Cassava Starch Films with Anthocyanins and Betalains from Agroindustrial by-Products: Their Use for Intelligent Label Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Red Cabbage and Beetroot Powder Obtention
2.3. Preparation of the Intelligent Films
2.4. Characterization of the Films
2.4.1. Determination of Betalain and Anthocyanin CONTENT in the films
2.4.2. Thickness and Water Solubility
2.4.3. Color
2.4.4. Mechanical Properties
2.4.5. Contact Angle and Wettability
2.4.6. Scanning Electron Microscopy (SEM)
2.4.7. Fourier Transform Infrared Spectroscopy (FTIR)
2.5. Application of the Films as Intelligent Labels to Detect Fish Spoilage
2.5.1. Microbiological Analyses
2.5.2. Physicochemical Analyses
2.5.3. Color Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Film Characterization
3.2. Application of the Films as Intelligent Labels to Detect Fish Spoilage
4. Conclusions
- -
- composite films development;
- -
- application of composite films as smart labels;
- -
- obtention of pigments from plant by-products;
- -
- analysis of the potential benefits of using mixtures of different pigments, (in particular anthocyanins and betalains) to obtain more precise indications of food spoilage (in particular, hake spoilage).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.; McHugh, T.H. Recent advances on edible films based on fruits and vegetables—A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef] [Green Version]
- Abdollahzadeh, E.; Nematollahi, A.; Hosseini, H. Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends Food Sci. Technol. 2021, 110, 291–303. [Google Scholar] [CrossRef]
- Benbettaïeb, N.; Debeaufort, F.; Karbowiak, T. Bioactive edible films for food applications: Mechanisms of antimicrobial and antioxidant activity. Crit. Rev. Food Sci. Nutr. 2019, 59, 3431–3455. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Gastelú, G.; Barrera, G.N.; Ribotta, P.; Álvarez Igarzabal, C.I. Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocoll. 2019, 89, 758–764. [Google Scholar] [CrossRef]
- do Val Siqueira, L.; Arias, C.I.L.F.; Maniglia, B.C.; Tadini, C.C. Starch-based biodegradable plastics: Methods of production, challenges and future perspectives. Curr. Opin. Food. Sci. 2021, 38, 122–130. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Banat, F.; Show, P.L.; Cocoletzi, H.H. Mango leaf extract incorporated chitosan antioxidant film for active food packaging. Int. J. Biol. Macromol. 2019, 126, 1234–1243. [Google Scholar] [CrossRef]
- Pirsa, S.; Sani, I.K.; Mirtalebi, S.S. Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packag. Shelf Life 2022, 31, 100789. [Google Scholar] [CrossRef]
- Zhai, X.; Shi, J.; Zou, X.; Wang, S.; Jiang, C.; Zhang, J.; Holmes, M. Novel colourimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll. 2017, 69, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Luchese, C.L.; Abdalla, V.F.; Spada, J.C.; Tessaro, I.C. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocoll. 2018, 82, 209–218. [Google Scholar] [CrossRef]
- Yong, H.; Wang, X.; Bai, R.; Miao, Z.; Zhang, X.; Liu, J. Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocoll. 2019, 90, 216–224. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Zhang, X.; Liu, J. Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocoll. 2020, 100, 105410. [Google Scholar] [CrossRef]
- Kanha, N.; Osiriphun, S.; Rakariyatham, K.; Klangpetch, W.; Laokuldilok, T. On-package indicator films based on natural pigments and polysaccharides for monitoring food quality—A review. J. Sci. Food Agric. 2022. [Google Scholar] [CrossRef] [PubMed]
- Jamróz, E.; Kulawik, P.; Guzik, P.; Duda, I. The verification of intelligent properties of furcellaran films with plant extracts on the stored fresh Atlantic mackerel during storage at 2 °C. Food Hydrocoll. 2019, 97, 105211. [Google Scholar] [CrossRef]
