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Abstract: Cereals have phytochemical compounds that can diminish the incidence of chronic diseases
such as hypertension. The angiotensin-converting enzyme 2 (ACE2) participates in the modulation of
blood pressure and is the principal receptor of the virus SARS-CoV-2. The inhibitors of the angiotensin-
converting enzyme (ACE) and the block receptors of angiotensin II regulate the expression of ACE2;
thus, they could be useful in the treatment of patients infected with SARS-CoV-2. The inferior
peptides from 1 to 3 kDa and the hydrophobic amino acids are the best candidates to inhibit ACE,
and these compounds are present in rice, corn, wheat, oats, sorghum, and barley. In addition, the
vitamins C and E, phenolic acids, and flavonoids present in cereals show a reduction in the oxidative
stress involved in the pathogenesis of hypertension. The influence of ACE on hypertension and
COVID-19 has turned into a primary point of control and treatment from the nutritional perspective.
The objective of this work was to describe the inhibitory effect of the angiotensin-converting enzyme
that the bioactive compounds present in cereals possess in order to lower blood pressure and how
their consumption could be associated with reducing the virulence of COVID-19.

Keywords: cereals; COVID-19; diet therapy; drug therapy; hypertension; phytochemicals

1. Introduction

Cereals constitute an important part of the daily diet due to their high content of
proteins, dietary fiber, and bioactive compounds with antioxidant and anti-inflammatory
activities, which help prevent diseases related to metabolic syndromes such as obesity,
cardiovascular diseases, and type 2 diabetes [1,2]. Wheat, oats, barley, and rice have
been reported to have antihypertensive and antioxidant activities due to their content of
phytochemical compounds that participate in hormonal regulation mechanisms that help
lower blood pressure and other non-transmissible diseases [3–6].

Peptides derived from food have a high potential regarding the development of
nutraceuticals and functional foods due to their specificity and molecular weight [7].
According to Cavazos and Mejia [8], the anti-hypertensive activity of the bioactive peptides
presents in cereals with hypotensive effects contribute to preventing cardiovascular diseases.
Likewise, it has been discovered that the hydrolyzed proteins and phenolic compounds
promote the regulation of oxidative stress and decrease the appearance of associated chronic
diseases [9,10].
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Hypertension has been one of the most important comorbidities that contribute to
the development of cardiovascular diseases. Recently, during the pandemic caused by the
coronavirus SARS-CoV-2, the most common comorbidities in patients with COVID-19 have
been reported, of which hypertension (30%), diabetes (19%), and coronary diseases (8%)
stand out [11]. Some recent findings showed an important role of the Renin–angiotensin–
aldosterone system (RAAS) in hypertensive patients diagnosed with COVID-19. This is
because SARS-CoV-2 utilizes the angiotensin-converting enzyme 2 (ACE2) to unite in the
surface of epithelial cells. Thus, controlling the production of ACE2 can mediate the entry
of SARS-CoV-2 in the cells [12].

Some hypertensive drugs, such as the blocking receptors of angiotensin II (BRA),
can modify the expression of ACE2 [13,14], which could decrease the virulence of SARS-
CoV-2. The objective of this review is to describe the anti-hypertensive activity present
in some bioactive compounds in cereals, wherein activities such as the inhibition of ACE,
its participation in oxidative stress, and its consumption could be associated with the
prevention of COVID-19. Furthermore, some angiotensin-converting enzyme inhibitors
(ACEi) and angiotensin II receptor blockers (ARBs) used in the treatment of hypertensive
patients diagnosed with COVID-19 are described.

2. Physiopathology of Hypertension

High blood pressure, also known as hypertension, is a public health problem suffered
by around 1.3 million adults worldwide. This condition occurs when an elevation in the
systolic and diastolic pressure occurs above 140/90 mmHg, respectively [15]. Studies
relate the hyperactivation of the renin angiotensin system [16,17], oxidative stress [18],
and chronic inflammation [19] as the principal causes in the development of hypertension.
Other factors related to hypertension include biochemical processes, such as the increase
in the sympathetic activity of the nervous system, the inadequate intake of calcium and
potassium, and alterations in the secretion of renin, a hormone related to the elevation
in the activity of the angiotensin renin system [20]. In addition, the increased activity
of ACE causes a high production of the hormone angiotensin II, as well as deficiencies
in vasodilators including vascular inflammatory factors, which promote an alteration in
cellular ion channels [20].

The RAAS is the principal mechanism that affects the regulation of blood pressure. An
increase in the renin hormone caused by an increment in the intake of sodium provokes the
stimulation of the production of the physiologically inactive hormone called angiotensin-I
(Ang-I), which is converted into angiotensin II (Ang-II) due to the angiotensin-converter
enzyme (ACE-I). Ang II is a vasoconstrictor that stimulates the production of aldosterone,
which causes an increase in blood pressure through the retention of sodium and water.
This induces the activation of the epithelial sodium channel stimulating the reabsorption of
the Na+ in the cortical duct (Figure 1) [17,21].

Although the potential of antihypertensive drugs to lower blood pressure in individu-
als with hypertension has been shown, lifestyle habits, such as regular exercise and healthy
eating, have also been reported to have a positive effect on blood pressure control [22].
Some mechanisms used by the bioactive compounds present in food, mainly polyphenolic
compounds to reduce hypertension, include the reduction in the levels of the vasocon-
strictor molecule I and the increase in the antioxidant glutathione [23], which improve the
production of vasodilator factors such as oxide nitric [24] and inhibit the expression of
proangiogenic factors such as vascular endothelial growth factor [25].

Therefore, a better understanding of the hormonal mechanisms that control high blood
pressure could clarify the causes and effects that a drug treatment combined with a diet
rich in cereals could have on the control of hypertension, effectively reducing inflammation
and oxidative stress and strengthening the immune system during the COVID-19 crisis.
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Figure 1. Renin–angiotensin–aldosterone system. Created with BioRender.com (accessed on 5 oc-
tober 2022). 
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Figure 1. Renin–angiotensin–aldosterone system. Created with BioRender.com (accessed on 5
October 2022).

