Physicochemical and Sensory Characteristics of Instant Mushroom Soup Enriched with Jerusalem artichoke and Cauliflower
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Mushrooms Powder
2.2.2. Preparation of Mixed Jerusalem artichoke and Cauliflower Powders (JACF)
2.2.3. Formulation of Dried Instant Mushroom-JACF Soup Samples
2.2.4. Chemical Analysis of the Instant Soup Mixtures
2.2.5. Physical Properties of the Prepared Soup Mixtures
2.2.6. Sensory Evaluation of Instant Mushroom Soup Samples
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Instant Mushroom Soup Samples
3.2. Mineral Contents of Instant Mushroom Soup Samples
3.3. Amino Acid Contents of Instant Mushroom Soup Samples
3.4. Phytochemicals in JACF and Mushroom-JACF Soup Samples
3.5. Characterization of Phenolic Acids and Flavonoids Using HPLC
3.6. Physical Properties of Instant Mushroom-JACF Soup Samples
3.7. Organoleptic Evaluation of Instant Mushroom Soup Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rokhsana, F.; Yeasmin, R.; Nahar, A. Studies on the development and storage stability of legume and vegetable based soup powder. Bangladesh. J. Agric. Res. 2007, 32, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Farzana, T.; Mohajan, S.; Saha, T.; Hossain, M.N.; Haque, M.Z. Formulation and nutritional evaluation of a healthy vegetable soup powder supplemented with soy flour, mushroom, and moringa leaf. Food Sci. Nutr. 2017, 5, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Agba, M.O.; Markson, A.A.; Oni, J.O.; Bassey, G.A. Growth and yield impact of Oyster mushroom Pleurotus ostreatus (Jacq P. Kumm) cultivated on different agricultural wastes. J. Biosci. Agric. Res. 2021, 27, 2225–2233. [Google Scholar] [CrossRef]
- Oni, J.O.; Bassey, G.A.; Agba, M.O.; Markson, A.A. Amino Acids Composition of Some Wild Edible Mushrooms from Southern Cross River State, Nigeria. Asian J. Biol. 2021, 12, 24–32. [Google Scholar] [CrossRef]
- Roncero-Ramos, I.; Mendiola-Lanao, M.; Pérez-Clavijo, M.; Delgado-Andrade, C. Effect of different cooking methods on nutritional value and antioxidant activity of cultivated mushrooms. Int. J. Food Sci. Nutr. 2017, 68, 287–297. [Google Scholar] [CrossRef]
- Sanchez, C. Bioactives from Mushroom and Their Application. In Food Bioactives; Puri, M., Ed.; Springer: Cham, Switzerland, 2017; pp. 23–57. [Google Scholar] [CrossRef]
- Osman, A.; Toliba, A.O. Hepatoprotective Effects of Crude Phenolic-rich Extract from Oyster Mushroom (Pleurotus ostreatus). Egypt. J. Food. Sci. 2019, 47, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, R.S.; Abozed, S.S.; El-Damhougy, S.; Salama, M.F.; Hussein, M.M. Efficiency of newly formulated functional instant soup mixtures as dietary supplements for elderly. Heliyon 2020, 6, e03197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastarini, E.N.; Napitupulu, R.J.; Poernomo, S.H. Characteristics of Instant Mushroom Cream Soup Enriched with Catfish Oil Microcapsules. IOP Conf. Ser. Earth Environ. Sci. 2019, 292, 012005. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Phoukham, K.; Ngo, V.T. Formulation and quality evaluation of pearl oyster mushroom soup powder supplement with some kinds of legumes and vegetables. Acta Sci. Pol. Technol. Aliment. 2020, 19, 435–443. [Google Scholar]
- Rubel, I.A.; Iraporda, C.; Manrique, G.D.; Genovese, D.B.; Abraham, A.G. Inulin from Jerusalem artichoke (Helianthus tuberosus L.): From its biosynthesis to its application as bioactive ingredient. Bioact. Carbohydr. Diet. Fibre 2021, 26, 100281. [Google Scholar] [CrossRef]
- Ahmed, F.A.; Ali, R.F. Bioactive compounds and antioxidant activity of fresh and processed white cauliflower. Biomed. Res. Int. 2013, 2013, 367819. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Cosmos, E.; Simon-Sarkadi, L. Characterization of tokay wines based on free amino acid and biogenic amine using ion-exchange chromatography. Chromatographia 2002, 56, S185–S188. [Google Scholar] [CrossRef]