- Liang, T.; Sun, G.; Cao, L.; Li, J.; Wang, L. A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocoll. 2019, 87, 858–868. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, X.; Zhai, X.; Huang, X.; Jiang, C.; Holmes, M. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem. 2019, 272, 306–312. [Google Scholar] [CrossRef]
- Cheng, M.; Yan, X.; Cui, Y.; Han, M.; Wang, X.; Wang, J.; Zhang, R. An eco-friendly film of pH-responsive indicators for smart packaging. J. Food Eng. 2022, 321, 110943. [Google Scholar] [CrossRef]
- FAO. Moving forward on food loss and waste reduction. In The State of Food and Agriculture; Food and Agriculture Organization (FAO): Rome, Italy, 2019; ISBN 978-92-5-131789-1. [Google Scholar]
- Savini, F. The economy that runs on waste: Accumulation in the circular city. J. Environ. Policy Plan. 2019, 21, 675–691. [Google Scholar] [CrossRef] [Green Version]
- Otálora González, C.M.; Bonifazi, E.; Fissore, E.N.; Basanta, F.; Gerschenson, L.N. Thermal stability of betalains in by-products of the blanching and cutting of Beta vulgaris l. var conditiva. Pol. J. Food Nutr. Sci. 2020, 70, 15–24. [Google Scholar] [CrossRef]
- Otálora González, C.M.; De’Nobili, M.D.; Rojas, A.M.; Basanta, M.F.; Gerschenson, L.N. Development of functional pectin edible films with fillers obtained from red cabbage and beetroot. Int. J. Food Sci. 2021, 56, 3662–3669. [Google Scholar] [CrossRef]
- Schelegueda, L.I.; Delcarlo, S.B.; Gliemmo, M.F.; Campos, C.A. Effect of antimicrobial mixtures and modified atmosphere packaging on the quality of Argentine hake (Merluccius hubbsi) burgers. LWT Food Sci. Technol. 2016, 68, 258–264. [Google Scholar] [CrossRef]
- Huss, H.H. Quality and Quality Changes in Fresh Fish; FAO Fisheries Technical Paper 348; FAO: Rome, Italy, 1995. [Google Scholar]
- EC (European Commission). Regulation No 2074/2005 of 5 December 2005, 22.12.2005. OJEU L 338, 27–59. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R2074 (accessed on 5 September 2022).
- Zhang, K.; Huang, T.S.; Yan, H.; Hu, X.; Ren, T. Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. Int. J. Biol. Macromol. 2020, 145, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Otálora González, C.M.; Flores, S.K.; Basanta, M.F.; Gerschenson, L.N. Effect of beetroot (Beta vulgaris L. var conditiva) fiber filler and corona treatment on cassava starch films properties. Food Packag. Shelf Life 2020, 26, 100605. [Google Scholar] [CrossRef]
- Sokal, R.; Rohlf, J. The principles and practice of statistics in biological research. In Biometry, 3rd ed.; W. H. Freeman and Company: New York, NY, USA, 2000; pp. 451–554. [Google Scholar]
- Gutiérrez, T.J.; Suniaga, J.; Monsalve, A.; García, N.L. Influence of beet flour on the relationship surface-properties of edible and intelligent films made from native and modified plantain flour. Food Hydrocoll. 2016, 54, 234–244. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt Boix, A. Reinforcement of Thermoplastic starch films with cellulose fibres obtained from rice and coffee husks. J. Renew. Mater. 2018, 6, 599–610. [Google Scholar] [CrossRef]
- Bernhardt, D.C.; Pérez, C.D.; Fissore, E.N.; De’Nobili, M.D.; Rojas, A.M. Pectin-based composite film: Effect of corn husk fiber concentration on their properties. Carbohydr. Polym. 2017, 164, 13–22. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Yong, H.; Liu, J.; Zhang, X.; Liu, J. Preparation and characterization of active and intelligent packagingfilms based on cassava starch and anthocyanins from Lyciumruthenicum murr. Int. J. Biol. Macromol. 2019, 134, 80–90. [Google Scholar] [CrossRef]
- Wu, L.T.; Tsai, I.L.; Ho, Y.C.; Hang, Y.H.; Lin, C.; Tsai, M.L.; Mi, F.L. Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydr. Polym. 2021, 254, 117410. [Google Scholar] [CrossRef]