3. Hypertension: Main Comorbidity in Patients with COVID-19

COVID-19, caused by the SARS-CoV-2 virus, is an infectious disease that has provoked
a sanitary crisis worldwide. The pathogenesis of the SARS-CoV-2 virus starts by means
of the union of the protein of the viral peak with the target receptor of ACE2, which
facilitates the internalization of the virus within the host cells. It was reported that SARS-
Cov-2 is a virus whose tropism is based on the use of ACE2 to unite the epithelial cells
of the organism [26,27]. The ACE balances blood pressure and converts angiotensin I
into angiotensin II with a vasoconstrictive function and at the same time facilitates the
degradation of a vasodilator termed bradykinin [28]. The control over these hormonal
processes balances the health of hypertensive patients. However, a combination of other
diseases makes it difficult to control and, in many cases, can worsen the evolution of each
illness. Therefore, the initial reports suggest that hypertension, diabetes, and cardiovascular
diseases are the most frequent comorbidities in COVID-19 [29].

The ACE2 can change the balance of the RAAS by means of the conversion of Ang II
to Ang (1-7). Therefore, hypertension and COVID-19 have developed into a recent concern
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over the susceptibility of patients with hypertension to develop COVID-19, as it increases
the severity of the illness and the use of ACEi and ARBs [30].

The inhibitors utilized in the treatment of hypertension increase the expression of
ACE2 on the cellular surface and can increase the expression of the intestinal messenger
ribonucleic acid (ARNm) of ACE2. Although there are few data concerning the effects of
these drugs regarding the expression of the ARNm of ACE2 in the pulmonary epithelial
cells, there exists the concern that the patients who take these treatments can encourage the
contraction of the virus [31].

An optimum immune response is the key to maintaining control over infectious
and non-infectious diseases. An increase in the intake of whole cereals rich in fiber and
polysaccharides is associated with a reduction in PCR-hs (a marker used to predict car-
diovascular events in patients with atherosclerosis via Polymerase Chain Reaction) [32];
decreased interleukin-6 (IL-6) [33], which is produced in response to infections and tissue
damage; and tumor necrosis factor alpha (TNF-α), an inflammatory cytokine produced by
macrophages/monocytes during acute inflammation [2]; therefore, cereals reduce the risk
of suffering illnesses predicted by inflammation such as cardiovascular diseases [34] and
diabetes type II [35].

Since blood pressure is difficult to control, the most widely used resources involve
identifying drug targets to effectively control and manage blood pressure in hyperten-
sive patients.

4. Anti-Hypertensive Drugs and Their Use in the Treatment of COVID-19

The use of ACEi and ARBs have been associated with a decrease in the mortality
of a hospital population diagnosed with COVID-19 and with a reduction in the hospital
in-patient stay observed with a greater effect in patients with hypertension [36].

However, it has been shown that ACEi and ARBs could facilitate the entry of the virus
into the host cell and increase the chances of infection or its severity, although there are
no conclusive studies [37]. In a study of 187 patients with COVID-19 (the mean age was
58.5 years), it was observed that the mortality of those treated with ACEi/ARBs did not
show a significant difference with those who were not treated with ACEi/ARBs [38].

Martínez-del Río et al. [39] reported that the use of ACEi and antagonists of the
angiotensin receptor 2 (ARA2) in elderly patients does not increase the risk of death or the
use of assisted ventilation, but the use of these drugs overexpress ACE2 and increases the
risk of infection. This enzyme acts by inhibiting angiotensin 2 and increasing the production
of angiotensin 1–7 with anti-inflammatory and vasodilator effects [40], which have been
found in greater levels in persons that have survived respiratory stress than in persons
who have perished [41].

Braude et al. [36] reported the influence of ACEi and ARBs on mortality in 1371 pa-
tients with a mean age of 74 years diagnosed with COVID-19. The results showed a
significant reduction in hospital stay. This was because ACEi decreases the production of
ACE2, as it blocks the conversion of ACE1 to ACE2, and the ARBs block the receptor of
angiotensin II type I impeding the actions of ACE2 concerning pulmonary vasoconstric-
tion and endothelial permeability, thereby diminishing the injury at the pulmonary level.
Therefore, the use of ACEi could decrease the progression and mortality of patients with
COVID-19.

One strategy to treat infection with COVID-19 is to inhibit the entry of SARS-CoV-2 in
the host cell through the receptors of ACE2 [42]. Consequently, the positive regulation of
ACE2 in infected patients with SARS-CoV-2 could be clinically useful due to the vascular
protection provided by the activity of angiotensin 1–7, thereby diminishing the effects of
angiotensin II on vasoconstriction and the retention of sodium [43].

Bioactive compounds are valuable for drug development and adjunctive therapies
for the related infection. These compounds can act as preventive agents or as treatment
accelerators. Flavanones, flavones, and saponins are some natural ACE2 inhibitors [44,45].
Saponins can inhibit the binding of COVID-19 protein S to ACE2 receptors [46] (Figure 2).
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Figure 2. Phenol binding to the ACE2 receptor and protein S blockade of SARS-CoV-2. Created with
BioRender.com (accessed on 28 August 2022).

The peptide inhibitors that are used in the treatment of diverse diseases could also
be potential agents against COVID-19. The bioactive peptides with unique sequences of
amino acids can mitigate the inhibition of the transmembrane proteases and serine type
II (TMPRSS2), a gene regulated by androgens, for the priming of the viral protein peak,
furin split, and the members of the renin–angiotensin–aldosterone system (RAAS). On the
other hand, it has been shown that the inhibition of virus replication could be mediated by
hydrogen bonding through the binding of amino acid residues [47,48] (Figure 3).
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The peptides of a food origin can perform diverse bioactivities, including antiviral
activities, depending on their characteristics and sequencing [49]. Therefore, the peptides
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derived from cereals could serve as inhibitors of multiple processes regarding the entry
into the host cell and the viral replication of SARS-CoV-2. Diverse epidemiological studies
highlight the importance of the consumption of diets rich in cereals and products of a
natural origin that help to protect against hypertension and viral diseases such as COVID-
19 [33,50,51].

