11203190
Chicago/Turabian StyleHabib, Ihab, Akela Ghazawi, Glindya Bhagya Lakshmi, Mohamed-Yousif Ibrahim Mohamed, Dan Li, Mushtaq Khan, and Shafi Sahibzada. 2022. "Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates" Foods 11, no. 20: 3190. https://doi.org/10.3390/foods11203190
APA StyleHabib, I., Ghazawi, A., Lakshmi, G. B., Mohamed, M. -Y. I., Li, D., Khan, M., & Sahibzada, S. (2022). Emergence and Genomic Characterization of the First Reported optrA-Carrying Linezolid-Resistant Enterococci Isolated from Retail Broiler Meat in the United Arab Emirates. Foods, 11(20), 3190. https://doi.org/10.3390/foods11203190