- Paul, A.A.; Southgate, D.A. The Composition of Foods, 4th ed.; Elsevier/North. Holland Biomedical Press: Amsterdam, The Netherlands, 1979; 418p. [Google Scholar] [CrossRef]
- Saengkanuk, A.; Nuchadomrong, S.; Jogloy, S.; Patanothai, A.; Srijaranai, S. A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tuber. Eur. Food Res. Technol. 2011, 233, 609–616. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Bhattacharyya, D.K. Colorimetric estimation of allyl isothyocianate content in mustard and rapeseed oil. Fette Seifen Anstrichm. 1983, 85, 309–311. [Google Scholar] [CrossRef]
- Yuan, G.F.; Sun, B.; Yuan, J.; Wang, Q.M. Effects of different cooking methods on health-promoting compounds of broccoli. J. Zhejiang Univ. Sci. B 2009, 10, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, B.; Satakopan, V.N. In-vitro antioxidant activities of Ocimum species: Ocimum basilicum and Ocimum sanctum. J. Cell Tissue Culture Res. 2010, 10, 2145–2150. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Bahorun, T.; Luximon-Ramma, A.; Crozier, A.; Aruoma, O.I. Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. J. Sci. Food Agric. 2004, 84, 1553–1561. [Google Scholar] [CrossRef]
- Goupy, P.; Hugues, M.; Boivin, P.; Amiot, M. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Sci. Food Agric. 1999, 79, 1625–1634. [Google Scholar] [CrossRef]
- Krokida, M.K.; Marinos-Kouris, D. Rehydration Kinetics of Dehydrated Products. J. Food Eng. 2003, 57, 1–7. [Google Scholar] [CrossRef]
- Yam, K.L.; Papadakis, S.E. A simple digital imaging method for measuring and analyzing color of food surfaces. J. Food Eng. 2004, 61, 137–142. [Google Scholar] [CrossRef]
- Semwal, A.D.; Sharma, G.; Patki, P.E.; Padmashree, A.; Arya, S.S. Studies on Development and Storage Stability of Instant Vegetable Pulav Mix. J. Food Sci. Technol. Mysore 2001, 38, 231–234. [Google Scholar]
- Yaseen, A.A.; Khshan, B.; Nazar, A.; Abedalhammed, H.S. Effect of Addition of Jerusalem artichoke (Helianthus Tuberosus) Tubers Powder, and Inulin on Lactobacillus Reuteri Activity and Recovery After Freezing Injury. IOP Conf. Ser. Earth Environ. Sci. 2020, 553, 012012. [Google Scholar] [CrossRef]
- Öztürk, B.; Serdaroğlu, M. Characteristics of oven-dried Jerusalem artichoke powder and its applications in phosphate-free emulsified chicken meatballs. In Proceedings of the 21st International Drying Symposium, València, Spain, 11–14 September 2018. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Abdel-Haleem, A.M.H.; Omran, A.A. Preparation of dried vegetarian soup supplemented with some legumes. Food Nutr. Sci. 2014, 5, 2274–2285. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Ghosh, S.; Patil, G.R. Development of a mushroom-whey soup powder. Int. J. Food Sci. Technol. 2003, 38, 217–224. [Google Scholar] [CrossRef]
- Srivastava, A.; Attri, B.L.; Verma, S. Development and evaluation of instant soup premix using oyster mushroom powder. Mushroom Res. 2019, 28, 65–69. [Google Scholar] [CrossRef]
- Baloch, A.B.; Xia, X.; Sheikh, S.A. Proximate and mineral compositions of dried cauliflower (Brassica oleracea L.) grown in Sindh, Pakistan. J. Food Nutr. Res. 2015, 3, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Barkhatova, T.V.; Nazarenko, M.N.; Kozhukhova, M.A. Obtaining and identification of inulin from Jerusalem artichoke (Helianthus tuberosus) tubers. Foods Raw Mater. 2015, 3, 13–22. [Google Scholar] [CrossRef]
- Obiakor–Okeke, P.N.; Obioha, B.C.; Onyeneke, E.N. Nutrient and sensory evaluation of traditional soups consumed in Igbere community in Bende local government area, Abia State, Nigeria. Int. J. Nutr. Food Sci. 2014, 3, 370–379. [Google Scholar]
- Cherbuin, N.; Kumar, R.; Sachdev, P.S.; Anstey, K.J. Dietary Mineral Intake and Risk of Mild Cognitive Impairment: The PATH through Life Project. Front. Aging Neurosci. 2014, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IMO. Available online: https://www.nationalacademies.org/topics/food-and-nutrition (accessed on 20 August 2022).