5. Cereals as a Source of Compounds with Anti-Hypertensive Activity

The flavonoids and phenolic acids present in cereals have an ACE-inhibitory capacity
mainly associated with blood pressure-lowering effects due to their antioxidant capac-
ity [52]. The regulation of reactive oxygen species, the reduction in oxidative stress, and the
formation of zinc chelates are factors that promote the lowering of blood pressure [53,54].
In Table 1, the in vivo or in vitro antihypertensive mechanisms of phenolic compounds
present in some cereals are described.

Table 1. Phenolic compounds derived from cereals with antihypertensive activity.

Food Main Phenolic
Compound Test IC50 or % IECA Decrease

BP Main Mechanism Reference

Virgin rice bran oil
Sterols,

tocopherols,
and tocotrienols

in vivo ND 25.5%
Regulation of NOS and
reduction in oxidative

stress
[54]

Raw rice Phenol acids
Flavonoids in vitro 97% ND Competitive inhibition of

ECA [55]

Rice bran
hydrolysate

Phenolic
compounds in vivo ND 31.5%

Endothelium-derived
hyperpolarizing
factor-mediated

vasorelaxation and L-type
Ca 2+ channel-mediated

vasoconstriction

[56]

Barley seedlings Polyphenols in vitro 66.5% ND
Non-competitive inhibitors
of ECA and formation of
chelates with ions of zinc

[57]

Barley whole grain Anthocyanins in vitro 8770 µg/mL ND Natural competitive
inhibitors of ECA

[58]Barley bran 4540 µg/mL
Solid-state

fermented wheat
Phenolic

compounds in vitro 53.8% ND Inhibition of ECA by
proteolysis [59]

Bioprocessed
wheat middlings

Phenolic
compounds in vitro 94.9% ND

The hydrolysis of short
chain peptides increases
ECA- inhibitory capacity

[60]

Sorghum roasted
grain

Phenolic acids
and flavonoids in vitro 20.99 µg/mL ND

Hydrogen and the
hydrophobic union caused

by the denaturation of
enzymes

[61]

Sorghum grains Phenolic
compounds in vitro 46.3% ND

Production of peptides and
free amino acids before
germination increases

ECA-inhibitory activity

[62]

Extruded maize
products added

with a red seaweed

Phenolic
compounds in vitro 41% ND

ECA inhibition trough
sequestration of enzyme

metal factor Zn2+
[53]

Water extracts of
maize Soluble phenols in vitro 50% ND

Small peptide compounds
may represent the
bioactive factors

contributing to the total
ECA-inhibitory activity

[63]

BP: Blood Pressure; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; % IECA: Percent inhibition of
ECA; ND: Not determined.

In addition to phenolic compounds, studies have been conducted on multiple can-
didates for antihypertensive peptides, which, because of their biological activity, can be
generated or incorporated into functional foods. Table 2 summarizes studies highlighting
cereal peptides and proteins with antihypertensive activity. Proteins with a molecular
weight lower than 1 kDa favor their entry through cell membranes enabling their ab-
sorption and circulation [64]. Hydrolyzed proteins with high levels of proline and other
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amino acids contribute to enzyme inhibition by chelation with zinc at the active center
of the enzyme and its interaction with hydrophobic sites. Therefore, the ionic interaction
between amino acids and zinc enhances the competitive activity for the catalytic sites of
ACE [65,66]. Since there are antihypertensive peptides from cereals rich in proline and
other hydrophilic amino acids related to the S protein of SARS-CoV-2, they could serve
as multi-target inhibitors against host cell entry. The antihypertensive rice bran tripep-
tide Tyr-Ser-Lys, reported by Wang et al. [67], has two aliphatic amino acids in its chain
with a hydroxyl in the C-terminal chain; thus, it could have antiviral effects. Similarly,
the peptide Gly-Phe-Pro-Thr-Leu-Lys-Ile-Phe—reported by Gangopadhyay et al. [68]—in
barley flour presents four hydrophilic amino acids, increasing the chances that it will be
coupled to the S protein of the virus that causes COVID-19. An in silico study showed that
some oligopeptides from barley, oats, wheat, and soybeans (PISCR, VQVVN, PQQQF, and
EQQQR) were identified as potential binders of the SARS-CoV-2 spike protein receptor-
binding domain (RBD) [69]. This feature is also observed in short-chain peptides isolated
from cereals [70]. Antihypertensive peptides generally contain amino acid residues at the
C-terminus or N-terminus. The presence of tyrosine, phenylalanine, tryptophan, proline,
lysine, isoleucine, valine, leucine, and arginine present in the peptides influence the binding
of the ACE substrate or inhibitor [71]. According to the reported studies, an association has
been established between the presence of bioactive compounds and the ACE-inhibitory
mechanism and this could have a significant impact on the active sites of SARS-CoV-2.

Table 2. Peptides derived from cereals with antihypertensive activity.

Food Bioactive
Compound MW Test IC50 or %

IECA Decrease BP Main Mechanism Reference

Bran of rice Peptide <4 kDa in vitro 30 µg/mL ND Reducer and inhibitor of
ECA [67]

Rice protein
hydrolysates Dipeptides ND in vitro 76.58-µg/mL ND

Blocker of ECA due to
the presence of aromatic

amino acids
[72]

Barley flour Peptide <3 kDa in vitro 70.3% ND
Inhibitors of ECA via the
presence of hydrophobic

amino acids
[68]

Corn germ flour Peptide <3 kDa in vivo 830 µg/mL 15.7%

Regulation of
vasoconstrictors increases
in NO and prostacyclin

decreases in Ang II

[73]

Corn germ Peptides <6 kDa in vitro 1389 µg/mL ND Inhibitory effect on ECA [74]
Corn gluten flour Peptides <3 kDa in vivo/in vitro 290 µg/mL >30 mmHg

SBP
Persistent inhibition of

the ECA in tissues [75]

Corn gluten flour Dipeptide ND in vivo-in vitro 37 µg/mL 35–45 mmHg
SBP

Inhibitor of ECA by
possible synergy between

peptides
[76]

Hydrolyzed
wheat gluten Peptides <1 kDa in vitro 2 µg/mL ND

Inhibition of ECA by
electrostatic interactions

and interactions with
hydrogen bonds

[66]

Hydrolyzed
wheat gluten Peptides <1 kDa in vitro 4 µg/mL ND

Competitive and
non-competitive
inhibitors of ECA

[77]

Defatted wheat
germ Peptides <5 kDa in vitro 452 µg/mL ND

Inhibition of ECA by
enzymolysis and

ionization of proteins
[78]

Defatted wheat
germ

Hydrolyzed
proteins ND in vitro 220 µg/mL ND Inhibition of ECA by

hydrophobic amino acids [79]

Wheat flour
Phenolics from

peptide
fractions

ND in vitro 84.52% ND
Inhibition of ECA by

bound phenols after acid
hydrolysis

[80]
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Table 2. Cont.