- Cassie, B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Pereira, V.A., Jr.; de Arruda, I.N.Q.; Stefani, R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Singh, A.; Ganesapillai, M.; Gnanasundaram, N. Optimizaton of extraction of betalain pigments from beta vulgaris peels by microwave pretreatment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032004. [Google Scholar] [CrossRef]
- Chen, H.Z.; Zhang, M.; Bhandari, B.; Yang, C.H. Development of a novel colourimetric food package label for monitoring lean pork freshness. Lwt 2019, 99, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, P.K.; Vatsa, S.; Srivastav, P.P.; Pathak, S.S. A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Int. Food Res. J. 2020, 133, 109157. [Google Scholar] [CrossRef] [PubMed]
- Torres Vargas, O.L.; Loaiza, Y.V.G.; Gonzalez, M.L. Effect of incorporating extracts from natural pigments in alginate/starch films. J. Mater. Res. Technol. 2021, 13, 2239–2250. [Google Scholar] [CrossRef]
- Ezati, P.; Tajik, H.; Moradi, M.; Molaei, R. Intelligent pH-sensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. Int. J. Biol. Macromol. 2019, 132, 157–165. [Google Scholar] [CrossRef] [PubMed]
Parameters | CS | CSBR | CSRC | CSBC |
---|---|---|---|---|
Thickness (mm) | 0.36 ± 0.04 a | 0.47 ± 0.03 b | 0.43 ± 0.04 b | 0.42 ± 0.02 b |
WS (%) | 29 ± 2 a | 36.6 ± 0.5 b | 30 ± 3 a | 37 ± 1 b |
Contact angle (°) measured at 20 s | 2.6 ± 0.7 a | 13.8 ± 0.8 b | 3.0 ± 0.6 a | 19.6 ± 0.5 c |
Wettability (mN/m) | −0.03 ± 0.04 a | −2.1 ± 0.5 b | −0.08 ± 0.09 a | −4.2 ± 0.7 c |
Stress at rupture (MPa) | 0.8 ± 0.1 ab | 0.62 ± 0.07 b | 1.2 ± 0.1 c | 1.0 ± 0.2 c |
Deformation at rupture (mm/mm) | 2.7 ± 0.2 a | 1.2 ± 0.1 b | 0.8 ± 0.1 c | 0.9 ± 0.2 c |
Betalains (mg/100 g) | - | 41.61 ± 0.08 | - | 8.9 ± 0.1 |
Anthocyanin (mg C3G/100 g) | - | - | 37.9 ± 0.3 | 24.9 ± 0.4 |
Color | ||||
L* | 85.85 ± 0.04 a | 32 ± 1 b | 54 ± 1 c | 46 ± 2 d |
a* | −1.37 ± 0.01 a | 41 ± 2 b | 2.2 ± 0.6 a | 20 ± 1 c |
b* | 5.41 ± 0.02 a | 23 ± 1 b | 2.6 ± 0.1 c | 15 ± 1 d |
∆E* | - | 69 ± 1 a | 31.1 ± 0.4 b | 45 ± 1 c |
Day | Systems-CSBR | Systems-CSRC | Systems-CSBC | |||
---|---|---|---|---|---|---|
Log CFU/g | TVB-N mg/100 g | Log CFU/g | TVB-N mg/100 g | Log CFU/g | TVB-N mg/100 g | |
0 | 3.16 ± 0.09 a | 5.6 ± 0.4 a | 3.16 ± 0.09 a | 5.6 ± 0.4 a | 3.16 ± 0.09 a | 5.6 ± 0.4 a |
3 | 6.1 ± 0.5 b | 10 ± 1 b | 6.4 ± 0.1 b | 12 ± 1 b | 6.0 ± 0.2 b | 12 ± 1 b |
4 | 6.9 ± 0.2 c | 31 ± 2 c | - | - | 6.7 ± 0.3 c | 26 ± 1 cd |
5 | 7.52 ± 0.07 d | 46 ± 3 e | - | - | - | - |
8 | 8.8 ± 0.1 e | 78.5 ± 0.7 f | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otálora González, C.M.; Schelegueda, L.I.; Pizones Ruiz-Henestrosa, V.M.; Campos, C.A.; Basanta, M.F.; Gerschenson, L.N. Cassava Starch Films with Anthocyanins and Betalains from Agroindustrial by-Products: Their Use for Intelligent Label Development. Foods 2022, 11, 3361. https://doi.org/10.3390/foods11213361
Otálora González CM, Schelegueda LI, Pizones Ruiz-Henestrosa VM, Campos CA, Basanta MF, Gerschenson LN. Cassava Starch Films with Anthocyanins and Betalains from Agroindustrial by-Products: Their Use for Intelligent Label Development. Foods. 2022; 11(21):3361. https://doi.org/10.3390/foods11213361
Chicago/Turabian StyleOtálora González, Carlos M., Laura I. Schelegueda, Víctor M. Pizones Ruiz-Henestrosa, Carmen A. Campos, María F. Basanta, and Lía N. Gerschenson. 2022. "Cassava Starch Films with Anthocyanins and Betalains from Agroindustrial by-Products: Their Use for Intelligent Label Development" Foods 11, no. 21: 3361. https://doi.org/10.3390/foods11213361
APA StyleOtálora González, C. M., Schelegueda, L. I., Pizones Ruiz-Henestrosa, V. M., Campos, C. A., Basanta, M. F., & Gerschenson, L. N. (2022). Cassava Starch Films with Anthocyanins and Betalains from Agroindustrial by-Products: Their Use for Intelligent Label Development. Foods, 11(21), 3361. https://doi.org/10.3390/foods11213361