- AL-Hussainy, K.S.J.; AL-Fadhly, N.K.Z. Comparison between protein and amino acids of mushroom Agarieusbispours with some kinds of meat and meat’s products. IOP Conf. Ser. Earth Environ. Sci. 2019, 388, 012059. [Google Scholar] [CrossRef]
- Bogucka, B.; Jankowski, K. Jerusalem artichoke: Quality Response to Potassium Fertilization and Irrigation in Poland. Agronomy 2020, 10, 1518. [Google Scholar] [CrossRef]
- Słupski, J.; Bernas, E.; Kmiecik, W.; Lisiewska, Z. Evaluation of the amino acid content and the quality of protein in florets of white cauliflower: Raw, cooked, and prepared for consumption after freezing. Int. J. Food Sci. Technol. 2009, 44, 629–634. [Google Scholar] [CrossRef]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z.; Furman-Toczek, D.; Zagórska-Dziok, M. Antioxidant activity and cytotoxicity of Jerusalem artichoke tubers and leaves extract on HaCaT and BJ fibroblast cells. Lipids Health Dis. 2018, 17, 280. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.R.; Kwak, J.-H. Chemical Composition and Antioxidant Activity in Different Tissues of Brassica Vegetables. Molecules 2015, 20, 1228–1243. [Google Scholar] [CrossRef] [Green Version]
- Kaszás, L.; Kovács, Z.; Nagy, E.; Elhawat, N.; Abdalla, N.; Domokos-Szabolcsy, E. Jerusalem artichoke (Helianthus tuberosus L.) as a Potential Chlorophyll Source for Humans and Animals Nutrition. Environ. Biodivers. Soil Secur. 2018, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Catană, L.; Catană, M.; Iorga, E.; Lazăr, A.-G.; Lazăr, M.-A.; Teodorescu, R.I.; Asănică, A.C.; Belc, N.; Iancu, A. Valorification of Jerusalem artichoke Tubers (Helianthus tuberosus) for Achieving of Functional Ingredient with High Nutritional Value. Agric. Life Life Agric. Conf. Proc. 2018, 1, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Mann, S.K.; Khanna, N. Health promoting effects of phytochemicals from Brassicaceae: A Review. Indian J. Pharm. Biol. Res. 2013, 1, 120–131. [Google Scholar] [CrossRef]
- Amarowicz, R.; Cwalina-Ambroziak, B.; Janiak, M.A.; Bogucka, B. Effect of N Fertilization on the Content of Phenolic Compounds in Jerusalem artichoke (Helianthus tuberosus L.) Tubers and Their AntioxidantCapacity. Agronomy 2020, 10, 1215. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Xue, F.; Nan, X.; Wang, H.; Hua, D.; Liu, J.; Yang, L.; Jiang, L.; Xiong, B. Nutritional value, bioactivity, and application potential of Jerusalem artichoke (Helianthus tuberosus L.) as a neotype feed resource. Anim. Nutr. 2020, 6, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Gao, M.; Xiao, H.; Tan, C.; Du, Y. Free radical scavenging activities and bioactive substances of Jerusalem artichoke (Helianthus tuberosus L.) leaves. Food Chem. 2012, 133, 10–14. [Google Scholar] [CrossRef]