Food Bioactive
Compound MW Test IC50 or %

IECA Decrease BP Main Mechanism Reference

Oat-isolated
protein Peptides <3 kDa in vitro 60% ND

Ultrasonic pretreated
enzymolisis increased

ECA-inhibitory activities
of the oat peptides

[81]

Oat protein
hydrolysate Peptides ND in silico 96.5% ND

Inhibition of ECA-I by
aromatic, small acids
with low lipophilicity

and high electronic
properties

[82]

Oat protein
hydrolysate Peptides <3 kDa in vitro e in

silico 35 µg/mL ND Competitive inhibitors of
ECA [83]

Sweet sorghum
grain

Peptides
fractions <1 kDa in vitro 31.6 µg/mL ND

Binding of the C-terminal
of Serine with the active

sites of ECA
[84]

Sorghum protein
hydrolysate Tripeptides ND in vitro 1.3 µg/mL ND Competitive inhibitor of

ECA [85]

Bread produced
with addition of

6% rye-malt
gluten

Peptides ND in vitro 0.002 µM/mL ND

ECA binding at the
N-terminal and proline or
aromatic amino acids at

the C-terminus

[86]

Extruded and
fermented millet Peptides ND in vivo ND 14.6% Reduction in the indexes

of RAAS [87]
Bread or

sandwiches with
pure millet

grains
Protein ND Clinical ND 3%

Inhibition of
vasoconstrictors and

induction of vasodilators
[88]

BP: Blood Pressure; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; MW: Molecular weight; % IECA:
Percent inhibition of ECA; Ala: Alanine; Arg: Arginine; Cys: Cysteine; Gln: Glutamine; Glu: Glutamic acid;
Ile: Isoleucine; Leu: Leucine; Lys: Lysine; Phe: Phenylalanine; Pro: Proline; Ser: Serine; Thr: Threonine; Trp:
Tryptophan; Tyr: Tyrosine; Val: Valine; NOS: Nitric oxide synthase; ND: Not determined.

5.1. Rice

Wild rice (Zizania spp.) is one of the cereals that has presented anti-hypertensive,
antiallergic, and immunomodulating activities, which are associated with the phenolic
acids, flavonoids, and other phytochemicals with antioxidant properties that aid in the
prevention of chronic illnesses [89,90]. Okarter and Liu [91] report that the low incidence of
chronic diseases in regions where rice is consumed is related to the presence of phytochem-
ical antioxidants in this cereal. Consequentially, these studies suggest the potential use of
rice and its by-products in the prevention or contributory treatment of non-transmissible
diseases such as hypertension.

Gong et al. [89] quantified the total phenolic content and flavonoids in different
varieties of rice, such as black rice, red rice, whole rice, and plain rice. They reported
concentrations of 1159, 669, 108.7, and 58.88 mg of Gallic Acid Equivalents (GAE)/100 g.
With respect to the total content of flavonoids, the authors reported 1503, 598.2, 77.94,
and 26.52 mg Quercetin Equivalents (QE)/100 g in black rice, red rice, whole rice, and
plain rice. Deng et al. [92] demonstrated the antihypertensive effects of wild rice (Zizania
latifolia) in spontaneously hypertensive rats, attributing these effects to the influence of the
polyphenol content, principally quercetin, due to previous studies that have demonstrated
that this compound reduces blood pressure and, moreover, since it presents protective
effects against cardiovascular diseases. Table 1 shows the main mechanism used in the
ACE inhibition of some phenolic compounds derived from cereals such as rice. The
phytochemical composition of wild rice is so complex that the decrease in hypertension
could be related to the synergic effects of bioactive compounds such as polyphenols and
bioactive tripeptides [92,93].

Michelke et al. [72] evaluated possible ACE inhibitor peptides found in hydrolyzed
whey, soy, and rice protein. The evaluation of ACE inhibition was performed in different
ACE systems such as human plasma, venous endothelial cells from human umbilical
cord, rabbit lungs, and rat aortic rings. The IC50 values observed in the soybean and
rice peptide mixtures were approximately 2 to 2.5 times higher than the IC50 value of the
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serum-derived peptides. Therefore, the best ACE-inhibitory activity was from the serum
peptides consisting of isoleucine and tryptophan.

Some studies have shown the effectiveness of dipeptides made up of isoleucine and
tryptophan (IW) in decreasing ACE, showing anti-inflammatory and antioxidant activities
in endothelial cells [94,95]. Lunow et al. [96] mention that the IW dipeptide acts as a
competitive and selective inhibitor for the C-Terminal of ACE in plasma.

Jan-on et al. [54] demonstrated that virgin rice bran oil prevents hypertension induced
by the L-NG-nitroarginine methyl ester (L-NAME) in rats, improving the hemodynamic
alterations, as well as the reduction in oxidative stress and vascular inflammation. This
suggests that these activities could be mediated by the content of unsaturated fat, antioxi-
dants, phytochemicals such as g-oryzanol, phytosterols, and tocopherols, which possess
antioxidant activities and provide vascular and inflammatory protection.

On the other hand, rice bran presents a high concentration of biologically active com-
pounds that are important for human health, of which are found cellulose, hemicellulose,
pectin, arabinoxylan, lignin, β-glucan, polyphenols, γ-oryzanol, β-sitosterol, vitamin B9,
vitamin E, tocopherols, micronutrients (such as calcium and magnesium), and essential
amino acids (such as arginine, cysteine, histidine, and tryptophan) [97].

Due to the high content of nutrients, a diet rich in rice increases immunological,
antioxidant, anticancer, and antidiabetic activities, protecting the organism against multiple
diseases [98]. Therefore, the use of these compounds and their different functions as
collectors of free radicals, antiallergy agents, antiatherosclerosis agents, anti-influenza
agents, anti-obesity agents, and antitumor agents offer protection against numerous chronic
diseases and degenerative diseases in humans, including hypertension and some cases that
could interfere with the infection of COVID-19.

5.2. Barley

In barley (Hordeum vulgare L), phytochemical concentrations have been reported
in relation to a reduction in heart disease, colon cancer, gallstones, and cardiovascular
illnesses [99]. The Food and Drug Administration reported that the intake of barley is
related to a decrease in cardiovascular diseases [100], such as chronic coronary diseases,
due to the decrease in plasma cholesterol promoted by β-glucans from hulled barley, which
promote the excretion of fecal lipids [101].

Some of the properties that are attributed to barley for reducing the risk of cardio-
vascular diseases such as hypertension are related to their different bioactive components,
which include peptides and ACE-inhibitory proteins [102]. However, some studies mention
that the high inhibition of ACE is principally stimulated by the combination of components
that come from antioxidants [103], peptides [68], or phenolic compounds [104].

Different authors have also demonstrated the great variety of bioactive compounds
originating from barley [57,68], among which the most utilized are inhibitors of ACE. The to-
tal concentration of phenolic acids ranges between 604 and 1346 mg/g [105]. Kim et al. [106]
studied the content of 127 varieties of barley with and without husks and they found that
the flavonoid content ranged from 62–300.8 mg/g. Andersson et al. [107] studied 10 vari-
eties of barley and found that the concentration of phytosterols ranges between 820 and
1153 mg/g. With respect to anthocyanins, the most common found in barley is the cyanidin
3-glucosidic type (214.8 mg/g) [108]. On the other hand, the lignans are the most studied
polyphenols in barley, whose concentration ranges between 6.6 and 541 mg/100 g [109].

The peptides obtained from barley also present inhibitory effects towards ACE. The
effects of the peptides occur principally because of the presence of hydrophobic peptides
in the C-terminal chain of the peptide that are united in the active sites of ACE [68]. The
presence of anthocyanins and polyphenols extracted from whole grains and seedlings
of barley, respectively, have also been studied as potential inhibitors of ACE, presenting
competitive and non-competitive inhibitory mechanisms. Some polyphenols show a non-
competitive inhibition of ACE when a structural difference with the natural substrate of
ACE is produced (Table 1) [57,58].
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In addition to phenolic compounds and inhibitory peptides, the soluble fiber in barley
and other cereals has an important role in human health. A study by Behall et al. [110]
observed a reduction in systolic and diastolic blood pressure in middle-aged men and
women after a 5-week integral diet. Fiber has anti-inflammatory effects, and in adults
with asthma, an average fiber intake of 5 g/day plus a controlled mineral-rich diet is
inversely associated with the eosinophilic inflammation of the respiratory tract and pul-
monary function [111,112]. Epidemiological studies in humans have demonstrated that
fiber can promote health and prevent chronic diseases, especially those related with in-
flammation [113], which could improve the cognitive function of people infected with
COVID-19 [113]. Therefore, the intake of dietary fiber can support antiviral and immuno-
suppressive therapeutic treatments, thereby ameliorating the suffering of COVID-19 [114].

5.3. Corn

Across the globe, there are different varieties of corn, which is rich in fiber, vitamins,
minerals, phenolic acids, flavonoids, sterols, and a great variety of phytochemicals [115].
There are reports that indicate that corn is one of the cereals with the highest availability
of nutrients, mainly β-carotene and α-tocopherol, which suggests that it may be the most
suitable for biofortification [116]. However, this may depend on the pigments in the grain.
Blue, red, and purple corn have a higher concentration of anthocyanidins; in Chinese purple
corn, approximate concentrations of 256.5 mg of cyanidin 3-glucoside/100 g at a dry weight
have been reported, while in American corn, the anthokinin content ranges from 54 to
115 mg/100 g per sample [117,118]. Yellow corn is rich in carotenoids with a concentration
of 0.823 mg/100 g per dry weight of corn [119]. Violeta et al. [116] have reported concentra-
tions of 26.9 µg/g of β-carotene and 27.2 µg/g of α-tocopherol in dark orange corn grains,
while in dark red corn, they were 2.51 and 4.95 µg/g, respectively, and in red corn, they
only reported a concentration of α-tocopherol of 4.87 µg/g. Pigmented genotypes have
shown a strong antioxidant capacity using DPPH and TEAC techniques [120]. In black
corn, a higher antioxidant activity has been reported than in yellow and white corn [121].
According to reports, the type of phenolic compound and/or flavonoids are associated
with grain pigmentation. The bioactive compounds have been related to antioxidant [122],
anticancer [123], antimicrobial, and anti-viral activities [124]. The anthocyanin content
differs by the variety of corn; in pink corn, it is approximately 12.74 mg of cyanidin 3-
glucoside/100 g at a dry weight, while in black corn, the anthocyanin content is 304.5 mg
of cyanidin 3-glucoside/100 g at a dry weight [118]. Corn has the highest antioxidant
activity with 181.4 µmol equivalents of vitamin C/g per grain compared to cereals such
as rice that have 55.77 µmol equivalents of vitamin C/g per grain, wheat with 76.70 µmol
equivalents of vitamin C/g per grain, and oats with 74.67 µmol equivalents of vitamin C/g
per grain [125].

Mellen et al. [126] carried out a metanalysis regarding the intake of whole grains and
clinical cardiovascular events. According to their estimates, the consumption of whole
cereals reduces the risk of suffering cardiovascular diseases by 21%. Similarly, this has
been related to a decrease in the risks of suffering chronic diseases such as diabetes type
2 [127], obesity, some cancers [128,129], and cardiovascular diseases [130]. Wu et al. [74]
evaluated the antihypertensive activity of ACE inhibitor peptides from corn germ using
the hydroenzymatic lysis method with alkaline protease that allows for the production of a
high concentration of inhibitor peptides. They carried out an ultrafiltration that allowed
them to obtain smaller peptides of 6 kDa, increasing the IC50 of the inhibitory activity of
ACE and demonstrating that the smaller the size the better absorption, according to the
authors [7,75].