- Emelike, N.J.T.; Akusu, M.O. Comparative effects of drying on the drying characteristics, product quality and proximate composition of some selected vegetables. Eur. J. Food Sci. Technol. 2020, 8, 11–23. [Google Scholar]
- Sujatha, V.; Chaturvedi, A.; Manjula, K. Storage stability of intermediate moisture cauliflower Brassica oleracea, var, botrytis cabbage Brassica oleracea, var, capitata using radiation as hurdle technology. J. Food Technol. Res. 2014, 1, 60–72. [Google Scholar] [CrossRef]
Ingredients (%) | Formulation of Dried Instant Mushroom-JACF * Soup Samples | ||||
---|---|---|---|---|---|
Control | 5% JACF | 10% JACF | 15% JACF | 20% JACF | |
Dried mushroom powder | 45 | 45 | 45 | 45 | 45 |
JACF * | - | 5 | 10 | 15 | 20 |
White wheat flour | 25 | 20 | 15 | 10 | 5 |
Skim milk powder | 20 | 20 | 20 | 20 | 20 |
Onion powder | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Garlic powder | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Black pepper powder | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Cumin seeds powder | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Salt (sodium chloride) | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Total | 100 | 100 | 100 | 100 | 100 |
Chemical Composition | Raw Materials | Mushroom-JACF Soup Samples (M ± SE) | ||||||
---|---|---|---|---|---|---|---|---|
WF | JA | CF | Control | 5% JACF | 10% JACF | 15% JACF | 20% JACF | |
Moisture (%) | 9.11 ± 0.39 B | 9.44 ± 0.29 B | 8.95 ± 0.25 A | 9.94 ± 0.25 a | 9.81 ± 0.43 a | 9.79 ± 0.10 a | 9.76 ± 0.17 a | 9.74 ± 0.36 a |
Crude Protein (%) | 7.68 ± 0.28 A | 9.11 ± 0.31 B | 28.89 ± 0.22 C | 20.81 ± 0.51 a | 21.79 ± 0.12 b | 22.77 ± 0.29 c | 23.75 ±0.14 d | 24.73 ± 0.08 e |
Ether extract (%) | 1.74 ± 0.09 B | 1.54 ± 0.08 A | 3.97 ± 0.19 C | 3.67 ± 0.06 a | 3.70 ± 0.10 a | 3.74 ± 0.13 a | 3.77 ± 0.05 a | 3.81 ± 0.04 a |
Ash (%) | 0.23 ± 0.39 A | 6.77 ± 0.27 B | 8.04 ± 0.30 C | 2.05 ± 0.06 a | 2.46 ± 0.10 b | 2.85 ± 0.02 c | 3.27 ± 0.04 d | 3.67 ± 0.11 e |
Crude Fiber (%) | 0.22 ± 0.10 A | 4.53 ± 0.23 B | 12.91 ± 0.37 C | 8.03 ± 0.08 a | 8.44 ± 0.12 b | 8.83 ± 0.08 c | 9.26 ± 0.11 d | 9.67 ± 0.05 e |
Inulin (%) | - | 75.17 ± 0.39 | - | - | 2.31 ± 0.10 a | 4.60 ± 0.10 b | 6.89 ± 0.10 c | 9.17 ± 0.10 d |
Other total Carp (%) | 90.13 ± 0.47 C | 2.55 ± 0.11 A | 46.19 ± 0.22 B | 65.44 ± 0.12 e | 61.30± 0.42 d | 57.21 ± 0.18 c | 53.06 ± 0.55 b | 48.95 ± 0.85 a |