It has been reported that the peptides extracted from corn germ flour promote the bal-
ance between vasoconstrictor factors, vascular endurance, and the reduction in the level of
renin and Angiotensin II, thus controlling blood pressure [73,74]. Huang et al. [75] demon-
strated the antihypertensive effect of the peptides of corn in spontaneously hypertensive
rats. They reported that two types of mechanisms of action exist in the peptide inhibitors
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of ACE: those that compete with the availability of the substrate of ACE and those that
combine the bioactivity of ACE to inhibit its enzymatic activity. These are normally made
up of more than four amino acids and from two to three amino acids. It is shown in this
study that the molecular size of the inhibitory peptide of ACE plays an important role in
its inhibitory activity because the peptides less than 3 kDa had an inhibition four times
greater than the peptides of 5 kDa. In a dipeptide (Ala-Tyr) isolated from a hydrolyzed corn
gluten flour, an IC50 of 82.92% was observed; therefore, due to its size, it is a potential ACE
inhibitor [131]. Some peptides and proteins derived from cereals with antihypertensive
activity are shown in the Table 2.

Duru [132] showed that the minerals and phytochemical content present in corn husks
contribute to multiple health benefits. Among the most abundant minerals that can be
found are calcium, sulfur, and potassium, which contribute to nerve and muscle regulation.
This is the case for calcium; sulfur is present in different amino acids and potassium plays a
part in the acid–base balance and osmotic regulation. As a consequence, a modification of
the diet that includes the consumption of corn could be a strategy to prevent cardiovascular
diseases and infectious diseases such as COVID-19.

5.4. Wheat

Wheat (Triticum spp.) has been used for the elaboration of basic foods since time
immemorial and is highly essential in human nutrition, providing 55% of starch and more
than 20% of food calories. Clinical studies have demonstrated that the regular consumption
of wheat is associated with a reduction in chronic diseases, specifically the intake of dietetic
fiber and other bioactive compounds [4].

Wheat is a rich source of diverse phytochemicals, among which are phenolic acids,
terpenoids, tocopherols, and sterols [133]. The concentration of phenolic acids in whole
wheat ranges between 200 to 1200 mg/g in dry weight [134]. The type of milling and the
use given to this cereal has a great impact on the composition of the bioactive compounds
and, thus, the health benefits as well as the improvement of the functions of the colon, those
against cancer, those that protect against obesity, those that promote weight loss, and those
that mitigate cardiovascular diseases [4,135].

Zhang et al. [66] isolated peptides from wheat gluten for their potential use as ACE
inhibitors, showing the importance of generating gluten hydrolysates to increase their
benefits, especially for the celiac population.

Besides gluten, wheat germ has widely been studied because of its high protein content.
Diverse studies have demonstrated that the peptides isolated from wheat germ and some
isolated from wheat gluten, such as VPL (Val-Pro-Leu), WL (Trp-Leu), WP (Trp-Pro), and
IAP (Ile-Ala-Pro), present antihypertensive effects principally for ACE inhibition, which is
caused principally by the high presence of hydrophobic amino acids such as proline and
tryptophan (Table 2) [8,78,79].

Asoodeh et al. [77] performed a characterization of ACE-inhibitory peptides from
wheat gluten protein hydrolysates through the use of trypsin. The sequences with the high-
est inhibitory activity were Ile-Pro-Ala-Leu-Leu-Lys-Arg and Ala-Gln-Gln-Leu-Ala-Ala-
Gln-Leu-Pro-Arg-Met-Cys-Arg; as in most inhibitory peptides, this activity is influenced by
the peptides’ structure, since some peptides that have tryptophan, tyrosine, phenylalanine,
and proline residues and hydrophobic amino acids in the C-terminal sequence show greater
inhibitory activity towards ACE [136].

Besides the extraction and evaluation of inhibitory peptides, Gammoh et al. [80]
demonstrated that the isolation of phenols from protein fractions in wheat flour increased
antihypertensive activity in an in an vitro model, alongside increasing antioxidant proper-
ties and decreasing allergenicity.

Recently, studies have demonstrated the capacity of polysaccharides to increase the
immune response to infectious diseases. In cells such as macrophages, the polysaccharides
activate the protein tracts, stimulating the control processes of the immune response [137].
Therefore, the polysaccharides of wheat induce the expression of cytokines, activating
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macrophages and increasing the phagocytotic activity [138,139]. Thus, the polysaccharides
activate the important immunosuppression tracts for the treatment of persons infected with
COVID-19 because they stimulate the production of anti-inflammatory substances, which
could apply to the treatment of grave cases [137].

5.5. Oats

Oats (Avena sativa) are a whole cereal that provide proteins, unsaturated fatty acids,
vitamins, minerals, dietetic fiber, and phenols such as the avenanthramides [140]. Soy-
can et al. [141] determined the concentration of phenolic acids and avenanthramides in
commercial products of oats and showed that there was a greater concentration of these
compounds (1518.6 µg/g) compared to oat bran (626.3 µg/g). Different bioactive com-
pounds have been reported in oats, such as phenolic compounds, with a concentration
between 180 and 576 mg Routine Equivalents (RE)/100 g. As to the phytosterols, oats
present a concentration between approximately 35 and 68.2 mg/100 g. On the other hand,
the tocopherol content (vitamin E) ranges between 0.5 and 3.61 mg/100 g [142].

Diverse studies mention that a regular consumption of oats reduces cholesterol [5,143],
improves the sensitivity of insulin [144], and controls blood pressure [145]. Soyca et al. [141]
reported a concentration of total phenolic acids of 39.5-62.75mg/100 g per sample. In this
study, it is mentioned that ferulic acid is the principal component present in commercial
oats, consisting of 58-78.1% of the total compounds. Ferulic acid presents antioxidant
activities that can prevent chronic diseases [146]. It has been demonstrated that avenan-
thramides offer health benefits such as antioxidative properties that can help protect against
cardiovascular diseases [147].

Few studies have investigated the benefits offered by oats in hypertension. However,
their positive effects on cardiovascular diseases have not been discarded. Wang et al. [81]
evaluated the ultrasonic pre-treatment of the protein in oats and its activity as a protein in-
hibitor of ACE, utilizing the enzymatic pre-treatment with ultrasound for the improvement
of the hydrolysis of proteins and the process of enzymolysis for the liberation of peptides
less than 3kDa. The results showed that the ultrasonic energy, the duration of treatment,
and the time of enzymolysis greatly influenced the hydrolysis grade and inhibitory ac-
tivities of the ACE of the peptides. They showed that the inhibition of ACE provoked
by the peptides had an increase of 32.1 to 53.8% compared to samples without ultrasonic
treatment. According to the authors, the rate of enzymatic hydrolysis after ultrasonic
pre-treatment was due to the increase in the affinity between the alcalase and the isolated
protein. Alcalase is a specific endonuclease enzyme that combines exposed hydrophobic
sides, which could have brought about an increase in the production of inhibitor peptides
of ACE, provoked by the high grade of the hydrolysis it promoted [148].

Besides the protein inhibitors of ACE, the soluble fibers such as the β-glucans of
oats have been widely studied, demonstrating prebiotic effects and improving glycemic
control and regulating blood pressure [149,150]. Maki et al. [151] evaluated the effect of
the consumption of foods that contain the β-glucan from oats in blood pressure. The
study consisted of a controlled randomized clinical trial, which was double blinded, where
97 men and women, with a mean age of 63 years, systolic blood pressure of 130–179 mmHg,
and/or a diastolic blood pressure of 85–109 mm Hg were assigned to consume foods
containing oat β-glucan or control foods for 12 weeks. Although the results did not show a
significant difference in terms of the decrease in blood pressure between the groups, the
decrease in blood pressure significantly decreased both the systolic (8.3 mm Hg, p = 0.008)
and diastolic (3, 9 mm Hg, p = 0.018) pressure in the subjects with a body mass index above
the mean (31.5 kg/m2) compared to the control groups.

The extracts of β-glucans produce immunomodulatory effects and pulmonary cry-
oprotections, which could have therapeutic implications in patients with COVID-19. In the
same way, these could reduce oxidative stress and activate macrophages [33].

McCarty and DiNicolantonio [152] recently described the potential role of β-glucan as
a natural nutraceutical to boost the response of interferon type 1 to RNA viruses such as the
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influenza and the coronavirus. Therefore, the intake of oat products provides a rich source
of phytochemicals that provides health benefits such as decreasing high blood pressure and
influencing the immunotherapies against infections such as COVID-19 due to the presence
of inhibitory peptides of ACE and of β-glucans.

5.6. Millet

Millet includes numerous species that are not related genetically. However, it contains
various phytochemicals, phenolic compounds, phytosterols, policosanols, and bioactive
peptides [153]. Chandrasekara and Shahidi [154] evaluated different varieties of this
cereal that presented approximate concentrations of hydroxybenzoic and hydroxycinnamic
acids and their by-products from 9.3 to 62.2 µg/g and 9.1 to 173 µg/g of defatted flour,
respectively, both in their free forms. As to flavonoids, this cereal contains from 2 to
100 mg/g, which differs because of the variety of the species [153]

The protein of foxtail millet (Setaria italica Beauv) can have physicochemical and
physiological properties. Some studies have found that foxtail millet presents antioxidant
activities, reduces the levels of cholesterol, and can present anticancer effects [155,156].

Furthermore, foxtail millet presents antihypertensive effects. Studies reported the
inhibitory capacity of the ACE of hydrolyzed proteins derived from this cereal [87]. The
consumption of whole grains can reduce blood pressure. Hou et al. [88] reported that the
consumption of 50 g of whole grains of pulverized foxtail millet extruded in the form of
bread or millet pancakes for 12 weeks showed a significant reduction in SBP of 133.61 and
129.48 mmHg, as well as a reduction in the mass index and body fat in 45 middle-aged
hypertensive patients. However, Chen et al. [87] showed the best results with respect to
decreasing blood pressure. In this study, they used spontaneously hypertensive rats. They
showed that a diet of 200 mg of peptides per kg of body weight for four weeks reduces
blood pressure via the intake of raw samples and in extruded and fermented samples
with Rhizopus oryzae. Compared to the extruded and fermented samples, the raw samples
caused a greater decrease in blood pressure with a reduction of 28.3 mmHg in PAS. As
to the extruded and fermented hydrolyzed proteins, there was a reduction of 24.8 and
13.6 mmHg, respectively. A controlled group treated with captopril had a reduction of
23.6 mmHg.

Therefore, the consumption of foxtail millet protein, specifically hydrolyzed, raw,
and extruded millet protein, improves hypertension due to the antioxidant and anti-
inflammatory properties whereby vascular conditions can be regulated gradually
(Table 2) [157]. In both studies, the levels of ACE and Ang II decreased, which could
indicate that the antihypertensive mechanism of foxtail millet consists of inhibiting the
activity of the ACE in the serum of subjects with slight hypertension. The antihypertensive
effects produced by cereals are related to the improvement in the endothelial function that
is achieved by inhibiting the effects of vasoconstrictors such as Ang II, inducing vasodilata-
tion through nitric oxide, and affecting the vasorelaxation tracts involved. Along with the
previously mentioned cereal, the consumption of millet can aid the modulation of immune
functions, which helps to protect against the COVID-19 ailment [158].

5.7. Rye

Among cereals, rye (Secale cereale L.) contains the highest concentration of dietetic
fiber, which is composed of arabinoxylan, cellulose, β-glucan, fructans, and lignin. Ara-
binoxylan is the most abundant fiber in rye (7.6–12.1% of the dry grain weight) [159].
Pihlava et al. [160] reported 0.5, 4.6, and 20.5 mg/100 g of dry weight of total flavonoids
present in the fine flour of rye, whole rye flour, and rye bran, respectively. As to the
quantity of anthocyanins, the authors reported 0.15 mg/100 g in rye bran, 0.18 mg/100 g in
whole rye flour, and 0.026 mg/100 g in fine rye flour. They also reported 66.3, 15.5, and
291.6 mg/100 g in the dry weight of alkylresorcinols in whole rye flour, fine rye flour, and
rye bran, respectively.
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There is important evidence within the studies of the physiological effects of rye foods
with possible health benefits, such as the positive effects on tumors in prostate cancer [2],
antihyperglycemic properties, and antihypertensive activities [86]. Zhao et al. [86] evalu-
ated the concentration of inhibitors of the ACE of different bakery products starting with
rye sourdough. They reported eight ACE-inhibitory tripeptides. The dominant tripeptide
was IPP (Ile-Pro-Pro) with 58 to 73 mmol/kg. Moreover, the peptide that showed the
greatest inhibition of ACE was LPP (Leu-Pro-Pro) (57 mmol/L), which is characterized by
the presence of leucine, an amino acid with a greater hydrophobicity, which is a principal
characteristic of the inhibitors of ACE.