Caloric Value (kcal/100 g) | 406.90 ± 0.79 C | 154.46 ± 0.44 A | 336.05 ± 0.51 B | 378.03 ± 0.51 c | 368.54 ± 0.51 bc | 359.33 ± 0.51 b | 349.78 ± 0.60 ab | 340.47 ± 0.59 a |
Samples | Minerals Content of JACF and Mushroom-JACF Soup Samples | ||||||||
---|---|---|---|---|---|---|---|---|---|
K | P | Mg | Ca | Fe | Zn | Mn | Cu | ||
JACF * | 1577.12 | 579.59 | 319.88 | 258.77 | 11.53 | 4.20 | 2.71 | 1.17 | |
control | DP * | 1091.19 | 418.27 | 60.52 | 96.66 | 4.26 | 2.56 | 1.38 | 1.01 |
Diluted N.S.S ** | 272.79 | 104.56 | 15.13 | 24.16 | 1.06 | 0.64 | 0.34 | 0.25 | |
5% JACF | DP | 1171.6 | 447.48 | 76.23 | 109.02 | 4.85 | 2.78 | 1.52 | 1.07 |
Diluted N.S.S | 292.90 | 111.87 | 19.05 | 27.25 | 1.21 | 0.69 | 0.38 | 0.26 | |
10% JACF | DP | 1251.97 | 476.89 | 91.75 | 121.37 | 5.42 | 3.04 | 1.63 | 1.13 |
Diluted N.S.S | 312.99 | 119.22 | 22.93 | 30.34 | 1.35 | 0.76 | 0.40 | 0.28 | |
15% JACF | DP | 1332.34 | 506.30 | 107.39 | 133.62 | 6.01 | 3.21 | 1.77 | 1.17 |
Diluted N.S.S | 333.08 | 126.57 | 26.84 | 33.40 | 1.50 | 0.80 | 0.44 | 0.29 | |
20% JACF | DP | 1412.75 | 535.50 | 122.72 | 145.98 | 6.60 | 3.43 | 1.91 | 1.23 |
Diluted N.S.S | 353.18 | 133.87 | 30.68 | 36.49 | 2.09 | 0.85 | 0.47 | 0.30 | |
IMO *** | 4.7 g/d | 700 mg/d | 420 mg/d | 1000 mg/d | 8 mg/d | 11 mg/d | 2.3 mg/d | 0.90 mg/d |
Amino Acids | JACF * | Mushroom-JACF Soup Samples | ||||
---|---|---|---|---|---|---|
Control | 5% JACF | 10% JACF | 15% JACF | 20% JACF | ||
Histidine | 0.39 | 1.41 | 1.39 | 1.38 | 1.37 | 1.35 |
Lysine | 1.82 | 3.59 | 3.68 | 3.75 | 3.84 | 3.95 |
Valine | 1.83 | 2.37 | 2.46 | 2.54 | 2.6 | 2.69 |
Leucine | 1.21 | 4.48 | 4.54 | 4.61 | 4.66 | 4.72 |
Isoleucine | 1.19 | 1.61 | 1.67 | 1.75 | 1.81 | 1.9 |
Threonine | 1.58 | 1.78 | 1.86 | 1.91 | 1.98 | 2.1 |
Methionine + Cysteine | 8.36 | 0.85 | 1.27 | 1.66 | 2.11 | 2.41 |
Phenylalanine + Tyrosine | 2.82 | 2.87 | 3.01 | 3.14 | 3.3 | 3.42 |
Total Essential Amino acids | 19.2 | 18.96 | 19.88 | 20.74 | 21.67 | 22.54 |
Arginine | 0.39 | 0.35 | 0.37 | 0.38 | 0.4 | 0.41 |
Alanine | 0.42 | 0.41 | 0.44 | 0.46 | 0.47 | 0.52 |
Glycine | 0.37 | 0.6 | 0.62 | 0.63 | 0.64 | 0.66 |
Aspartic acid | 0.43 | 0.19 | 0.2 | 0.22 | 0.23 | 0.24 |
Glutamic acid | 0.21 | 0.11 | 0.12 | 0.13 | 0.13 | 0.14 |
Total non-Essential Amino acids | 1.82 | 1.66 | 1.75 | 1.82 | 1.87 | 1.97 |
Total Amino acids | 21.02 | 20.62 | 21.63 | 22.56 | 23.54 | 24.51 |
Bioactive Components | JACF * | Mushroom-JACF Soup Samples (M ± SE) | ||||
---|---|---|---|---|---|---|
Control | 5%JACF | 10% JACF | 15% JACF | 20% JACF | ||