Rye grains are a source of diverse phytochemicals such as phenolic acids, lignans,
and alkylresorcinols [160]. Multiple studies have demonstrated the capacity of the sec-
ondary metabolites of plants to generate antiviral activities besides the importance of
phytochemicals against SARS-CoV [161,162]. There are studies that link the effectiveness of
dietary fiber to the prevention of diseases related to lifestyle such as hypertension [163,164].
Dietary fibers reach the colon and produce short-chain fatty acids, which are released into
the circulation to reach the organs involved in the regulation of hypertension [165]. Due
to the high content of dietary fiber, proteins, and various bioactive compounds, rye can
enhance immunomodulatory and antihypertensive activities.

5.8. Sorghum

Sorghum (Sorghum spp.) contains tannins, phenolic acids, anthocyanins, and phytos-
terols. These phytochemicals have the potential to provide a significant impact on human
health, promoting cardiovascular health by reducing the plasma levels of lipoproteins of a
low density and hepatic cholesterol [166]. Sorghum contains benzoic acids and cinnamic
acids, which range from 16 to 131 mg/g and from 41 to 444 mg/g, respectively [167].

Anthocyanins are the most studied flavonoids in sorghum; Awika et al. [168] reported
that the anthocyanin content in black sorghum bran is three to four times higher than in
whole grain and had at least twice the anthocyanin levels (10.1 mg/g) in comparison with
red sorghum (3.6 mg/g). The quantitative data of the phytosterols present in sorghum are
limited, although approximate contents of 44 to 72 mg/100 g have been reported [169,170].

The generation of ACE-inhibitory peptides has been carried out in different forms.
Most of these techniques were based on the production of peptides from food proteins via
enzymatic hydrolysis [66]. Wu et al. [84] developed a kinetic method that describes the
enzymatic hydrolysis of the protein of sweet sorghum grain utilizing alcalase to purify ACE-
inhibitory peptides (Table 2). The authors demonstrated that 19% hydrolysis exhibited the
strongest inhibitory activity of ACE. On the other hand, they obtained a tripeptide inhibitor
composed of Threonina (Thr)-Leucine (Leu)-Serine (Ser), which, due to the serine union at
the C-terminal of the chain, manages to interact in the peak protein subunits (S1 and S2) of
ACE, thereby achieving its inhibition. Some studies explained the relationship between
the structure and the activity of the inhibitory peptides of ACE, which are influenced by
the C-terminal and the presence of hydrophobic amino acids or aromatic residues such as
Tryptophan (Trp), Tyrosine (Tyr), Proline (Pro), and Phenylalanine (Phe). However, this
structure-activity relationship has not been completely established [148].

The polyphenols have an ample antiviral activity against diverse groups of viruses
such as influenza A (H1N1), hepatitis B and C (VHB/VHC), herpes simplex 1 (VHS-1),
human immunodeficiency virus (HIV) and, recently, the virus that caused the COVID-19
disease (SARS-CoV-2) [171].

Besides their antiviral capacity, the phenolic compounds can also present antihyper-
tensive activity. Irondi et al. [61] analyzed raw and toasted red sorghum grain flour (150
and 180 ◦C) to determine the inhibitory activities of different enzymes including ACE. They
found that the raw grains showed high inhibitory activities (19.64 µg/mL) because of the
high presence of phenolic acids (gallic, chlorogenic, caffeic, ellagic, and p-coumaric) and
flavonoids (quercetin, luteolin, and apigenin), as increasing the temperature when toasting
decreases the presence of phenolic compounds and, consequentially, causes a decrease in
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inhibitory activity, with an IC50 in the grains roasted at 150 ◦C of 20.99 µg/mL and in the
grains roasted at 180 ◦C of 22.81 µg/mL. Therefore, the parallel decrease in the inhibitory
activity of the enzymes and the phenolic composition of the grains with the increase in
the toasting temperature suggests that the phenolic acids and the flavonoids could be the
principal inhibitors of the enzymes of the grain.

In this way, sorghum is a cereal with high potential to control hypertension and, in
some cases, its consumption could reduce the probability of viral infection by SARS-CoV-2
due to its high phytochemical content. In general, this cereal seems to have a great potential
to form part of a healthy diet and its consumption as grains or as food products could
reinforce the bioavailability of nutrients to prevent chronic diseases and infections.

6. Conclusions

Different components of cereals have been characterized, such as anthocyanins,
flavonoids, phenolic acids, proteins, and fibers, which have biological activities that help
prevent or control hypertension acting on the RAAS, inflammation, and oxidative stress.
According to the studies reported in this review, pigmented raw rice exhibits the greatest
ACE inhibition. In an in vitro study, raw rice was shown to inhibit up to 97% of ACE. This
activity is related to the reduction in oxidative stress and the reduction in NOS, caused by
the presence of phenolic compounds such as proanthocyanidins. In silico studies showed
that peptides derived from oats, made up mainly of aromatic amino acids, can inhibit up
to 96.5% of ACE. The presence of this type of amino acid is also related to the ability to
inhibit the TMPRSS protease of the host to prevent the entry of the SARS-CoV-2 virus. ACE
inhibitor drugs (ACEi) and angiotensin II receptor blockers (ARBs) participate in processes
that regulate the expression of ACE2, thus being useful in the treatment of patients who
developed SARS-CoV-2. Ultimately, this review highlighted the mechanisms used by
bioactive compounds in cereals to lower blood pressure and how these processes could be
involved in reducing the degree of COVID-19 infection.
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