Total phenolic acids | 2301.18 ± 1.76 a | 34.12 ± 0.70 a | 151.22 ± 0.75 b | 268.22 ± 0.77 c | 390.31 ± 0.77 d | 580.33 ± 0.75 e |
Total flavonoids | 487.93 ± 0.90 a | 9.89 ±0.44 a | 33.76 ± 0.47 b | 50.08 ± 0.45 c | 62.11 ± 0.45 e | 76.04 ± 0.51 d |
Glucosinolates(mg/100 g) | 2393.89 ± 1.90 | - | 123.40 ± 0.25 a | 247.65 ± 0.25 b | 370.2 ± 0.25 c | 505.94 ± 0.25 d |
Carotenoids (mg /100 g) | 219.12 ± 0.78 | 11.24 ± 0.25 a | 22.49 ± 0.25 b | 30.3 ± 0.25 c | 39.74 ± 0.25 d | 48.27 ± 0.25 e |
Ascorbic acid (mg /100 g) | 159.77 ± 0.44 | 10.11 ± 0.25 a | 18.23 ± 0.25 b | 26.83 ± 0.25 c | 33.0 ± 0.25 d | 40.97 ± 0.25 e |
DPPH (%) | 117.23 ± 0.49 | 11.3± 0.22 a | 25.20 ± 0.21 b | 47.90 ± 0.22 c | 63.12 ± 0.21 d | 70.22 ± 0.25 e |
Phenolic Compounds | JACF * | Mushroom-JACF Soup Samples | ||||
---|---|---|---|---|---|---|
(mg/100 g) | Control | 5%JACF | 10% JACF | 15%JACF | 20% JACF | |
Phenolic acids | ||||||
Gallic acid | 279.87 | 6.8 | 20.81 | 39.01 | 60.76 | 94.34 |
Protocatechuic | 179.12 | 4.61 | 13.63 | 28.71 | 38.89 | 58.53 |
Pyrogallol | 178.44 | 1.31 | 10.32 | 20.11 | 37.89 | 49.77 |
p-hydroxybenzoic | 221.31 | 3.17 | 14.16 | 25.07 | 31.8 | 47.01 |
Caffeic | 199.13 | 3.9 | 14.11 | 23.78 | 30.08 | 42.18 |
p-Coumaric acid | 189.77 | 1.09 | 12.11 | 23.25 | 30.01 | 41.07 |
Ellagic | 81.6 | 1.22 | 5.7 | 11.09 | 23.33 | 39.17 |
Catechin | 191.43 | 4.11 | 15.22 | 22.03 | 30.56 | 39.11 |
Alpha-coumaric | 178.87 | 1.08 | 10.11 | 15.07 | 21.09 | 34.13 |
Coumarin | 119.77 | 1.22 | 7.3 | 11.66 | 19.03 | 27.9 |
Chlorogenic | 99.71 | 0.77 | 5.13 | 9.07 | 14.13 | 20.03 |
Catechol | 77.91 | 0.65 | 4.86 | 9.01 | 15.12 | 19.8 |
Cinnamic acid | 61.23 | 0.4 | 3.3 | 7.05 | 10.12 | 15.01 |
Vanillic | 31.12 | 0.32 | 1.96 | 4.02 | 9.7 | 11.75 |
amino benzoic | 43.13 | 0.31 | 2.88 | 6.13 | 8.07 | 11.23 |
Total polyphenol acids | 2132.41 | 30.96 | 141.6 | 255.06 | 379.95 | 551.03 |
Flavonoids | ||||||
Rutin | 88.41 | 3.91 | 7.52 | 11.88 | 14.11 | 18.2 |
quercetin | 93.57 | 2.47 | 7.11 | 11.03 | 13.38 | 16.44 |
kaempferol | 81.65 | 2.13 | 6.21 | 10.11 | 13.18 | 16.19 |
Rosmarinic | 141.33 | - | 7.07 | 9.03 | 10.9 | 12.7 |
Total Flavonoids | 404.96 | 8.51 | 27.91 | 42.05 | 51.57 | 63.53 |
Total Phenolic compounds | 2537.37 | 39.47 | 169.51 | 297.11 | 431.52 | 614.56 |
Physical Properties | JACF ** | Instant Mushroom Soup Samples | |||||
---|---|---|---|---|---|---|---|
Control | 5%JACF | 10%JACF | 15% JACF | 20%JACF | |||
pH value | 7.10 ± 0.05 | 7.09 ± 0.09 a | 7.11 ± 0.08 a | 7.12 ± 0.07 a | 7.12 ± 0.09 a | 7.13 ± 0.09 a | |
Rehydration ratio (g) | 4.52 ± 0.20 | 3.02 ± 0.23 a | 3.24 ± 0.26 b | 3.49 ± 0.19 c | 3.61 ± 0.25 d | 3.77 ± 0.25 d | |
Total solids soluble (%) | 34.99 ± 0.28 | 16.12 ± 0.31 a | 17.88 ± 0.31 b | 18.94 ± 0.28 c | 20.07 ± 0.32 d | 21.11 ± 0.32 d | |
Color | L* | 72.68 ± 0.25 | 76.03 ± 0.20 a | 75.17 ± 0.19 a | 74.79 ± 0.18 a | 74.05 ± 0.20 a | 73.30 ± 0.20 a |
a* | 3.88 ± 0.19 | 2.59 ± 0.16 a | 2.64 ± 0.15 a | 2.70 ± 0.15 ab | 2.79 ± 0.17 bc | 2.89 ± 0.17 c | |
b* | 23.44 ± 0.21 | 21.38 ± 0.19 a | 22.19 ± 0.16 ab | 22.51 ± 0.17 b | 23.16 ± 0.15 bc | 23.81 ± 0.15 c |
Organoleptic Properties | Instant Mushroom Soup Samples (M ± SE) | ||||
---|---|---|---|---|---|
Control | 5%JACF * | 10% JACF | 15% JACF | 20% JACF | |
Color | 7.31 ± 0.33 a | 7.46 ± 0.35 ab | 7.71 ± 0.33 bc | 7.82 ± 0.30 bc | 7.89 ± 0.31 c |
Taste | 7.30 ± 0.30 a | 7.50 ± 0.29 ab | 7.70 ± 0.28 bc | 7.84 ± 0.31 bc | 7.90 ± 0.30 c |
Odor | 7.29 ± 0.29 a | 7.51 ± 0.25 ab | 7.70 ± 0.33 bc | 7.83 ± 0.27 bc | 7.91 ± 0.27 c |
Flavor | 7.00 ± 0.31 a | 7.52 ± 0.35 b | 7.73 ± 0.29 b | 7.86 ± 0.28 bc | 7.93 ± 0.30 c |
Texture | 7.29 ± 0.30 a | 7.49 ± 0.26 ab | 7.61 ± 0.33 ab | 7.70 ± 0.27 b | 7.77 ± 0.29 b |
Appearance | 7.25 ± 0.33 a | 7.43 ± 0.35 ab | 7.64 ± 0.33 bc | 7.71 ± 0.29 bc | 7.83 ± 0.27 c |
Overall acceptability | 7.24 ± 0.30 a | 7.47 ± 0.33 ab | 7.68 ± 0.29 bc | 7.79 ± 0.27 bc | 7.88 ± 0.31 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saed, B.; El-Waseif, M.; Fahmy, H.; Shaaban, H.; Ali, H.; Elkhadragy, M.; Yehia, H.; Farouk, A. Physicochemical and Sensory Characteristics of Instant Mushroom Soup Enriched with Jerusalem artichoke and Cauliflower. Foods 2022, 11, 3260. https://doi.org/10.3390/foods11203260
Saed B, El-Waseif M, Fahmy H, Shaaban H, Ali H, Elkhadragy M, Yehia H, Farouk A. Physicochemical and Sensory Characteristics of Instant Mushroom Soup Enriched with Jerusalem artichoke and Cauliflower. Foods. 2022; 11(20):3260. https://doi.org/10.3390/foods11203260
Chicago/Turabian StyleSaed, Badr, Mohammed El-Waseif, Hany Fahmy, Hamdy Shaaban, Hatem Ali, Manal Elkhadragy, Hany Yehia, and Amr Farouk. 2022. "Physicochemical and Sensory Characteristics of Instant Mushroom Soup Enriched with Jerusalem artichoke and Cauliflower" Foods 11, no. 20: 3260. https://doi.org/10.3390/foods11203260
APA StyleSaed, B., El-Waseif, M., Fahmy, H., Shaaban, H., Ali, H., Elkhadragy, M., Yehia, H., & Farouk, A. (2022). Physicochemical and Sensory Characteristics of Instant Mushroom Soup Enriched with Jerusalem artichoke and Cauliflower. Foods, 11(20), 3260. https://doi.org/10.3390/foods11203260